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Abstract. The central result is a limit theorem for not necessarily station-
ary processes resembling AR(p). Assumption of a vector limit distribution for
standardized sample autocorrelations leads to the convergence of a vector limit
distribution for ordinary sample partial autocorrelations, and to a clear rela-
tionship between the two limit distributions. The motivation is the study of the
case p = 1 by Mills and Seneta (1989, Stochastic Process Appl., 33, 151-161).

. The central result is used to explain the nature of the relationship between the
two results of Quenouille in the classical stationary AR(p) setting.
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1. Introduction

For any stochastic process X (t), t = 0,%1,..., we define R(0) = 1, and for

1 <k £ N —1, arbitrary fixed integer N,

R(k) = C(k)/C(0)

N
Clk)= Y (Xt)-X)X(t-k) -X)
t=k+1

where X = Zi\r:l X(t)/N. Put R(—k) = R(k). In the standard case where {X(¢)}
is a second-order stationary process, the R(t)’s are the sample autocorrelations on
the basis of an observed sample X (1), X(2),...,X(N). Thus we can also define,
parallelling the definition of sample partial autocorrelations for a second-order
stationary process, the quantities 3¢, by

By = R(1)
(1'1) 2 det Uk
Pr= detELk; k22
where
R(0) .-« R(k—2) R(1)
Uy =
Rk-1) - R(1) R(k)
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R(0) - R(k-1)
L=| @
R(k—1) - R(0)

We shall henceforth refer to R(k), By, as sample autocorrelations and sample partial
autocorrelations, respectively, whether the process {X(t)} is second-order station-
ary or not.

We need to recall, for convenient reference, some properties of a second-order
stationary AR(p) process {Y (t)}, t = 0,+£1,..., satisfying, for p > 1,

(1.2) YO) =Yt -1)+ @Y (t—2)+ -+ oY (t—p)+ Z(t)
where {Z(t)} are independent identically distributed (i.i.d.) random variables with

zero mean and variance o2. Then the autocorrelation function p(i), i = 0, £1, ...,
with p(0) = 1 and p(—t) = p(i) satisfies the Yule-Walker equations

P
(1.3) Y pipli—j)=0 i>1

j=0
where ¢g = —1. Denoting the partial autocorrelations by =;, ¢ > 1, it is known
(e.g. Barndorff-Nielsen and Schou (1973)), that m; = ¢;;, where for fixed ¢, ¢,
r=1,2,...,i are uniquely determined from the p(k)’s, by the linear system
(14) p(k)zzp(k-_r)(bl,’l‘ k:1)2757’

r=1

from which, in particular, it follows that 7 = 0 for £ > p.

Our intention is to study, for a process { X ()} with certain features in common
with a stationary AR(p) process, the limiting joint distribution of the B’s defined
by (1.1), when a limiting joint distribution of the R(k)’s is known to exist. The
motivation comes from Theorem 1 of Mills and Seneta (1989), who studied the
case p = 1 with a view to application to a branching (Bienaymé-Galton-Watson)
process with immigration. Our general result, which we state now contains (and
makes formal the proof of ) the well-known result behind Quenouille’s (1947, 1949)
classical test. This classical aspect will be discussed in Section 3.

THEOREM 1.1. Let ¢9 = —1, and ¢1,¢2,...,¢p be real numbers such that
the roots of ®(2) = 0 are all outside the unit circle, where ®(2) = — Y 5_( ¢:2".
Let p(i), i = 0,%1,... be real numbers satisfying p(0) = 1, p(i) = p(—14). and
(uniquely) (1.3). Write for each i > 1, m; = ¢i;, where ¢ir, 7 = 1,2,...,14
are given (uniquely) by (1.4), so mp = 0, k > p. For a process {X(t)}, assume
{N'2(R(k) — p(k))}, k = 1,...,p + g (for arbitrary integer ¢ > 1), converges
in distribution as N — oo to the distribution of a random vector {V(k)}, k =
1,2,...,p+ q. Define V(0) = 0, V(=k) = V(k). Then the vector {N1/23,},
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k=p+1,...,p+ q converges in distribution as N — oo to the distribution of a
random vector {W(k)}, k=p+1,...,p+q, where

(1.5) Wk)=3_ > #ig;Vk—i=3)/ ][] -

i=0 j=0

2. Proof of Theorem 1.1

Define a linear operator H such that for any sequence {d(t)}, ¢t = 0,+1,...,
p
(2.1) Hd(t) = - ¢a.d(t —s).
=0

From (1.3), then
(2.2) Hp(i)=0 i>1.

