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A b s t r a c t .  The Local Linearization (LL) approach for the numerical solution 
of stochastic differential equations (SDEs) is extended to general scalar SDEs, 
as well as to non-antonomous multidimensional SDEs with additive noise. In 
case of autonomous SDEs, the derivation of the method introduced gives theo- 
retical support to one of the previously proposed variants of the LL approach. 
Some numerical examples are given to demonstrate the practical performance 
of the method. 
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1. Introduction 

There is a great variety of numerical schemes for the solution of stochastic 
differential equations (SDEs), such as those of Maruyama (1955), McShane (1974), 
Milshtein (1974), Kloeden and Platen (1989), Newton (1991), and Saito and Mitsui 
(1992). 

The common theoretical basis of these methods is the stochastic Ito-Taylor 
expansion of the solution in terms of multiple Wiener integrals (Kloeden et al. 
(1993)). In spite of the well known convergence properties achieved by means of 
this approach, two limitations have been pointed out (e.g. Henrici (1962), Ozaki 
(1985a, 1992)). First, this approach does not give exact solutions in case of linear 
SDEs. Second, the numerical solution does not always preserve the qualitative 
characteristics of the exact solution. In particular, there are many examples of 
SDEs with bounded trajectories such that, for any fixed stepsize of the time dis- 
cretization, the numerical solution results to be explosive when the initial value is 
in a certain region of the phase space (Ozaki (1985a)). 

Ozaki (1985a, 1985b) has introduced a new approach for the numerical solu- 
tion of SDEs, known as Local Linearization (LL), which overcomes these difficulties 
for the autonomous d-dimensional SDE of the form 

dX(t) = f (X)d t  + dW(t) t • [to, T], (1.1) 
X(t0) = Z0, 
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where W(t)  is a Wiener process. The LL method seems to be inspired by heuristic 
considerations that at tempt to obtain a numerical scheme in the form of a linear 
multivariate autoregressive time series with state-dependent coefficients. This ap- 
proach does not involve a stochastic Taylor expansions of the solution. The LL 
scheme (for discrete times t~ = to + nA, n = 0, 1, . . . )  is: 

(i.2) Xt~+l = A(Xt~)Xt~ + ~t~+~, 

where 

(1.3) 

A(Xt, ,  ) = exp(L(Xt , , )A  ), 
L(Xt , )  = ln(I + (J~(t ,~))-l(exp(J~(tn)A) - I )F(X t~) ) /A .  

Here J~(tn) is the Jacobian matrix of the function f evaluated at Xt,,, F(Xt~)  is 
any matrix such that  F(Xt , , )X~  = f(Xt , , ) ,  and I is the d-dimensional identity 
matrix. The innovation ~t,+l is a time series of independent Gaussian random 
vectors with zero mean, and represents the stochastic part of the numerical solu- 
tion. 

The performance of the LL method has been illustrated in a number of papers 
(see e.g. Ozaki (1985a, 1985b, 1992)). 

However, the current formulation of this method is ambiguous as to the pro- 
posed specification of the random term ~t,+l. Originally, Ozaki (1985a) proposed 
(t,+l = W(t~+i) - W(tn),  and consequently with a covariance matrix equals to 
AI. In Ozaki (1985b, 1992) this time series was given by 

(1.4) f 
tn+i 

~t~+l = exp(L(X, , )( tn+i - u))dW(u), 
d tr~ 

with the covariance matrix 

f 
t~+i 

(1.5) E(~t~+l~t,~+~) = exp(L(Xt~)(tn+l - u))exp(L(Xt, ,)(tn+l - u))'du, 
J t  n 

where for any matrix M, M'  denotes its transpose. 
More recently, Ozaki (1994) has suggested that ~t,+l be defined by (1.4)-(1.5) 

but with L(Xt,~) substituted by J~(t,~). 
In addition, the Ozaki's scheme (1.4)-(1.5) has the drawback of the non- 

uniqueness of the factor F(Xtn) in case of a multidimensional SDE. It is not clear 
which of the admissible matrices F(Xt,,)  (i.e. those ones which satisfy 
F(Xt,~)Xt~ = Xt,,) is the most adequate to be used in (1.3). 

