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A b s t r a c t .  Sharp comparisons between aging renewal process shock models 
and the corresponding Esary-Marshall-Proschan (EMP) shock model are con- 
sidered. The usefulness of such comparisons derive from the simplicity of the 
latter models. Simple conditions under which such aging renewal process shock 
models are stochastically ordered relative to a corresponding EMP-model are 
derived. Applications to renewal functions and single server queues are indi- 
cated. 
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1. Introduction and summary 

A shock model survival distribution S is governed by a counting process 
{N(t)  : t > 0} of shocks over t ime and a sequence of shock-resistance probabilities 
{/sk: k = 0, 1, 2 , . . . }  with 1 _>/50 _>/5 k J. 0. The latter is the ta i l /5  k := P { J  > k}, 
k = 0, 1, 2 , . . .  of the number  J of shocks to failure. Set 

Pk := Pk-1 -- Pk = P { J  = k}, k = 0,1,2, . . .  

(/5_1 = 1). Then  the survival probability S(t)  := P{N(t)  < J} has the two 
equivalent representations: 

(i.I) 

S(t) = EPN(t) = B PkP{N(t)  = k}, 
k--0 

(3'O 

S(t) := 1 - S(t)  = P { J  < N(t )}  = Po + Z P k P { N ( t )  >_ k}. 
k=l 

Even for relatively simple counting processes N(t) such as a renewal process, for 
which S(t) is called a renewal process shock model (RPSM); (1.1) is typically 
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hard to compute and usually cannot be expressed in a closed form. The only 
exceptions axe when N(t)  is either (i) a Poisson process or (ii) a Phase(PH)-type 
renewal process together with discrete PH-type shock resistance probabilities. In 
the latter case, S(t) is continuous PH-type (Neuts and Bhattachaxjee (1981)) 
and thus lends itself to computational manipulation. When N(t) is a Poisson 
process (homogeneous or nonstationary), (1.1) leads to the the well known shock 
model of Esaxy et al. ((1973); henceforth abbreviated as the EMP-model), and 
the nonstationary Poisson shock model due to A-Hameed and Proschan (1973) 
respectively. Block and Savits (1978) considered conditions on the renewal process 
which axe sufficient for the RPSM probability in (1.1) to inherit different aging 
properties of the number of shocks to failure. Pellerey (1994) has investigated 
some properties of shock models with different underlying counting processes. In 
contrast, our focus in this paper is on comparisons between shock models driven by 
suitably aging renewal processes and a corresponding EMP-survival model where 
shocks occur at the same rate. The main interest in and justification of looking for 
such pointwise comparisons is that  EMP survival distributions are conceptually 
and computationally simplest of such models. 

The possibility of comparing an aging RPSM to a corresponding Poisson 
process shock model is implicit in some results in Baxlow and Proschan (1975) 
on bounds for the distribution of the renewal quantity when the distribution F 
driving the renewal process has aging characteristics. The following preliminary 
results provided our motivation to investigate the relationship between RPSM- 
survival distributions and corresponding EMP-shock models under appropriately 
weak conditions on the RPSM. 

If N(t) is a NBU-renewal process (i.e., the interaxrival t ime distribution F 
between shocks is NBU), then since F is NBU implies (Baxlow and Proschan 
(1975), p. 162) 

(1.2) P{N( t )  < k} >_ 1 -  Q(k - X,A(t)) 

for k = 1, 2 , . . .  ; where A := - In(1 - F) ,and Q(k, A) is the Poisson tail 

_ Q(k,.x) -fi" - Jo e-X-~dx;  k >_ O; 
:~- 

j>k 

we see that  the corresponding survival probability in (1.1) satisfies: 

o o  

(1.3) S(t) = 1 - po - ~ p k P ( N ( t )  >_ k} 
k : l  

= Po - Z ( P k - 1  - P~)P{N(t)  >_ k} 
k = l  

O0 

>_ Po + Z ( P k  - Pk-1)Q(k - 1, A(t)) 
k = l  

= PoE(t) + ~ Pk{O(k - 1, h(t))  - Q(k, A(t))} 
k=-1 
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oo A(t) A~t) 
= ~--'~ Pke- 

, 

k=O 

t > 0 .  

Thus, for NBU-renewal process shock models, the survival time distribution func- 
tion (d.f.) S stochastically dominates the corresponding d.£ of the survival time 
in a non-homogeneous Poisson process (NHPP) shock model of A-Ha.meed and 
Proschan (1973). If we strengthen the assumption on N(t) to an IFR (DFR) 
renewal process, then (1.3) can be replaced by the bound 

o o  

(1.4) S(t) > (_<) ~ Pke - t l" ( t l#)k  
- k !  ' 0 < t < #  

k=O 

using a well known bound analogous to (1.2), which is valid only in the range 
0 < t < #, under IFR assumption (Barlow and Proschan (1975)). 

Although these results ((1.3) and (1.4)) are fairly easily obtained and the 
former holds without any assumption on the shock-resistance probabilities [~k, they 
do not go far enough in the sense that they are not able to establish a pointwise 
comparison of an RPSM-survival probability to the corresponding simple EMP- 
survival model over the entire time axis. It is thus of legitimate interest to seek 
appropriate weak conditions under which such pointwise comparisons with the 
EMP-model can be made. 