Write (i) = R(i) — p(i), 0 < i < N — 1, define e(—%) = €(i), and express all
quantities in the numerator of (1.1) in terms of €(z)’s and p(3)’s.
Now partition the numerator as

A FE
det<E2 D)

with A being p x p, D being (k — p) x (k — p), keeping in mind that within
the theorem we are considering k > p. Perform the following row and column
operations (which do not affect A) on the matrix involved:

Hrow(i) - row(i) i=kk—-1,...,p+1 (since k>p+1)
Hecol(j) —col(j) j=k-1,k-2,...,p+1 (if k>p+2)

col(k) — i @5 col(s) — col(k).
s=1

In virtue of (2.2), all p(k)’s in E;, E,, D, except in the diagonal elements,
are eliminated, and all off-diagonal entries are linear functions of the €(i)’s. The
submatrix A (unaffected) is the usual matrix of “early” sample autocorrelations,
R(s), s=0,1,...,p— 1. The last entry on the diagonal of D is H%e(k), while the
other (k — p — 1) diagonal entries are each

= " 6ap(s) = Y dee(s) — 3 duHe(s).
s=0 8=0

5=0
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Now consider, for a fixed k, the effect of letting N — oo. Since by assumption
{NY2¢(k)} S{V(k)}, it follows e(k) 50, k = 1,...,p + ¢, and so R(k) D p(k),
k=0,1,...,p— 1. Hence by Slutsky’s theorem, F, Eq 20 and

k—p—1
det(D { Z dsp(s } H?*V (k)
and det(A) converges in probability to

det{p(:—3)} [—-4l=0,1,...,p—1.

But it is well-known (for example, Barndorfl-Nielsen and Schou (1973), equation
(5)) that this last is Hf;ll (1 — w2)P~*. Further, from equation (6) of the same

reference,

P P

=3 gan(s) = [J(1 - =D).

s=0 i=1

Thus
p
(2.3) NY2det(U) S [0 - 72— H2V (k).
i=1

In the fashion of det(A),

k-1 ‘ P ‘
(2.4) det(Li) B [0 —nd) = (1 —=)*~"

i=1 i=1

since k — 1 > p, and for ¢ > p, m; = 0. Hence again by Slutsky’s theorem, for fized
k>p+1,as N — oo,

NY23, = N2 det(Uy)/ det(Li) > H2V (k)/ ﬁ(l —72)

=1

where H2V (k) = Y7_ >°F_o did;V(k — i~ j).

Let us now consider for arbitrary integer ¢ > 1, any linear function

pt+q ptq

.Nl/2 Z akﬂk .Nl/2 Z (ak/Lk)Uk
k=p+1 k=p+1
d p+q
- Z axWy
k=p+1

by the above reasoning and Slutsky’s theorem. Hence by the Cramér-Wold device,
the vector convergence in distribution obtains.
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3. Application to the classical setting

Let {X(t)}, t=0,%1,..., be a linear process of the form

oo

(3.1) X(t)-p= ) o;Z(t—1j)

j==—o00

where the {Z(t)} are independently and identically distributed (i.i.d.), with zero
mean and variance o2 < o0, Z;.";_oo laj] < oo and }:;f’___oo |j|a§ < 00. A now-
classical result of Anderson and Walker (1964), following on from Bartlett (1946),
states that the joint distribution of {N1/2¢(k)}, —G < k < G for arbitrary positive
integer G converges to the multivariate normal distribution with zero mean and
covariance matrix ¥ = {0 (i, j)}, where

(32) o(i,5) =Y {p(r+i)p(r+35) + p(r —i)p(r + 5) — 2p(5)p(r)p(r + )

=2p(i)p(r)p(r + 5) + 2p()p(§)p*(r)}.

A modern presentation of this theory is given in Chapter 7 of Brockwell and
Davis (1986). See also Cavazos-Cadena (1994).

Let us now suppose that our process {X(¢)} in (3.1) is in fact a stationary
AR(p) process, so a; = 0, j < 0, the summability conditions on the a;’s are
certainly satisfied; and the conditions of Theorem 1.1 are also satisfied since { X (¢)}
is the same process as described by {Y (¢)} of (1.2).