In this paper the LL approach is extended to general scalar SDEs, as well as to 
non-autonomous multidimensional SDEs with additive noise. The resulting numer- 
ical scheme overcomes the shortcomings just mentioned of previous formulations 
of the LL approach. The method introduced is deduced neither from stochastic 
Taylor expansions of the solution nor following the heuristic arguments developed 
by Ozaki (1985a, 1985b). Instead, it is derived from (first order) deterministic 
Taylor expansions of the drift and diffusion coefficients of the SDE. 
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In the particular case of a SDE of the form (1.1), the method introduced 
essentially leads to the numerical scheme most recently suggested by Ozaki (1994), 
namely the scheme described by (1.2)-(1.5) but using J~(tn) instead of L(Xtn) in 
the expressions (1.4)-(1.5). Thus, our work constitutes a theoretical derivation of 
this variant of Ozaki's LL method,  and also an extension of this scheme to cover 
more general, non-autonomous SDEs. 

In Sections 2 and 3 the numerical scheme is introduced for scalar and mul- 
tidimensional non-autonomous SDEs, respectively. Detailed formulae of the algo- 
rithms are given. Section 4 presents some simulation results that  illustrate the 
performance of the method. 

2. Local linearization method for scalar non-autonomous Ito stochastic differential 
equations 

Consider a scalar non-autonomous SDE with multiplicative noise given by 

(2.1) 
dX(t) = f (X,  t)dt + g(X, t)dW(t) 
X ( t o )  = Xo.  

t • [to, T], 

Here W(t) is a s tandard Wiener process. It is assumed that  the functions f(x,  t) 
and g(x, t) satisfy the standard conditions for the existence and uniqueness of a 
(strong) solution of (2.1) (see e.g. Arnold (1974), p. 105). In addition, these func- 
tions are assumed to have continuous derivatives with respect to both arguments 
x and t. The case of additive noise (i.e. g(X, t) = g(t)) will be considered in the 
next section. 

The LL method for solving this SDE will be defined on the basis of the solution 
of the linear SDE resulting from the local linearization of the right member of (2.1). 

Let A be the stepsize of the time discretization, and t be any fixed time 
instant in [to, T). Consider the truncated (deterministic) Taylor expansion of the 
functions f and g in (2.1) at the point (t, X(t)), 

f(X(s),  s) ~ f(X(t) ,  t) + J~(t)(X(s) - X(t)) + Y}(t)(s - t), 

g(X(s), s) ~ g(X(t), t) + J~(t)(X(s) - X(t)) + J~(t)(s - t), 

where only the first order terms of the expansions are retained. Using these ex- 
pansions, the following SDE is obtained as an approximation to equation (2.1): 

(2.2) dX(s) = (A(t)X(s) + a(t, s))ds + (B(t)X(s) + b(t, s))dW(s), 

s E [t, t + A], with the initial condition X(t) = Xt. Here 

(2.3) 

A( t )  = Jr ( t ) ,  

a(t ,  s) = f ( X ( t ) , t )  - J ~ ( t ) X ( t )  + J } ( t ) ( s  - t), 
B ( t )  = J~(t) ,  

b(t, s) = g ( X ( t ) ,  t) - J ~ ( t ) X ( t )  + Y ~ ( t ) ( s  - t ) .  



634 R. BISCAY ET AL. 

In these expressions, J~( t )and  J~(t)denote,  respectively, the derivatives of the 
functions f (x ,  t) and g(x, t) with respect to the variable x, evaluated at the point 
(X (t), t). In a similar fashion, J} (t) and J~ (t) are the derivatives of the functions 
f (x ,  t) and 9(x, t) with respect to the variable t, evaluated at the point (X(t),  t). 

