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Abstrac t .  The central result is a limit theorem for not necessarily station- 
ary processes resembling AR(p). Assumption of a vector limit distribution for 
standardized sample autocorrelations leads to the convergence of a vector limit 
distribution for ordinary sample partial autocorrelations, and to a clear rela- 
tionship between the two limit distributions. The motivation is the study of the 
case p = 1 by Mills and Seneta (1989, Stochastic Process Appl., 33, 151-161). 

• The central result is used to explain the nature of the relationship between the 
two results of Quenouille in the classical stationary AR(p) setting. 
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1. Introduction 

For any stochastic process X(t) ,  t = 0, + 1 , . . . ,  we define R(0) = 1, and for 
1 < k < N - 1, arbitrary fixed integer N, 

a(k)  = C(k)/C(O) 
N 

c (k )  = ~ (x ( t )  - y c ) ( x ( t -  k) - yc) 
t=k+l  

where )(  = ~-'~tN=l X ( t ) / N .  Put  R ( - k )  = R(k). In the standard case where {X(t)} 
is a second-order stationary process, the R(t)'s are the sample autocorrelations on 
the basis of an observed sample X(1), X ( 2 ) , . . . ,  X ( N ) .  Thus we can also define, 
parallelling the definition of sample partial autocorrelations for a second-order 
stationary process, the quantities 3k, by 

31 = R(1) 

(1.1) 3k = det(Uk) 
det(Lk) 

where 

k_>2 

R(0) . . - R ( k - 2 )  R ( 1 ) )  

k =  ° . . ,  " * 

n ( k - 1 )  . . .  R(1) R(k) 
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L k -= 

R(0) -.. R ( k - 1 ) )  
• , , .  • . 

R ( k - 1 )  . . .  R(0) 

We shall henceforth refer to R(k), ~k as sample autocorrelations and sample partial 
autocorrelations, respectively, whether the process { X ( t ) }  is second-order station- 
ary or not. 

We need to recall, for convenient reference, some properties of a second-order 
stationary AR(p) process {Y(t)}, t = 0, + 1 , . . . ,  satisfying, for p ~ 1, 

(1.2) Y ( t )  = ¢ l Y ( t  - 1) + ¢ 2 Y ( t  - 2) + . . .  + ¢ p Y ( t  - p) + z ( t )  

where {Z(t)} are independent identically distributed (i.i.d.) random variables with 
2 Then the autocorrelation function p(i), i 0, +1, zero mean and variance a z . = . . . ,  

with p(0) -- 1 and p ( - i )  = p(i) satisfies the Yule-Walker equations 

P 

(1.3) Z Cjp(i - j )  = 0 i >_ 1 
j=o 

where ¢0 -- -1 .  Denoting the partial autocorrelations by ~i, i _> 1, it is known 
(e.g. Barndorff-Nielsen and Schou (1973)), that 7ri -- ¢i,i, where for fixed i, ¢i,~, 
r = 1, 2 , . . . ,  i are uniquely determined from the p(k)'s, by the linear system 

i 

(1.4) p(k) = Z p ( k -  r)Oi,r k = 1 , 2 , . . . , i  

from which, in particular, it follows that 7rk = 0 for k > p. 
Our intention is to study, for a process {X(t)} with certain features in common 

with a stationary AR(p) process, the limiting joint distribution of the/~k's defined 
by (1.1), when a limiting joint distribution of the R(k)'s is known to exist. The 
motivation comes from Theorem 1 of Mills and Seneta (1989), who studied the 
case p = 1 with a view to application to a branching (Bienaym~-Galton-Watson) 
process with immigration. Our general result, which we state now contains (and 
makes formal the proof of) the well-known result behind Quenouille's (1947, 1949) 
classical test. This classical aspect will be discussed in Section 3. 

THEOREM 1.1. Let ¢0 = -1 ,  and ¢1 ,¢2 , . . . , 0p  be real numbers such that 
the roots of O(z) 0 are all outside the unit circle, where O(z) = - V ' P  ,~.z i A-~i-=O "¢'~ " 

Let p(i), i = 0 , + 1 , . . .  be real numbers satisfying p(0) = 1, p(i) = p ( - i ) ,  and 
(uniquely) (1.3). Write for each i _> 1, ~i = ¢i#, where ¢i,r, r = 1 , 2 , . . . , i  
are given (uniquely) by (1.4), so 7rk = 0, k > p. For a process {X(t)}, assume 
{N1/2(R(k)  - p(k))}, k = 1 , . . .  ,p + q (for arbitrary integer q > 1), converges 
in distribution as N --~ oc to the distribution of a random vector {V(k)}, k = 
1 , 2 , . . . , p  + q. Define V(O) = O, V ( - k )  = V(k) .  Then the vector { g l / 2 ~ k } ,  
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k = p + 1 , . . .  ,p + q converges in distribution as N ~ oc to the distribution of a 
random vector {W(k)}, k = p + 1, . . .  , p + q, where 

P P P 

(1.5) W(k)  = E ~ ¢ i C j Y ( k -  i -  j ) / y I ( 1  - 7r/2). 
i = 0  j = 0  i = l  

2. Proof of Theorem 1.1 

Define a linear operator H such that  for any sequence {d(t)}, t = 0, + 1 , . . . ,  

(2.1) H d ( t ) = - ~ ¢ , d ( t - s ) .  
8----0 

From (1.3), then 

(2.2) Hp(i) = 0 i >_ 1. 