Section 2 summarizes our basic results. Section 3 is devoted to proofs. We es- 
tablish sharp pointwise comparisons between a RPSM survival probability, driven 
by a NBUE or NWUE renewal process of shocks with convex or concave shock 
resistance probabilities, and the corresponding EMP-shock model survival prob- 
ability in which shocks occur at the same rate (Theorems 2.1-2.3). When the 
aging renewal process assumption on shocks is relaxed from NBUE (NWUE) to 
HNBUE (HNWUE), a weaker but still sharp stochastic comparison holds without 
any assumption on the distribution on the number of shocks to failure (Theorem 
2.4). In Section 4 devoted to applications, we (i) derive an improved upper bound 
for NB UE-renewal functions and (ii) show that the well known stochastic domina- 
tion of the stationary waiting time in single server queues with NBUE service and 
arrivals by the waiting time in M/M/1  queues with the same service utilization 
factor follows as an easy consequence of our results. 

In the sequel, * denotes convolutions and ,n the n-fold self-convolution of a 
distribution with itself. M(t) = EN(t)  = ~-'~nC~ 1 F*~(t) is the renewal function 
associated with the renewal process generated by a given survival distribution 
function F (d.f. of the 'shock interarrival time') with tail F = 1 - F and a finite 
mean p. Corresponding to F, G will always denote the exponential d.f. G(t) := 
1 - e -t/~, t >_ 0, with the same mean as the mean of F. Also _<st and =st will 
denote the usual stochastic ordering and stochastic equivalence respectively. To 
avoid trivial situations, we assume P0 ~ 1; i.e., there is a positive probability that 
failure occurs only after a shock. 
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2. Main results 

To state our results, let, 

(2.1) &xp(t) : =  
k! ' k=O 

(2.4) 

i.e., S <_st ( - - - ~ s t ) S e x p  • 

exponential. 

t > 0  

THEOREM 2.3. For the NBUE (NWUE resp.) renewal process shock model 
(1.1), let Pk be concave. Then 

(2.5) > (<)&xp(t)- pNA[P(t), 

F,G where A k (t) := ~-~n>k G'n(t) - ~-~>k F*~(t), k = 0, 1, 2 , . . .  and N = m a x { k :  
Pk > 0}. The bound is sharp. Equality holds (S = Sexp) iff F is exponential. 

Clearly, AF'C(t) • [0, 1) ([--1, 0) respectively) when F is NBUE (NWUE) for 
FG all k _ 0. We note however that ,  because of the difficulty in computing A k' (t) 

for an arbi trary k ~ 1, the bound  in (2.5) cannot be easily computed  in general. 
In particular, note when /5 k is concave in k as in Theorem 2.3~ under the non- 
triviality assumption P0 ~ 1, we have N > 1. We may also note tha t  the bounds  

denote the Esary-Marshall-Proschan (EMP) shock model survival probability, 
when the shocks are driven by a Poisson process with rate A -= p - 1  and where # 
is the mean of the d.f. F of the t ime between shocks. 

THEOREM 2.1. Let the shock resistance probabilities Pk be convex. 
(i) If  the successive shock times constitute a NBUE-renewal process, then 

(2.2) ' ( t )  <- 'exp(t) + pl ( t - M( t ) )  . 

(ii) If  the shock times constitute a NWUE-renewal process with a finite mean 
time between shocks, then 

(2.3) ' ( t )  >_ 'exp(t) - pl (M( t )  - ~ ) . 

Both bounds are sharp, with equality iff F is exponential. 

THEOREM 2.2. Let Pk be convex. If  the incidence of shocks is a stationary 
NBUE (NWUE)-renewal process, then 

< (>)&xp(t), 

The bound is sharp. Equality holds (S = Sexp) iff F is 
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in Theorem 2.1 can be described in a manner analogous to (2.5), by rewriting 
(2.2)-(2.3) as: 

g(t) < ( > ) & x , ( t ) +  pln0~'G(t), 

whenever the renewal process of shocks is NBUE (NWUE resp.) and Pk is convex 
in k, since A0g'a(t) = ( t / # ) -  M(t). 

If we make no assumptions on the shock resistance probabilities Pk, we can 
get a weaker but still sharp comparison (Theorem 2.4 below) in terms of a partial 
ordering. For this result, the aging renewal process assumption can be relaxed 
from NBUE (NWUE) to HNBUE (HNWUE) renewal process of shocks. 

DEFINITION. (i) For nonnegative r.v.s, let <~ denote the convex ordering 
(see, Stoyan (1983)), defined by: 

X _<c Y if P( X  > x)dx <_ P(Y  > x)dx, all t > 0. 

(ii) A stronger partial ordering _<v (convex ordering with equal means) is 
defined by: 

X <_, Y if X <_~ Y and E X  = EY. 

We denote the d.f.s of X and Y to be correspondingly partially ordered, without 
any ambiguity. The reverse partial orderings _>c and _>. are defined by reversing 
the integral inequality. 