The resulting linear SDE (2.2) has an explicit solution (Arnold (1974), p. 136) 
whose value at the time t + A is 

(2.4) 
/t+A 

X( t  + A) = ¢(t + A) X(t)  + ¢-1 (u)(a(t, u) - B(t)b(t, u))du 
lit 

+F } ¢-l (u)b( t ,u)dW(u)  , 

where ¢(u) = exp((A(t) - B2(t)/2)(u - t) + B( t ) (W(u)  - W(t)).  
In order to compute this solution it is necessary to approximate the two 

stochastic integrals contained in the expression (2.4). One of them is an Ito inte- 
gral, which can be approximated in different ways. A simple approximation follows 
directly from the definition of the Ito integral by means of Riemann-Stieltjes sums: 

f t+a ¢-l(u)b(t, u)dW(u) ~ ¢- l ( t )b( t , t ) (W( t + A )  - W(t)) 

= (g(X(t),  t) - J~( t )X( t ) ) (W(t  + A) - W(t)).  

However, with this naive approximation the information contained in the 
Jacobians Jr(t), Jtl(t ) and J~(t) is partially lost. To avoid this we transform the 
Ito integral in (2.4) by using the known identity (Schuss (1980), p. 71) 

(2.5) f t+A h (W (u), u)dW (u) 

f t + A  ft+A 
= h(W(u) ,u)  odW(u)  - (1/2) J w ( w ( u ) , u ) d u ,  

Jt 

where the symbol o denotes Stratonovich integration, and j w  is the derivative 
of the integrand function h(W, u) with respect to W. Thus, expression (2.4) is 
transformed into 

(2.6) 
/t+A 

X( t  + A) ----- ¢(t + A) X(t)  + ¢-1 (u)(a(t, u) - B(t)b(t, u)/2)du 
,It 

¢-l(u)b(t ,  u) o dW(u) . 

The first integral in (2.5) is then approximated by the Trapezoidal rule, 

(2.7) ~ t+A h(W(u),  u)du ~ (h(W(t  + A), t + A) + h(W(t),  t))A/2, 
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and the second (Stratonovich) integral is approximated in the form 

t+A 
(2.8) h(W(u) ,u)odW(u) ~ h ( (W( t+A)+W( t ) ) / 2 ,  t ) ( W ( t + A ) - W ( t ) ) .  

Jt 

Using these approximations, (2.4) is converted into 

(2.9) X(t  + A) ~ ¢(t + A){X(t)  + (Q(t + A) + Q(t))A/2 
+ K ( A W ( t  + A)/2,  t )AW(t  + A)}, 

where Q(u) = ¢-l(u)(a(t, u) - B(t)b(t, u)/2),  K(u, v) = exp(-B(t)u)b(t, v) and 
z x w ( t  + ~x) = w ( t  + A)  - w ( t ) .  

Expression (2.9) permits the calculation of the local solution at the time t + A 
from the local solution at t ime t. The numerical scheme of the LL method is defined 
by the iteration of this computation, starting from the initial condition )(to = Xo: 

(2.10) Xt~+I = ¢ ( t n + l ) { X t .  + (Q(tn+l)  + Q(tn))A/2 
+ K(AW(tn+l)/2,  tn)AW(tn+l)}, 

where tn = to + nA (n = 0, 1 , . . . )  are the step-points of time discretization, and 
A w ( t ~ + l )  = w(t~+l )  - w( t~) .  

3. Local linearization method for multidimensional non-autonomous Ito stochastic 
differential equations 

This section introduces the local linearization method for multidimensional 
non-autonomous SDEs. The presentation is restricted to the case of additive noise, 
i.e., the diffusion term does not depend on X: 

dZ(t) = f (X ,  t)dt + g(t)dW(t), t e [to, T], 
(3.1) 

X(to) = Xo, 

where W(t) is a m-dimensional Wiener process, X(t) and f (X ,  t) are vectors in 
•d, and g(t) is a d × m real matrix. The standard conditions for the existence 
and uniqueness of a (strong) solution are assumed (see e.g. Arnold (1974), p. 105). 
In addition, the components of f (x,  t) and g(t) are assumed to have continuous 
derivatives with respect to the components of both arguments x and t. 