Write e(i) = R(i) - p(i), 0 _< i < N - 1, define e ( - i )  = e(i), and express all 
quantities in the numerator  of (1.1) in terms of e(i)'s and p(i)'s. 

Now partition the numerator as 

A E l )  
det E2 D 

with A being p x p, D being (k - p) x (k - p), keeping in mind that  within 
the theorem we are considering k > p. Perform the following row and column 
operations (which do not affect A) on the matrix involved: 

Hrow(i)  ~ row(i) i =  k , k -  1 , . . . , p +  1 

Heol(j)---*eol(j) j = k - l , k - 2 , . . . , p + l  
p 

col(k) - ~ ¢8 col(s) ~ col(k). 
8----1 

(since k > _ p + l )  

(if k > p + 2 )  

In virtue of (2.2), all p(k)'s in El ,  E2, D, except in the diagonal elements, 
are eliminated, and all off-diagonal entries are linear functions of the e(i)'s. The 
submatrix A (unaffected) is the usual matrix of "early" sample autocorrelations, 
R(s), s = 0, 1 , . . .  ,p - 1. The last entry on the diagonal of D is H2e(k), while the 
other (k - p - 1) diagonal entries are each 

P P P 

8=0  8=0 8=0  
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Now consider, for a fixed k, the effect of letting N ~ oc. Since by assumption 

{N1/2e(k)} d { y ( k ) } ,  it follows e(k)P0,  k = 1 , . . .  ,p + q, and so R(k)2+p(k), 
k = 0, 1 , . . .  , p -  1. Hence by Slutsky's theorem, El ,  E2 P 0  and 

p I k -p-1  
det(D) ~ - E Csp(S) H2V(k) 

8=-0 

and det(A) converges in probability to 

det{p( i - j ) }  l i - j l = O ,  1 , . . . , p - 1 .  

But it is well-known (for example, Barndorff-Nielsen and Schou (1973), equation 
(5)) that this last is I-IP-~(1 - 7r2) p-i. Further, from equation (6) of the same 
reference, 

P P 

- ~ ¢~p(s )  = H ( 1  - 7v2). 
s = 0  i=1  

Thus 

(2.3) N 1/2 det (Uk) d H (1 - ~r2) k-i-1H2V(k).  
i=1  

In the fashion of det(A), 

k-1 p 
(2.4) det(Lk) p H (1 - ni)-2~k-i = H ( 1  _ 7ri )2\k-i 

i=1  i=1  

since k - 1 >_ p, and for i > p, ~i  = O. Hence again by Slutsky's theorem, for fixed 
k > p + l, as N ~ cc, 

P 

N1/2~k = N 1/2 d e t ( U k ) / d e t ( L k ) d  H2V(k)/ H (  1 _ n2) 
i----1 

where H2V(k) = ~-P=o ~ = o  @¢jV(k - i - j). 
Let us now consider for arbitrary integer q > 1, any linear function 

p+q p+q 
N1/2 E ak~k=N1/2 E (ak/Lk)Uk 

k----p+1 k----p+1 

P+q 
--4 ~kWk 

k=p+l 

by the above reasoning and Slutsky's theorem. Hence by the Cram~r-Wold device, 
the vector convergence in distribution obtains. 
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3. Application to the classical setting 

Let {X(t)}, t = 0, ± 1 , . . . ,  be a linear process of the form 

oO 

(3.1) X(t)  - # = E a j Z ( t -  j) 
j ~ - - o o  

where the {Z(t)} are independently and identically distributed (i.i.d.), with zero 
2 o<) oo 

mean and variance a z < co, Y]~j=-oo laJl < co and Y]j=-oo IJl a2 < co" A now- 
classical result of Anderson and Walker (1964), following on from Bartlett (1946), 
states that  the joint distribution of {N1/2e(k)}, - G  < k < G for arbitrary positive 
integer G converges to the multivariate normal distribution with zero mean and 
covariance matrix ]E = {~(i, j)}, where 

oo 

(3.2) a(i, j)  = E {p(r + i)p(r + j) + p ( r - i ) p ( r  + j ) -  2p(j)p(r)p(r + i) 
? ' : - - 0 0  

-2p(i)p(r)p(r + j) + 2p(i)p(j)p2(r)}. 