Remarks. 1. The partial orderings <_c and <_v are also known as variability 
orderings in the literature (e.g., Ross (1983), Bhattacharjee (1991)), although 
often in different notations. (The orderings _<c, <~ defined above are denoted in 
Bhattacharjee (1991) by <(1) and <1 respectively, while Ross (1983) uses _v for 
_<c.) Our notation for _<c thus follows Stoyan (1983), but differs from Ross (1983). 

2. Clearly, X _<. Y =~ X _<~ Y, but not conversely unless E X  = EY.  
Further, X <~ ( <_v)Y ¢~ Eh(X) <_ Eh(Y) for all convex increasing (convex, resp.) 
functions h (see Corollary 8.5.2 in Ross (1983) or, Theorem 2.4 in Bhattacharjee 
(1991)). In our context, the distinction between and applicability of the orderings 
___~ and _<. is illustrated by Corollary 3.1. 

THEOREM 2.4. If the shocks are governed by a HNBUE ( HNWUE) renewal 
process, and the shock resistance probabilities are arbitrary; then the stationary 
RPSM and the corresponding EMP shock model survival d.f.s satisfy 

(2.6) S <~ (_>v)Sexp. 

The stochastic comparison is sharp. Equality ( S = Sexp) holds iff F is exponential. 

Remarks. 1. Since F is exponential iff the renewal process N(t) and, the 
stationary renewal process fi/(t) driven by F is a Poisson process; the sharpness re- 
sults in the above theorems can be viewed as characterizations of Poisson processes 
within RPSM models. 
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2. Note Pk is convex (concave) if and only if Pk - Pk-1 is T (J.), k > 0 
(/5_1 := 1) and 0 < Pk = Pk-1 - Pk. Hence /Sk is convex (concave) if and only if 
0 < Pk is I ($). Thus, when/sk is convex, we must have Pl ~ 0, since P0 ¢ 1. On 
the other hand; if/sk is concave, then the number J of shocks to failure must have 
a finite support. In this case, the representations of 5'(t) in (1.1) are finite sums 
over 0 < k < N - 1 and 1 < k < N respectively, where N = max{k :Pk > 0}. 

3. Since M(t) ~ (>)t /# under NBUE (NWUE); the second term in the 
upper (lower) bound in (2.2) and ((2.3) resp.) is non-negative, and is moreover 
strictly positive for a nonempty set of t; unless the shock process is Poisson, since 
/5 k convex requires Pt > 0. 

3. Proofs 

To prove our theorems in Section 2, we will need the following preliminary 
results. They are parallel to and are variants of some similar observations in 
Barlow and Proschan (1975). Lemma 3.2 is not directly used in our arguments, 
but is potentially useful and of independent interest. 

LEMMA 3.1. (cf. Barlow and Proschan (1975)) I fFi ,  i = 1,2, . . .  are NBUE 
(NWUE) with a common mean tt < oc and G(t) = e -t/È, then 

(3.1) E F I * F 2 * ' " * F ~ ( t ) < - ( > ) E G * ~ ( t ) '  J >- 1, t > O. 
n~j n>j 

LEMMA 3.2. Let F be a survival distribution with finite mean #, and {h(n) : 
n = 1, 2, . . . }  a monotone infinite sequence of reals. 

(i) If  F is NBUE and 0 ~ h(n) T (or, F is NWUE and 0 >_ h(n) 1) for 
n > 1, then 

ft/ , xn-1  c~ 
(3.2) 0 < E h(n)F*n(t) < E h(n) e - z  dx = E h(n)G*~(t)" 

n----1 n----1 JO ~ n=l 

(ii) If  F is NBUE and 0 >_ h(n) ~ (or, F is NWUE and 0 ~_ h(n) T) for 
n >_ 1, then (3.2) holds with the inequality reversed. 

The validity of (3.1) for the NWUE case with a finite mean follows immedi- 
ately as a dual to the NBUE case, due to Barlow and Proschan (1975), Theorem 
3.15, p. 171. 

Barlow and Proschan ((1975), p. 173) proved (3.2) when F is NBUE and the 
sequence h(n) is nonnegative nondecreasing. To prove Lemma 3.2 in the three 
remaining cases, use the decomposition 

c F.(t) = cl Z F.(t) + E/ , c j_ l  E F.(t), 
n = l  n = l  j = 2  n=j 

Acj-1 := cj - cj-1, j > 2, 



BOUNDS FOR AGING RENEWAL PROCESS SHOCK MODELS 651 

for any sequence of d.f.s Fn and nonnegative reals c.; then choose Fn = F *~ and 
h(n) = -cn (cn resp.) according as 0 _> h(n) J, (0 <_ h(n) T resp.) and apply 
Lemma 3.1 when F is NWUE (NBUE resp.). Note that  to apply Lemma 3.1 to 
the above decomposition, we need the sequence c~ to be monotone over the entire 
set of positive integers, since the decomposition is no longer valid for a finite sum 

N E~:I cnFn(t). 
We now turn to proving the main results. For clarity, the arguments for expo- 

nentiality to be necessary and sufficient for sharpness of the bounds are collected 
together at the end. 