The linearization of the function f in this SDE, 

f (X(s) , s )  ~ f (X( t ) , t )  + J;(t)(X(s)  - X(t)) + J}(t)(s - t), 

leads to an equation of the type (2.2) but with B(t) = 0 and b(t, s) = g(s). The 
solution of the resulting equation (Arnold (1974), p. 129) is 

{ ft+A¢ -1 
(3.2) X(t  + A) = ¢(t + A) X(t) + (u)a(t, u)du 

.It 

} ~ ¢ - l ( ~ ) g ( ~ ) e w ( ~ )  , 
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where ¢(u) = e x p ( A ( t ) ( u -  t)). Notice that if the original system includes multi- 
plicative noise, the resulting linearized multidimensional system does not have an 
explicit solution in general. Hence the restriction to additive noise in the case of 
multidimensional systems. 

For any matrix M and any number a > 0, define 

~0 a 
rn(M, a) = exp(Mu)u'~du. 

(For details about the computation of r~(M, a), see Appendix.) From (3.2) and 
the definition of a(t, s) given in (2.3) it follows that 

(3.3) x ( t  + A) = X(t)  + ro(J~(t), A)f(X(t),t) 
+ (Aro(J~(t), A) - rl(J~(t) ,  A))J}(t) + ~(t + A), 

where 

t+A 
(3.4) ~(t + A)  = ¢(2t  + A - u)g(~)dW(u) 

J t  

is a stochastic process with zero mean and variance 

f 
t + A  

(3.5) E(( ( t  + A)( ' ( t  + A)) = ¢(2t + A - s)g(t)g'(t)¢'(2t + A - s))ds. 
l i t  

In order to approximate the Ito integral involved in the definition of (( t  + A), 
the following property (Schuss (1980), p. 66) will be used 

(3.6) h(u)dW(u) = h(b)W(b) - h(a)W(a) - J~(u)W(u)du, 

which holds for any smooth deterministic function h with derivative J~(u). This 
leads to 

(( t  + A) = g(t + A)W(t  + A) - ¢(A)g( t )W(t)  

f 
t + A  

+ ¢(2t + A - u)(J~(t)g(u) - J2(u))W(u)du.  
Jt 

In turn, applying the Trapezoidal rule (2.7) to the integral in the last expression 
the following approximation is obtained 

(3.7) ~(t + A) ~. {(J~(t)g(t + A) - j t ( t  + A))A/2  + g(t + A)}W(t + A) 

+ ¢(t + A){(g~(t)g(t)  - j t ( t ) ) A / 2  - g(t)}W(t) .  

Finally, the LL numerical scheme is defined by the iterative computation of expres- 
sions (3.3) and (3.6) evaluated at the discrete times tn, starting at X(to) = X0: 

(3.8) Xt~+l = Xt~ + ro(g~(tn), A) f (X t~ ,  tn) 

+ (Aro(g~(tn), A) - rl(J~(tn),  A))g}(t~) + ~(t~+l), 
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where 

(3.9) ~(tn+l) = {(J~(tn)g(t~+l) - Jtg(tn+l))A/2 + g( t~+l)}W(tn+l)  

+ ¢(t~+l){(J~(tn)g(t~)  - J~( t~) )A/2  - g( t~)}W(t~) .  

It is worth noting the relations of this scheme with those proposed by Ozaki 
in the particular case of a scalar SDE of the type (1.1). It is simple to show that 
in this case the expressions (3.3)-(3.5), evaluated at the discrete times, reduced 
to the numerical scheme proposed by Ozaki (1994) (i.e. equations (1.2)-(1.4) with 
L(Xt,~) substituted by J~(tn) in (1.4)). The algorithm described by (3.8)-(3.9) 
constitutes an approximation to this scheme, as a consequence of the use of the 
approximation (3.6) to the random term. 