Write

V={V®)} i=p+q...,1,0,—1,...,—p+1
W={W({)} i=p+1,....,p+gq

Then from (1.5), W = AV, where A is ¢ X (2p+¢) and has form (where summing
from 1, for example, means for i + j = 1)

0 0 1 Z¢i¢j Z‘ﬁ“ﬁj
1 2p
0 1 de&j Z¢i¢j 0
1 2p
0
A=7‘£§) : :
0 1 Z¢i¢j 0 0
1
0

1Y it o e Y ¢id O
1 2p

since by equation (8) of Barndorff-Nielsen and Schou (1973), []5_,(1 — #2) =
02/~(0), where o2 is var(Z(t)) and ¥(0) = var(X(t)) of the stationary AR(p)
process {X(t)}. Then the covariance matrices of W and V are related by

(3.3) Sw = ALy A,



626 SIMON KU AND EUGENE SENETA

where Ly is (2p+q) X (2p+ ¢) and its entries are given by (3.2), and Zw is ¢ x g.
Define

p P 2p
(34)  RR) =) dedeplk—r—5)=D_ > dibip(k—u).
r=0 s=0 u=0it+j=u

We now compute the (1,1) entry for Tw for purposes of illustration. Using
(3.2), (3.3) and (3.4),

2 2p 2p
Sw(l,1) = (7(58)) YN mtnd. D dibjolp+1-kp+1-u)

u=0 m+n=u k=01i+j=k

)'S T s (Z 5 ¢m¢n)

il
R
2
—
o

2
0z k=0i+j=k u=0m+n=1y
o o]
X E {p(r+p+1—-k)plr+p+1-u)
rT=—=0C

+polp+1—k—-r)plr+p+1—u)
—2o(p+1-u)p(r)p(r+p+1-k)
~2p(p+1—k)p(r)p(r+p+1-u)
+2p(p+1—k)p(p + 1 — u)p?(r)}

2 oo 2p
= (10(_—(2)—)> > {Z Y idip(r+p+1—-k)h(r+p—1)

r=—oo \k=0i+j=k

2p
+). ) bitipp+1-k—nh(r+p+1)

k=0i+j=k

2p
=2)" Y didjp(r)p(r+p+1-k)h(p+1)

k=0 i+j=k

2p
=2 Y dudip(r)p+1 - k)h(r+p+1)

k=0i+j=k

2p
+2) > ¢i¢jP2(T)P(P+1—k)h(p+l)}

k=0i+j=k

2 o
= (%?)) > {h(r+p+Dh(r+p+1)

+h(p+1—-r)h(r+p+1)
—2p(r)h(r +p+ 1h(p+1)
—2p(rYh(p+)h(r+p+1)
+2p*(r)h(p + Lh(p+ 1)}
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Now, in his Property 3, Choi (1990a) has established properties for the sta-

tionary AR(p) process using the Yule-Walker equations which imply that h(p+1) =
0 and that

Y R(r+p+1)=(03/7(0))

r=-—00
Z h(p+1-r)h(r+p+1)=0.

Thus Ew(1,1) = 1. Analogously for s > 1,¢ > 1,

2 2p
Swl(s,t) ( ) >y ¢m¢nZ Y bibiop+s—kp+t—u)

u=0m+n=u k=0i+j=k

_ (7(°)> Z (h(r+p+ $)h(r +p+1)

2
(o2
% r=—00

+h(p+s—r)h{ir+p+t)
= 2p(r)h(r +p+ s)h(p+ 1)
= 2p(r)h(p + s)h(r + p+1)
+20°(r)h(p + s)h(p + 1)}
= {s4.

k]

Thus Ew = I, hence {W(k)}, kK =p+1,...,p+ ¢, are independent standard
normal, that is, for a stationary AR(p) process {X(t)} in the limit as N — oo, the
random variables {N/23;}, k > p+ 1, are i.i.d. N(0,1) as is more or less well-
known, albeit generally still with somewhat difficult and/or vague proofs, and is
Quenouille’s (1949) “second” result. Notice that this result, which implies that

p+T
N> B~x

k=p+1

for large N approximately, which is the usual basis for Quenouille’s test, uses only
the Bk’s and hence does not require any preliminary estimation of the parameter
¢;’s for its application, although (see for example Mills and Seneta (1989), Sec-
tion 1), the least squares estimation of these parameters is implicit in the definition
of Bi’s. A direct rigorous but more difficult proof, involving asymptotic maximum
likelihood ideas, of these results is given in Barndorff-Nielsen and Schou (1973).