PROOF OF THEOREM 2.1. Suppose/sk is convex; equivalently 0 _< Pk J, in 
k = 0, 1, 2, . . . .  If F is NBUE with mean # and G(t) = e -t /",  then 

(3.3) 
k=-i k>l  j=2 k>j  

Apply Lemma 3.1 to the third group of terms above, noting pj - pj_ 1 _< 0. Since 
~k~=l F*k(t) = M(t) and }-~k~__1 G*k(t) = t/p, the renewal functions of N(t) and 
the corresponding Poisson process; we get 

S(t)>_po+pl M ( t ) -  + P l E G * k ( t ) + E ( p j - p j _ l ) E G * k ( t  ) 
k=~ j=2 k>j 

= PO + E P k G * k ( t )  + Pl  M(t) - 

k=l  

which yields (2.2). The proof for the NWUE case leading to (2.3) follows analo- 
gously using the NWUE version of (3.1). [] 

PROOF OF THEOREM 2.2. If N(t)  is the stationary renewal process induced 
by F,  then 

P{fi/(t) _> k} -- ( T F ) ,  F*(k-1)(t), k > 1 

since the t ime to first shock has distribution 

/0 (3.4) TF(t) := #-1 f'(x)dx. 

The basic argument is to show that  (2.2) and (2.3) remain valid when the underly- 
ing counting process of shocks is a stationary renewal process with NBUE (NWUE 
resp.) survival and hinges on extending Lemma 3.1 in an appropriate direction. 
We show tha t  F is NBUE (NWUE resp.) implies 

(3.5) E (TF) * F*(k-1)(t) -< (->) E G*k(t)' J >- 1, t >_ O. 
k>_j k>_j 
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If this holds, then we can proceed as in the proof of Theorem 2.1, by replacing 
F*k(t) in each term of (3.3) by the left hand side of (3.5) and mimic the remaining 
computational steps to conclude 

S ( t ) =  E[~fc(t) <_ (>)Sexp(t) + Pl (~  - E~(t))  ~ Sexp(t), 

when F is NBUE (NWUE resp.). Here is the argument for (3.5) to complete the 
proof, when F is NBUE. The NWUE case is analogously obtained by reversing 
all inequalities below. Since EN(t) = ~; (3.5) is trivially true as an equality when 
j = 1. If it holds up to some j _> 1 and all t > 0; then 

E (TF)*F*(k-1)(t) 
k>_j+~ 

= E(TF)*F*k(t) 
k>j 

= E ( ( T F )  * F*(k-1))(t - x) F(dx) 
k=-j 

<- E G*k(t- x) f(dx) 
k=j 

= fo ~ ~ f ,  a*(k-ll(t - x) , a(dx) 
k=j 

/:l } <_ ~_, a*k(t -  x) a(dx) 
k.=-j 

= F_, c * k ( t )  , 
k>j+l 

where the first inequality uses the inductive hypothesis, and the last one follows 
from the version of Lemma 3.1 obtained by choosing/ '1 -- F; Fn = G, all n > 2. [] 

Let N(t) (N*(t) respectively_) denote the renewal counting process induced 
by F (by TF respectively). Let N(t) be the stationary renewal counting process 
induced by F,  Nexp(t) the Poisson process generated by the exponential survival 
distribution with mean # = f ~  F(x)dx and _<v (_<c resp.) the 'variability ordering' 
with (without, resp.) the condition of equal means--defined earlier. From Lemma 
3.1 and the arguments for Theorem 2.2, we also have 

COROLLARY 3.1. If F is NBUE, then 

N(t) <_st N(t) <_st N*(t), 
N(t) <-c Nexp(t) and (3.6) 9(t) <~, No~(t). 
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PROOF. F is NBUE ¢~ TF  <_~t F =~ N(t) <_~t N(t) <_~t N*(t), since 

P(N(t)  > n) = F*n(t) < TF  • F*(n-1)(t) 

=- P(fi[(t) >_ n) <_ TF*~(t) =_ P(N*(t) >_ n), 

by using (3.5) and (3.1) with Fn =- F for all n = 1, 2, . . . .  To check the remaining 
claims, note that for any x > 0, P(N(t)  > x) = F*~(t) if n - 1 < x < n. The tails 
of /~(t)  and Nexp(t) can be analogously expressed. For any u _> 0, let [uq be the 
ceiling of u. (i.e., [u] = j ,  where j _> 1 is the integer such that j - 1 < u < j .  
Note [01 = 1.) Hence, for any u _> 0, using Lemma 3.1 with F - F1 = F2 . . . .  , 
we have 

(3.7) f ~  P{N(t)  > x}dx = E F*n(t) <- E G*n(t) 
==[=l n=[~l 

= P{Nex~(t) > ~)ex. 

Thus N(t) <c Nexp(t). We note that this ordering between N(t) and Nexp(t) 
cannot be strengthed to <v, since equality does not hold in (3.7) for u = 0; viz., 
F is NBUE implies {t :  ~-~n~__l F*n(t) < ~-~-~=1 G*~(t)} = {t :  M(t) < t /p} is not 
empty unless F is exponential. 