4. Simulation results 

The variant of the LL method introduced above gives exact solutions for 
linear autonomous SDEs. In particular the method is exact for the stiff linear 
autonomous SDEs, which are frequently used as critical tests to assess numerical 
schemes (e.g. the stochastic versions of the standard examples in Kloeden et al. 
(1993), pp. 132-133). Therefore, it is only of interest to carry out simulation 
studies of the method for nonlinear or non-autonomous equations. 

The LL for nonlinear autonomous SDEs with additive noise has been illus- 
trated in a number of papers (see e.g. Ozaki (1985a, 1985b, 1992)). The examples 
in this section will refer to the remaining class of SDEs, i.e. equations that  are 
non-autonomous or with multiplicative noise. 

To summarize the performance of the scheme, plots of the exact and approx- 
imate solutions, as well as global errors for different step sizes, are shown in each 
example. 

To take into consideration the effect of the realization of the exact solution 
by means of pseudo-random numbers generated in a digital computer, the global 
error is decomposed as in Saito and Mitsui (1993): 

E(X(T)  - )((T))  2 <_ E(X(T)  - XN(T)) 2 + E(XN(T) - )((T))  2, 

where X ( T )  is the exact solution, XN(T) is the realized exact solution (which de- 
pends on the discrete times to , . . . ,  tN = T), ) ((T) is the approximate solution, and 
E 0 denotes mathematical expectation. The quantity D E  = E(XN(T) - -~(T)) 2, 
which is called the deterministic part of the error, is used to characterize the global 
error. The realized exact solution is computed from its explicit expression by sub- 
stituting the stochastic integrals by the same types of discrete approximations 
used in the derivation of the numerical solution, i.e. the approximations (2.5), 
(2.7), (2.8) and (3.6). The mean value of 1000 simulations of (XN(T) --  )((T))  2 
is used as an estimate of the deterministic error. These concepts are extended to 
the multidimensional case by its application to each component of the solution. 

The order fl of the global error, which is defined by 

E(X(T)  - X(T))  2 = O(A ~) (A --. 0), 
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is estimated by the slope of the straight line fitted to the points (log2(A~), 
log 2 (DE(Ai)), where D E  (Ai)  are t he estimated deterministic errors correspond- 
ing to a set of selected step sizes A~. This estimate of the global error order has 
been discussed extensively by Saito and Mitsui (1993). 

The first example is an autonomous equation with multiplicative noise. This 
equation has been used by some authors to test a wide variety of numerical schemes 
(Gard (1988), Saito and Mitsui (1993)). 

Example 1. 

/(x, t )  = x ( t ) ( 1  - x ( t ) ) ,  

g(X, t )  = 

to = O, T = 9, X( to)  = 1/2. 

The corresponding exact solution is 

( I : )  X(t) = exp(t/2 + W ( t ) ) /  2 + exp(u/2 + W(u) )du  . 

Figure 1 (a) shows the simulation of a trajectory of the exact solution and the cor- 
responding approximate solution by the LL method. For reference, the solution 
obtained by the Explicit Euler scheme is also presented in Fig. l(b) (a detailed 
study of the numerical performance of other schemes in this example can be con- 
sulted in Saito and Mitsui (1993)). Figures l(a) and 2 demonstrate the satisfactory 
performance of the LL in this example, with a global error of order about 2. 

1 , 5  . . . .  

~0. I 

0 2 4 6 8 

1.5 , . . , .  , 

0.5 " "' ""-'" " '."..'. 

0 2 4 6 8 

t 

(*) 

10 

10 

Fig. 1. Trajectories of the  realized exact  solut ion (continuous curve) of Example  1 and  
the  approximated  solution (points)  obta ined  by the  LL scheme (a), and  the  EE scheme 
(b). The  step size is A = 2 -4 .  
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Log(DE) 
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-18 
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-7 -6 -5 -4 Logz(a, ) -3 

Fig. 2. Deterministic (global) errors of the LL solutions of Example 1 corresponding to 
the step sizes of time discretization A = 2 -4, 2 - 5  2 -6. The slope of the fitted straight 
line is 2.3. 