A modern presentation of this theory is given in Chapter 7 of Brockwell and 
Davis (1986). See also Cavazos-Cadena (1994). 

Let us now suppose that our process {X(t)} in (3.1) is in fact a stationary 
AR(p) process, so ozj = 0, j < 0, the summability conditions on the a j ' s  are 
certainly satisfied; and the conditions of Theorem 1.1 are also satisfied since {X (t)} 
is the same process as described by {Y(t)} of (1.2). 

Write 

V = { V ( i ) }  i = p +  q , . . . ,  1 , 0 , - 1 , . . . , - p +  1 

W =  {W(i)} i = p +  l , . . . , p + q .  

Then from (1.5), W = A V ,  where A is q x (2p+q) and has form (where summing 
from 1, for example, means for i + j  = 1) 

¢ 0 ... 0 1 E ¢'¢j . . . . . .  E ¢i¢7 
1 2p 

o . . .  1 . . . . . .  o 

1 2p 

: 

0 1 E ¢~¢J ... 0 0 
1 

1 E ¢ i C J  . . . . . .  E ¢~¢j 0 "" 0 
1 2p 

A = v(O__~) 

since by equation (8) of Barndorff-Nielsen and Schou (1973), l-[P=1(1 - 7r 2) = 
2 is var(Z(t)) and V(0) = var(X(t)) of the stationary Aa(p)  a2/-y(0), where a z 

process {X(t)}. Then the covariance matrices of W and V are related by 

(3.3) ~ w  = A~vA ' ,  
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where Ev is (2p+ q) x (2p+ q) and its entries axe given by (3.2), and Ew is q x q. 
Define 

(3.4) 
p p 2p 

r = 0  s = 0  u = 0  i+ j= u  

We now compute the (1, 1) entry for Zw for purposes of illustration. Using 
(3.2), (3.3) and (3.4), 

Ew(1,1) = ( ~f(0)~2 2p 2p 
\-~~Z2 J Z Z ¢ " ¢ n E  ~ ¢ , ¢ i a ( p + l - k , p + l - u )  

u----O m + n = u  k----O i + j = k  

k=O i + j = k  m u 

O0 

x Z { p ( r + p + l - k ) p ( r + p + l - u )  

+ p(p+ 1 - k -  r)p(r  + p +  1 - u) 

- 2p(p + 1 - u)p(r)p(r  + p + 1 - k) 

- 2p(p + 1 - k)p(r)p(r  + p + 1 - u) 

+ 2p(p + 1 - k)p(p + 1 - u)p2(r)} 

= \--~-] E ~ Z  E +iCjp(r+p+l-k)h(r+p-1) 
r=--oo ~,k=O i + j = k  

2p 

+ Z Z ¢ '¢JP(P+ 1 - k - r ) h ( r  + p +  1) 
k=O i + j = k  

2p 

k=0  i + j = k  

2p 

- F.E 
k=0  i+ j= k  

2p 

k=O i + j = k  
2 

= Z {h(r+p+llh(r+p+t)  
r ~ - - O C  

+ h ( p +  1 - r )h(r  + p +  1) 
- 2p(r)h(r + p + 1)h(p + 1) 
- 2p(r)h(p + 1)h(r + p + 1) 
+ 2p2(r)h(p + 1)h(p + 1)}. 

¢ i ¢ j p ( r ) p ( r + p + l  - k ) h ( p + l )  

¢ i¢jp(r)p(p  + 1 - k)h(r  + p + 1) 

¢iCjp2(r)p(p + 1 - k)h(p + 1)/ 
) 
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Now, in his Property 3, Choi (1990a) has established properties for the sta- 
tionary AR(p) process using the Yule-Walker equations which imply that  h(p+ 1) = 
0 and that  

+ p +  1) = 

oo 

E h ( p + l - r ) h ( r + p + l ) = O .  

Thus Ew(1,  1) = 1. Analogously for s _> 1, t _> 1, 

~-ffTz / E E CreChE E ~)iCjff(p-~-8-k, pq-t-zt) 
u = O  m+n=u k=O i+j=k 

= \ a2 ] E { h ( r + p + s ) h ( r + p + t )  

+ h(p + s - r)h(r + p + t) 

- 2p(r)h(r + p + s)h(p + t) 

- 2p(r)h(p + s)h(r + p + t) 

+ 2p2(r)h(p + s)h(p + t)} 

Thus E w  = I,  hence {W(k)}, k = p + 1 , . . .  ,p + q, are independent standard 
normal, that  is, for a stationary AR(p) process {X(t)} in the limit as N ~ oc, the 
random variables {N1/2~k}, k >_ p + 1, are i.i.d. N(0, 1) as is more or less well- 
known, albeit generally still with somewhat difficult and/or  vague proofs, and is 
Quenouille's (1949) "second" result. Notice that  this result, which implies that  

p+T 

k=p+l 

for large N approximately, which is the usual basis for Quenouille's test, uses only 
the ~k's and hence does not require any preliminary estimation of the parameter  
¢i's for its application, although (see for example Mills and Seneta (1989), Sec- 
tion 1), the least squares estimation of these parameters is implicit in the definition 
of/3k's. A direct rigorous but  more difficult proof, involving asymptotic maximum 
likelihood ideas, of these results is given in Barndorff-Nielsen and Schou (1973). 