An analogous computation using (3.5) similarly yields 

~ oc oo 
P{N(t )  > x}dx = E (TF) • F*(n-1)(t) <_ E G*n(t) 

~=[~l ~=Nl 

= P{Ne~( t )  > ~}e~, 

for all nonnegative u with equality at u = 0, since EN(t) = t/#. Hence N(t) <v 
Nexp (t). [] 

If F is NWUE with a finite mean, the orderings in Corollary 3.1 are re- 
versed. These results supplement those of Barlow and Proschan (1975) contained 
in Lemma 3.1. 

PROOF OF THEOREM 2.3. Pk concave and P0 ¢ 1 implies 0 < P0 _< Pl < 
P2 <_ "'" <-- PN for some N _> 1; Pk = 0 for all k > N. Since (pj  - - P j - 1 )  is 
thus nonnegative for 2 < j < N; using Lemma 3.1 for equal components (i.e., 
N(t) <c Nexp(t)) and the representation (1.1), we get 

s(t) = po + F_,p~F*~(t) 
k=l 

N 

= po + pi Z P { N ( t )  >_ kt + Z(PJ - PJ-~) Z P{N(t) >_ kt 
k>_l j=2 k>_j 
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--PN E P{N(t)  > k} 
k>_N+l 

-< {P0 + Pl k>lE P{Nexp(t) >_ k} 

N 

+ E ( P j  - Pj-1) E P{Nexp(t) > k} - pN 
j = 2  k> j  

+PN E [P{Nexp(t) ~ k} - P{N(t)  > k}] 
k > N  

F,G 
= Sexp(t) + p N A N  (t). 

E P{Ne~p(t) >_ k}} 
k > N + l  

This proves (2.5), when F is NBUE. The NWUE case follows analogously. [] 

PROOF OF THEOREM 2.4. Using (1.1), express the survival probability as 

oo oG 

S(t) = E p k P { N ( t )  < k} = EPkF*k( t ) .  
k----1 k = l  

Since F with mean tt is HNBUE (Klefsj5 (1982)) if and only if f~o F'(x)dx < 
#e -t /~ for all t _> 0 and equality obviously holds at t = 0; it follows that the 
HNBUE property can be defined in terms of the <v-ordering; viz., 

F(with mean #) is HNBUE ¢v F <v G where G(t) = e -t/~. 

We note in passing that since G, by definition, has the same mean as that of F; 
the HNBUE property of F is also equivalent to requiring F <c G. Since <c, as 
well as the <v, ordering is preserved under convolutions (see Stoyan (1983) and 
the remark following Theorem 3.2 in Bhattacharjee (1991)), it follows that F is 
HNBUE implies F *k <v G *k for all k = 1, 2, . . . .  Hence, for x > 0, 

S(t)dt = Pk F*k(t)dt <_ Pk 
k = l  k=l  

jfx °° G*k(t)dt = S~xp(t)dt, 

with equality at x -- 0, since 

fo °° t)dt = 
o~ 

Sexp(t)dt = E P k ( k # )  = #(E J). 
k-~l 

Thus, S _<v Sexp. The dual theorem, when the interarrival times between shocks 
is HNWUE with a finite mean, follows by interchanging the roles of F and G in 
the above argument; since, F is HNWUE ¢v F >_v G ¢v G <v F. [] 

The sharpness of the bounds in Theorems 2.1-2.4 follow by choosing N(t) to 
be a Poisson process. Below, we prove its necessity when F is NBUE (HNBUE in 
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Theorem 2.4), under the respective assumptions on Pk in Theorems 2.1-2.4. The 
dual arguments in the NWUE (HNWUE resp.) case follow analogously. 

To prove necessity, we will show that for the respective bounds to be attained 
in each case; the interarrival times in the renewal process of shocks must be expo- 
nential (i.e., N(t) must be Poisson) and then S = Sexp. In fact, as the following 
lemma, which is of independent interest shows: among RPSM survival probabil- 
ities; S = Sexp characterizes the Poisson processes. Further note that  when the 
corresponding bound is attained, the second term in the bounds in Theorems 2.1 
and 2.3 vanishes and we have S = Sexp. 

LEMMA 3.3. A RPSM survival probability (1.1) reduces to comparable EMP- 
model (2.1) if and only if the shock process Y(t)  is a Poisson process. 

PROOF. From (1.1); a RPSM survival distribution 

S(t) = Po + EpkF*k( t ) ,  t >_ 0 
k=l  

has a possible discontinuity at zero, with P(X  = 0) = S{0} = ¢(F{0}) _> P0 >_ 0, 
where ¢(z) = ~-~°~=opkZk , 0 < z < 1 is the p.g.f, of the number of shocks to failure. 
Elementary computations show that the Laplace transform of S is 

5 Ls(s) = e-StS(dt) = ¢(LF(s)) ,  s > 0. 

¢ For the corresponding EMP-model, Lsoxp(s) = (~-~). Hence a RPSM survival 
distribution reduces to an EMP-model (S = Sexp pointwise) iff 

Ls(s) Lsoxp(S) ¢=~ LF(8)  -1 )~ = = ¢  Lsoxp(s)- A + s '  

for all s _> 0; i.e., F is exponential; or iff N(t) is a Poisson process. [] 

We now turn to proving that N(t) is necessarily a Poisson process for the 
bounds to be sharp. 