The performance of the LL method for scalar non-autonomous equations is 
illustrated by the next example. 

Example 2. 

f (X, t )  = -t2X(t),  
g(X,t) = (3/2) exp(-( t  3 - t3o)/3)/(t + 1), 

to = 0, T = 9, X(to) = 1. 

The exact solution is 

X(t) = exp(-(t3 - t3o)/3) (X(to) + (3/2) f t l  dW(u)/(u + 1)) .  

The LL method leads to a good approximation of this solution with a global 
error order of about 2 (Figs. 3(a) and 4). The trajectory of the approximate 
solution converges to zero, which is the unique asymptotically stable point of this 
equation. In this sense, the LL solution preserves the qualitative properties of 
the exact solution. In contrast, the Explicit Euler (EE) scheme gives an explosive 
trajectory (Fig. 3(b)). Even the Explicit Taylor (ET) scheme of Kloeden and 
Platen (1989), which is the best existing scheme from the viewpoint of global 
error (/3 = 3) according to the comparative study of Saito and Mitsui (1993), also 
gives an explosive trajectory (Fig. 3(c)). 

This illustrates that, in some examples, the LL method preserves the quali- 
tative properties of non-autonomous equations while other explicit schemes fail to 
do this. This fact has been emphasized by Ozaki (1985a, 1985b, 1992) in the case 
of autonomous equations with additive noise. 

As it is well known, implicit methods present better numerical stability than 
explicit ones (Kloeden and Platen (1992)). In particular, the Implicit Euler (IE) 
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2 1 ~  ' ' 

o " - - -  
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I0 
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8 10 
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(a) 

(b) 

(c) 

Fig. 3. Trajectories of the realized exact solution (continuous curve) of Example 2 and 
the approximated solution (points) obtained by the LL scheme (a), the EE scheme (b), 
and the ET scheme (c). The step size is A = 2 -4 .  Notice tha t  the trajectories obtained 
by the Euler and Taylor schemes rapidly diverge for t > 9. 

Log(DE} 
2 .  8 

-I0 

-12 

-14 

-16 

-18 

-20 

-22 

-24 -7 

J 

-6'5 -6 -515 -5 -4:5 -'~ -3:5 
Log~(A) 

-3 

Fig. 4. Deterministic (global) errors of the LL (*), IE (+) and IRK (o) solutions of 
Example 2 corresponding to the step sizes of t ime discretization A _-- 2 -4 ,  2 -5 ,  2 -6 .  
The slope of the fitted straight  lines are 2.1, 1.4 and 2.9 respectively. 

scheme and the Implicit Order 1.5 Runge-Kutta (IRK) scheme (/~ -- 2 x 1.5) do 
not show exploding numerical solutions in this example (see Fig. 4). However, 
implicit methods involve a considerable additional computational effort because 
of they require the solution of a system of nonlinear equations at each step, which 
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implies more CPU time. 
In contrast, the LL method shows not only numerical stability but  also a low 

CPU time (see Table 1). The results presented in Table 1 demonstrate that  the 
CPU time of the LL is about 10 times lower than the Implicit Euler scheme, and 
24 times lower than the Implicit Runge-Kutta  scheme. Thus, the LL method is a 
valuable alternative with respect to the trade-off between numerical stability and 
computational cost. 

Table 1. Relative times of different numerical schemes (Explicit Euler (EE), Explicit Taylor 
(ET), Local Linearization (LL), Implicit Euler (IE), and Implicit Runge-Kutta (IRK)) when 
solving Example 2. The EE scheme showed the minimum CPU time (mCPU). Relative times 
are computed by dividing the actual CPU time of each scheme by the mCPU value. 