Especially relevant is the relation of our general theory to Quenouille's (1947) 
"first" result. For a recent presentation and perception of these two results, see 
Hosking (1986). We note, in this connection, that  for k > p and by the Yule-Walker 
equations (1.3), 

P P P P 

N1/2 E E ¢iCjR(k - i - j )  = N U2 E E ¢,¢j  (R(k - i  - j) - p(k - i  - j)) 
i j i j 
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P P 

= Nil2 E E 6i6jE(k - i - j )  
i j 

P P 

i j 
= 

from (1.5), since as noted, riP=l(1 - 7r~) -- cr2/~,(0). The N(0, 1) independence of 
the W(k)'s yields QuenouiUe's (1947) first result on the behaviour of an appropri- 
ate linear combination of sample autocorrelations. 

4, Other settings 

The essential features required for the applicability of our Theorem 1.1 to 
a stochastic process {X(t)}, t = 0, ± 1 , . . . ,  are the Yule-Walker-type equations 
(1.3) for quantities {p(k)} and the existence of the joint asymptotic distribution 
of {NW2e(k)}, where e(k) = R(k) - p(k). The results of Mills and Seneta (1989) 
for a branching process setting (with p = 1) show that Theorem 1.1 has applica- 
bility beyond the classical AR(p) setting of Section 3. In fact, Theorem 1.1 was 
developed in order to apply it to a non-trivial variant of the Mills and Seneta 
(1989) branching process set-up, namely to inference for the sum process of two 
independent branching processes with immigration, a model considered by Suresh 
Chandra and Koteeswaran ((1986), p. 312). As in Mills and Seneta (1989), the 
process need not be stationary but is asymptotically stationary. This limit-mean 
adjusted process is an instance of the case p = 2 of our model, and 61, 62 of 
Theorem 1.1 are simple functions of the two offspring distribution means, so the 
assumption is easy to check. The special branching process structure then per- 
mits more specific consequences, in a manner resembling the classical AR(p) case, 
which has much simpler structure of residuals (1.2). On the whole, processes 
{X( t )}  satisfying the conditions of Theorem 1.1 might be expected to be at least 
asymptotically stationary. 

On the other hand, we might consider extensions of Theorem 1.1 in directions 
suggested by the classical stationary ARMA(p, q) processes, where q >_ 1, with 
i.i.d, innovations. The "autocorrelations" p(k) would then be assumed to satisfy a 
more complex set of equations than (1.3). The simplest extension in this direction 
is the case p -- q = 1 where we assume p(i), i _ 0, are any real numbers such that  
p(O) = 1, p(i) = p( - i ) ,  and { p ( l i -  Jl)}, i , j  = 1,2, . . .  ,k, is a positive definite 
(k x k) matrix for any k _> 1, and 

p(k)-6~p(k-i)=O k~2 

for some fixed real 61, 1611 ( 1. In this case, ARMA(1, 1), one of us (Ku (1996)) has 
obtained a result paralleling Theorem 1.1, although the presence of an MA effect 
considerablely complicates matters. The extension does not parallel the linear 
combination of sample autocorrelations in Walker (1950) nor the treatments of 
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Choi (1990b) or Hosking (1980). Extensions of this kind (with p > 1) may be 
applied to bilinear processes {X(t)} of the form BL(p, 0,p, 1); that is satisfying 

p p 

X(t)  + E C j X ( t -  J) = Z(t) + ~ b i X ( t -  i ) Z ( t -  1) 
j = l  4=1 

where {Z(t)} are i.i.d, random variables with EZ(t) = O, EZ3(t) = O, and 
EZ4(t) < oc, when a sufficient condition on the Cj's and bi's (Liu and Brockwell 
(1988), Theorem 2.1) for asymptotic stationarity is satisfied. This is because of 
the fact (see Priestley (1988), p. 63) that in the stationary regime of this process, 
the actual autocorrelations p(k) satisfy 

Cjp(i - j) = 0 i >_ 2 
j=o 

(¢0 -- -1), analogously to the Yule-Walker equations for the autocorrelations of 
a stationary ARMA(p, 1) process. Results of Liu ((1992), p. 491 ft.) indicate that 
the convergence of {N1/2e(k)} in this situation is likely. 
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