In Theorem 2.1. Recall Pk is convex implies Pl > 0, since otherwise Pk 
decreasing would imply P0 = 1 which contradicts the nontriviality assumption. 

Case (i). P0 +P l  -- 1. Here, failure occurs either before or at the first shock. 
Hence, from (1.1) 

s ( t )  = po + (1 - p o ) V ( t ) ,  

Sexp(t) = P0 + (1 - p 0 ) ( 1  -- e-t~"). 

If equality holds in (2.2), then we must have 

(l - po)P(t) = Se~p(t) + (l -po)  ( t - M(t ) )  

or 
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(3.8) /~(t) = e - t /~  + t _ M( t )  > e - t /~ ,  
# 

since F is N B U E  implies M(t )  < t /# .  This is enough to imply exponentiality of 
F (Bhattacharjee (1993)). Simply note that if g(t) denotes the mean residual life 
function of F, then using the N B U E  property g(t) <_ tt pointwise; (3.8) implies 
the derived distribution in (3.4) must satisfy 

{/0 ,x} e - t / "  <_ 7rF(t) = exp - g - ~  _< e - t / "  

Case (ii). Po + pl < 1. Taking Laplace transforms, (2.2) implies 

(11 + )] 
+ Pl - M( t )  e-Stdt,  s > 0 

where, for brevity, we write L(s) - LF(s)  for the Laplace transform of F. Equiv- 
alently, 

0 < ¢ ( L ( s ) ) - ¢  l + s t t  + p l s  

Since s f~¢ e -S tM( t )d t  = - f ~  M(t )d(e  -st)  = ] ~  e -~ tM(dt )  = L(s ) / {1  - L(s)}, 
using integration by parts, M(0) = 0, and e -S tM( t )  ~ 0 as t ~ oc with s > 0; 
we get 

0 < ¢  ~ - ¢ ( L ( 8 ) )  < p l  (8•) -1 _L(s) ] 
- - 1 - L ( s ) / '  

The first inequality above is a consequence of (i) the nondecreasing nature of ¢ 
and (ii) the N B U E  property which implies L(s) < (1 +s#)  -1 . (The last statement 
can be verified in several ways; e.g., F is N B U E  iff T F  <~t F which implies 
{1 - L ( s ) } / s #  = ETF(e -~x )  > EF(e -~x )  ---- L(s), s > 0.) Thus if equality holds 
in (2.2), then 

(3.9) ¢ 1 - pl(s#)  -1 ---- ¢(L(s)) - Pl 1 - -  L(s--)" 

Since ¢(z) = ~ j = o p j Z  j, 0 < z < 1 and convexity of/sj  implies aj  := (Pl - P j )  is 
nonnegative for j _> 1 with o/j ~> 0 for some j > 2, the left hand side of (3.9) can 
be expanded as 

OG 

plz  _ Po - -  EOLjzJ~ 
¢(Z) 1 -- Z 

j = l  

where z -- (1 + s#) -1. Hence (3.9) can be written as 

(3.10) Z ~ 5  _- Z~AL(s)}~, s>0.  
j----2 j = 2  
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Since F is N B U E  implies L(s)  ~_ ( l + s # ) - l ;  it is clear that (3.10) would be violated 
if there exists an So > 0 such that L(so) < (1 + s0#) -1. Hence L(s)  = (1 + s/.t) -1, 
all s > 0; i.e., F is exponential. 

In Theorem 2.2. The RPSM survival probability, under shocks governed by 
a stationary renewal process fi/(t) is 

oo oo 

S(t)  = 1 - S( t )  = 1 -  po - E P k P { N ( t )  >_ k} = E p k P { ~ ( t )  < k} 
k = l  k = l  

---- E p k { 1  - T F  * F*(k-1)(t)} .  
k = l  

Standard computations then yield: 

or ,  

[ s-111 - Ls(s)] = e-StS(t)dt----- 8--1 ~-~Pk 1 
k = l  

Ls(s )  = Po + 1 - L(s)  
s#L(s-----~ [¢(L(s)) - P0], s > 0  

1 - L ( s )  ] 
s-p L k - l ( s )  ' 

as the Laplace transform of the stationary RPSM distribution S(t) .  Now, if 
equality holds in (2.4); then taking Laplace transforms on both sides implies 

1 Ls(s) = Lsexp(s) =- ¢(1-4-~)" Using this in the previous step, we get, 

1 - L ( s )  
(3.11) 

L(s)  

But (i) L(s)  <_ (1 +s#)  -1, by N B U E  property and (ii) ¢ is nondecreasing, together 
imply 

¢ ( 1 - ~ s ~ ) - P o  1 -  L(s) 
< 1 <  

¢(L(s)) - Po s#L(  s) " 

Hence, if (3.11) holds, then both sides above collapse to 1, so that from the second 
equality in the collapsed chain, we must have L(s)  = ( l+s#)  -1 , all s > 0; implying 
exponentiality of F. 