Scheme EE ET LL IE IRK 

Relative Time 1 2.8 3.6 34.7 72.8 

The last example is a multidimensional non-autonomous system: 

Example 3. 

fl (X, t) = C~ exp(Xl( t ) /C) ,  

f2 (X, t) = C/(t 2 exp(X1 (t)/C)) + 4(X~ (t) - Xl( t ) / t  2) cos(t)/(2 + sin(t)) 

- 2X1 (t)/t a, 
 l(x, t) -- v c, 
g2(X,t) = v/2C(1/t ~ + D(2 + sin(t))4/(t + 1)), 

to = 2, T = 10, Xl(t0) = 1, X2(to) = 50, 

C = 30/v~ ,  D = 1/(2 + sin(t0)) 4, W(to) = O. 

The exact solution is 

Xl(t) = v / 2 C  (W(t)-[-(1/v~) In exp(Xl(to)/C) + f t l  exp(-v~W(u))du ) ,  

X 2(t) = X l ( t ) / t  2 

÷ ÷ • 

Figures 5(a), 5(b) and 6 show the results of the application of the LL scheme 
to this example. As in the previous examples, also an estimate of the order of the 
global error about 2 is obtained. 

The programs that  implement the methods described in this article are avail- 
able in MATLAB from the authors. 
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Fig. 5. a) Trajectories of the first component of the realized exact solution (continuous 
curve) and the LL solution (points) of Example 3. b) Trajectories of the second com- 
ponent of the realized exact solution (continuous curve) and the LL solution (points) of 
the same example. The  step size is A = 2 -4.  

Logz(DE) 
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-1°-7 -+ -i -3 
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Fig. 6. Deterministic (global) errors of the two components (X1 and X2) of the LL 
solutions of Example 3 corresponding to the step sizes of t ime discretization A _-- 2 -4 ,  
2 -5  , 2 -6  . The slopes of the fitted straight lines are 2.0. 

5. Conclusions 

The LL approach has been extended to general scalar SDEs, as well as to 
non-autonomous multidimensional SDEs with additive noise. This extension is 
derived from (first order) deterministic Taylor expansions of the drift and diffu- 
sion coefficients of the SDEs. The resulting numerical scheme overcomes some 
ambiguities of the previous formulations of the LL approach. 

The LL scheme is a one-step explicit method that gives exact solutions for 
linear autonomous SDEs. 

Simulation results demonstrate that the method has a satisfactory perfor- 
mance in a wide variety of SDEs, with an estimate of the global error of order 
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about 2. 
Interestingly, there are examples of asymptotically stable SDEs for which the 

method introduced gives solutions that converge to the equilibrium points while 
other classical explicit numerical schemes give explosive trajectories. 

Both implicit methods and the LL method show numerical stability in the ex- 
amples studied, but the LL approach has the advantage of requiring a considerably 
lower computational cost. 
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Appendix 

Let M be a square matrix, a E R+ and 

/0 ° r (M,a) = 

If M is not singular, it can be shown by induction that 

(A.1) r~(M,a) = a~+ln ! { ( -Ma) -~ - l ( I  - exp(Ma)) 
'k 

r~--I / 
- e x p ( M a )  k ) !  . 

k=0 

In general, if M is singular, then rn(M, a) can be defined as the limr~(Mk,a) as 
Mk tends to M within the class of nonsingular matrices. 

This limit can be computed using the well known Schur decomposition ap- 
proach for evaluating matrix functions (Golub and Van Loan (1989), pp. 542- 
545). Specifically, let M = QTQ' be the Schur decomposition of M. Define 
Mk = QTkQ', where Tk is defined by Tk = T + Dk, and Dk are invertible diagonal 
matrices such that Dk tends to the zero matrix as k tends to infinity. For simplicity, 
denote r,~(M, a) by I(M).  Then I (M)  = Q(lim f(Tk))Q'. By means of the recur- 
sive algorithm of Parlett (Golub and Van Loan (1989), pp. 543-545), the compu- 
tation of f(Tk) can be expressed in terms of f([Tk]i~), where [Tk]ii are the diagonal 
entries of Tk. In turn, if [T]ii ¢ O, then lim f([Tk]ii) = f([T]ii), where f([T]~i) is 
computed by (A1); if [T]ii = 0, it can be shown that limf([Tk]ii) = a~+l/(n + 1). 
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