Especially relevant is the relation of our general theory to Quenouille’s (1947)
“first” result. For a recent presentation and perception of these two results, see
Hosking (1986). We note, in this connection, that for k > p and by the Yule-Walker
equations (1.3),

N1/2ZZ¢1¢1R(’C—Z—J) N”TZM k-i=g)—plk=i-)
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p P
= N2y ) ek —i—j)
i

p p
iZZ@@V(k —i—7)
= (a2 /7(0))W (k)

from (1.5), since as noted, [[5_, (1 — n?) = 02/4(0). The N(0,1) independence of
the W (k)’s yields Quenouille’s (1947) first result on the behaviour of an appropri-
ate linear combination of sample autocorrelations.

4. Other settings

The essential features required for the applicability of our Theorem 1.1 to
a stochastic process {X(¢)}, t = 0,%1,..., are the Yule-Walker-type equations
(1.3) for quantities {p(k)} and the existence of the joint asymptotic distribution
of {N'/2¢(k)}, where e(k) = R(k) — p(k). The results of Mills and Seneta (1989)
for a branching process setting (with p = 1) show that Theorem 1.1 has applica-
bility beyond the classical AR(p) setting of Section 3. In fact, Theorem 1.1 was
developed in order to apply it to a non-trivial variant of the Mills and Seneta
(1989) branching process set-up, namely to inference for the sum process of two
independent branching processes with immigration, a model considered by Suresh
Chandra and Koteeswaran ((1986), p. 312). As in Mills and Seneta (1989), the
process need not be stationary but is asymptotically stationary. This limit-mean
adjusted process is an instance of the case p = 2 of our model, and ¢;, ¢ of
Theorem 1.1 are simple functions of the two offspring distribution means, so the
assumption is easy to check. The special branching process structure then per-
mits more specific consequences, in a manner resembling the classical AR(p) case,
which has much simpler structure of residuals (1.2). On the whole, processes
{X(t)} satisfying the conditions of Theorem 1.1 might be expected to be at least
asymptotically stationary.

On the other hand, we might consider extensions of Theorem 1.1 in directions
suggested by the classical stationary ARMA(p, q) processes, where ¢ > 1, with
i.i.d. innovations. The “autocorrelations” p(k) would then be assumed to satisty a
more complex set of equations than (1.3). The simplest extension in this direction
is the case p = ¢ = 1 where we assume p(i), 1 > 0, are any real numbers such that
p(0) = 1, p(i) = p(—1%), and {p(Ji — 7))}, 4,4 = 1,2,...,k, is a positive definite
(k x k) matrix for any k > 1, and

p(k) — d1p(k ~1) =0 k>2

for some fixed real ¢1, |¢1| < 1. In this case, ARMA(1, 1), one of us (Ku (1996)) has
obtained a result paralleling Theorem 1.1, although the presence of an MA effect
considerablely complicates matters. The extension does not parallel the linear
combination of sample autocorrelations in Walker (1950) nor the treatments of
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Choi (1990b) or Hosking (1980). Extensions of this kind (with p > 1) may be
applied to bilinear processes {X(t)} of the form BL(p, 0, p, 1); that is satisfying

+Z¢J (t—34) +ZbXt—z Z(t—1)

where {Z(t)} are ii.d. random variables with EZ(t) = 0, EZ3(t) = 0, and
EZ*%(t) < oo, when a sufficient condition on the ¢;’s and b;’s (Liu and Brockwell
(1988), Theorem 2.1) for asymptotic stationarity is satisfied. This is because of
the fact (see Priestley (1988), p. 63) that in the stationary regime of this process,
the actual autocorrelations p(k) satisfy

p
> bipi=5)=0 ix2
j=0

(¢o = —1), analogously to the Yule-Walker equations for the autocorrelations of
a stationary ARMA(p, 1) process. Results of Liu ((1992), p. 491 ff.) indicate that
the convergence of {N1/2¢(k)} in this situation is likely.
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