In Theorem 2.3. If equality holds in (2.5), then 

~(t)  = ~o , ,p( t ) -  pNA~G(t)= &xp(t)-pN Z {~'~(t)- ~n(t)}. 
n~> N 

Taking Laplace transforms, we get 

s-l[1 - ¢(L(s))] 
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or~ 

(3.12) 

~0 °~ 
= e-~t~(t)dt 

- P N ~ { s - t [ l - L n ( s ) ] - s - i  [ l - { ¢ ( ~ - ~ s ) } n ] }  

¢(L(s))=¢ ~ +pN Z ~ - (s) >_¢ ~ , 
n>N 

since PN > 0 and F is NBUE implies every term in the sum is non-negative. Since 
¢ is nondecreasing, this implies 

A 1 
- > L(s); L(s) >_ £ + s ( l + s # )  - 

where the last inequality is implied by the NBUE hypothesis. Hence, L(s) = (1 + 
F,G sit) -1,  all s > 0; i.e., F is exponential,  and we have A k (t) -- 0, all k = 0, 1, 2 , . . .  ; 

S = S~xp. 

Remark. A direct argument  is also possible. Since pj = 0 for j > N,  and 

N 

~)(Z) "~-pN Z Zn = ~ pjzj ~-pN Z Zn 
n> N j=O n> N 

N--1 
-~ ~ Pj zj -[-pg(Z N + Z N+I _{_...), 

j=O 
0 < z < l  

rewrite the identity in (3.12) as 

(3.13) ~ a j  ~ -LJ(s)  = 0 ,  
j = 0  

where a j  = pj for j < N and = PN for j >_ N. The left hand side is nonnegative 
since the multiplier of each a j  is nonnegative by the NBUE hypothesis  and a j  > 0 
at least for all j _> N since PN > 0 by concavity of the shock resistance probabil- 
ities. Hence (3.13) implies tha t  the coefficient of every positive aj vanishes; i.e., 
L(s) = A/(A + s), s > 0; or F is exponential. 

To prove that  if the bound in Theorem 2.4 is attained, then the shock interar- 
rival t imes must  be exponential; we will find the following result, which is a special 
case of a more general result (see Theorem 2.2 in Bhat tacharjee  and Sethuraman 
(1990)) useful. 
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THEOREM 3.1. (Bhattacharjee and 8ethuraman (1990)) Let nonnegative 
r.v.s X ,  Y be ordered by X <_v Y .  I f  E X  r = E Y  ~ < oc for  some r ~ O, r e  1, 
then X =st Y .  

Let U (V resp.) denote the survival t ime under the renewal process shock 
model distribution S (Sexp resp.). If {Xn : n _> 1} ({Yn : n _> 1} resp.) are the 
corresponding i.i.d, interarrival times between shocks with distribution F (G resp., 

k k where G is exponential with mean # -- EX1); Sk := ~-~i=1 Xi ,  Sk := ~ = 1  Y~ and 
J is the number of shocks to failure; then U = S j  and V = Sj .  

PROOF OF NECESSITY IN THEOREM 2.4. Under the assumption in Theorem 
2.4, we have U ___v V. Further, for any r > 0, 

E U  r = r t~ -12( t )d t  = pkES~,  and similarly E V  ~ = pkESk.:r 
k=l  k=l  

If equality holds (i.e., U =st V) in Theorem 2.4, then, 

(3.14) 0 = E V  r - E U  ~ = E P k ( E S ;  - ES~) ,  all r > 0. 
k=l  

Since (i) X~ <v Y~ for all i _> 1 (i.e., F is H N B U E )  implies Sk <_v Sk for all 
k _> 1 (viz., _<v is closed under convolutions) and (ii) x r is convex in x _> 0 for 
r _> 1; it follows from known characterization of _<v-ordering (see Theorem 2.2 
in Bhattacharjee (1991), or Corollary 8.5.2 in Ross (1983)) that  ES~ <_ ES~,  all 
k > 1 so that  every term in the right hand side of (3.14) is nonnegative and hence 
must  vanish. Choose any k E {j _> 1 :pj  > 0}. Then for such a k, we must have 
ES~ % = ESk ,  all r > 1. This is more than enough; since choosing any such r > 1, 
Theorem 3.1 guarantees Sk =st Sk, fixed k _> 1. This in turn implies 

for all s > 0 and fixed k _> 1; or, F is exponential. [] 

4. Applications 

4.1 Improved bounds on N B U E  renewal funct ions 
When any shock is independently survived, or leads to failure with fixed 

probabilities s and (1 - s) respectively (0 < s < 1), the corresponding geometric 
shock resistance probabilities Pk ---- S k, k = 0, 1, 2 , . . .  are convex and decreasing 
in k. The associated R P S M  survival probability (1.1) is then the probability 
generating function (p.g.f.) of the renewal counting process induced by F and the 
corresponding E M P  survival probability 

o o  

Sexp(t) = E ske - t /u  ( t / # )k  k! = e-(1-s)t/t~' 

k=O 
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is the p.g.f, of the corresponding Poisson process. When F is NBUE, an application 
of Theorem 2.1 yields 

E s N ( t )  < e-(1-s)t/~ + ( 1 -  s) ( ~  - M( t ) )  . 

As s ~ 0 +, we get 

t 
F '( t)--  lim Es N(t) < e -t/~ + -  - M(t). 

s---,O + 

Together with the known bound M(t) <_ t/#, when F is NBUE, we get 

COROLLARY 4.1. For an NBUE renewal process, 

M(t) <_ min ( ~  t ,  # F(t) + e- t /u)  t _# - _ e-t/o)+. 

Since F is NBUE with mean # implies I(t) := f ~ { e  -z/~ - F(x)}dx = 
#- l (e- t /o  - T F ( t ) )  >_ 0 for t > 0 with I(0) = 0 (viz., Sarlow and Proschan 
(1975)) and thus implies {t > 0 :/~(t) > e - t /°}  is not empty unless F is exponen- 
tial; the bound in Corollary 4.1 is tighter than the bound (t/#) under NBUE aging. 
Clearly the extent of tightening over t /#  is no more than 1, and the improvement 
is usually strict for all t up to a critical value if F is aging in an appropriately 
stronger sense. Such is the case for example if F is IFRA, since ~'(t) then crosses 
e -t/È exactly once from above. 

4.2 Application to waiting time in M/GI /1  and GI/G/1 queues 
As a further simple application of our results, we show (Corollary 4.3) that the 

stationary waiting time in a stable GI/G/1 queue is stochastically dominated by 
the stationary waiting time in the corresponding M/M/1  queue, when the GI/G/1 
queue has NBUE interarrival times and service time distributions (cf. Miyazawa 
(1976) and Stoyan (1977)). This is obtained by first deriving the corresponding 
result (Corollary 4.2) for M/GI /1  queues with NBUE service as an application 
of Corollary 3.1, which together with a result of Rolski (1979) on comparing the 
waiting time in a GI /GI / s  queue (s > 1) with NBUE arrivals to the waiting time 
in an appropriate M/GI /1  queue then readily yields the desired conclusion. 

For stable M / G I l l  queue, the classical Khinchin-Pollackzek formula W(t) - 
P(T < t) = ( 1 -  p)~-~nCC=oPn(TF)*n(t ) = ~ = o  PnP{N*(t) = n}, where N*(t) 
is the renewal quantity generated by the equilibrium distribution TF defined in 
(3.4), clearly shows that the distribution of the stationary waiting time T in a 
stable M / G I l l  queue (with service time distribution F and service utilization 
factor p < 1), is a RPSM where each 'shock' corresponds to a service completion. 
Indeed, since P(T > O) = p, we can further write, 

(4.1) S(t) := P(T > t i t  > O) 
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= I v ( t ) / p  

____fl-1 (l_p) Zp.P{N,(t)>_n } 
n=0 

1-(1 -p) 
n=0 n=0 

1 -Ep_ x'(t) ] 

= EpN* (t), t _> O. 

Hence in a stable M/GI /1  queue, not only W(t), but the conditional distribution 
of the waiting time, given a customer does wait, is also a shock model survival 
probability with geometric "shock resistance". 

COROLLARY 4.2. With NBUE service times, the stationary waiting time in 
a stable M/GI /1  queue is stochastically dominated by the stationary waiting time 
in the corresponding M/M~1 queue with the same tra.~c intensity. 

PROOF. If the service time distribution F is NBUE (i.e., the mean residual 
service time function is pointwise no larger than the mean service time), then since 
p~ is $ in n (0 < p < 1), and is convex in n; using Corollary 3.1 to bound the right 
hand side in (4.1), we get 

P(T > t) - W(t) = pEp N'(t) < pEp ~(t) <_ pEp Nexp(t) = pe -~(1-p)t, 

where # denotes the service rate (consistent with notations standard in queueing 
theory, but  in contrast with the notation in earlier sections). For the first in- 
equality, we use N(t)  _<st N*(t) (from (3.6)) and p~ decreasing in n. The second 
inequality follows by using (i) N(t) <_v Nexp(t) from (3.6), (ii) convexity of pn in 
n and a well known characterization of the variability ordering <v (see Remark 2 
following the definition of the _<.-ordering in Section 2). [] 

Rolski (1979) (see Stoyan (1983), p. 110) proved that  in a queue with s servers 
(s > 1), NBUE arrivals and arbitrary service times and p < 1; the stationary wait- 
ing time is stochastically dominated by the stationary waiting t ime in a M/GI /1  
system with the same service time distribution and arrival rate (A/s), i.e., 

oo 

W(t) >_ ( 1 -  p/s) E(pls)~T'-fi*n(t), 
n = O  

t_>0. 

If the arrival and service time d.f.s are both arbitrary with NBUE property, we 
can then apply Corollary 4.2 to Rolski's result with s = 1 to obtain the following 
result. 

COROLLARY 4.3. In GI/GI/1  queues with arbitrary NBUE interarrival and 
service times, the stationary waiting time is stochastically dominated by the cor- 
responding M/M/1  stationary waiting time. 
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PROOF. Simply  note ,  

TCSlCII1 <8~ TMICSll <-st TMIMI1, 

where the subscripts indicate the appropriate queues to which the waiting times 
refer, use Corollary 4.2 and the transitiveness of the partial ordering _<st. [] 
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