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Abst rac t .  It is well known that likelihood ratio statistic is Bartlett cor- 
rectable. We consider decomposition of a likelihood ratio statistic into 1 degree 
of freedom components based on sequence of nested hypotheses. We give a 
proof of the fact that the component likelihood ratio statistics are distributed 
mutually independently up to the order O(1/n) and each component is inde- 
pendently Bartlett correctable. This was implicit in Lawley (1956, Biometrika, 
43, 295-303) and proved in Bickel and Ghosh (1990, Ann. Statist., 18, 1070- 
1090) using a Bayes method. We present a more direct frequentist proof. 
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i .  Introduction 

It has been now well established that likelihood ratio test under the null hy- 
pothesis is Bartlett  correctable. The first general treatment of the distribution of 
the likelihood ratio test was Lawley (1956). Despite Lawley's result, Bartlet£ cor- 
rectability of likelihood ratio tests did not seem to be a generally accepted fact for 
a long time. Later Hayakawa's extensive calculation (Hayakawa (1977, 1987)) gave 
a proof of Bartlett correctability. Harris (1986) pointed out an incompleteness of 
Hayakawa's 1977 proof. Chesher and Smith (1995) fixed Hayakawa's formula, and 
showed that the corrected formula is consistent with Lawley's result. Further- 
more, Bickel and Ghosh (1990) gave a proof based on Bayes approach. Ghosh and 
Mukerjee (1991, 1992) discuss conditions where frequentist and Bayesian Bartlett  
correction factors coincide. Cordeiro (1993) gives formulae for computing Bartlett  
correction factor. For a brief survey on log likelihood ratio and Bartlett  correction 
see Jensen (1993). 

As in Lawley (1956) and Bickel and Ghosh (1990), in this article we consider 
decomposition of overall likelihood ratio statistic into 1 degree of freedom compo- 
nents based on nested hypotheses. Let O C R p denote the parameter space and 
consider sequence of nested subspaces of O: 

O0 c ~1 c . . .  c ~p = ~ ,  with d imOj  = j .  
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Let 
H j  : 0 C O j  

and let Aj be the likelihood ratio statistic for testing Hj_I vs. Hi, j = 1 , . . . ,  p. 
Note that 2 log Aj is asymptotically distributed according to chi-square distribution 
with 1 degree of freedom under Hi-1. Let the overall likelihood ratio statistic for 
testing H0 vs. Hp be denoted by A. Then A is decomposed as 

A = A I ' " A p .  

We give a proof of the fact that under H0, Aj, j = 1, . . .  ,p, are mutually inde- 
pendently distributed up to the order O(1/n) and they are independently Bartlett 
correctable. This was implicit in Lawley (1956) and proved in Bickel and Ghosh 
(1990) using Bayes method. Our proof is more direct frequentist proof. As we 
have decomposed the overall likelihood ratio statistic into 1 degree of freedom 
components, it follows immediately from our result that likelihood ratio statistic 
for intermediate composite hypothesis Ilk VS. H~, k < m, is Bartlett correctable 
as well. 

Our result is based on formal asymptotic expansion of the joint characteristic 
function of the component likelihood ratio statistics under the null hypothesis. We 
do not treat the validity aspect of the asymptotic expansion. 

In Section 2, we state our result in terms of characteristic function and in 
Section 3 we give our proof. By considering joint characteristic function of the 
1 degree of freedom components A j, our proof of the independent Bartlett cor- 
rectability of Aj's became much harder than the proof of Bartlett correctability of 
the overall statistic A. During the course of our proof in Section 3, we point out 
added complexities in the form of remarks. 

2. Main result 

Before stating our result, we set up our framework somewhat more precise. 
Let 0 be the p-dimensional parameter vector. We assume that independent and 
identically distributed observations x l , . . . ,  x~ are obtained from a density f (x ,  0). 
The likelihood ratio statistic Aj for testing Hi-1 vs. Hj is defined as 

n X maxoeoj l-L=1 f (  i, o) 
,~j = j = 1,... ,p. 

maxoeoj_~ 1-LL1 f(x~, o)' 

We state our main theorem in terms of joint characteristic function of A j, j -- 
1 , . . . ,p .  

THEOREM 2.1. Under H0, A1,. . . ,  Ap are mutually independently distributed 
up to the order O(1/n) and independently Bartlett correctable. Namely, there exist 
constants cl , . . .  ,cp (depending only on Ho ) such that 

(2.1) EHo [exp(itl2 log A1 + . . .  + itv2 log Ap)] 

= H ( 1 -  2itj) -1/2 1 + -  1 
n 1 -- 2itj 

j= l  

+ o(1/n) 
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Note that  up to the order O(1/n)  (2.1) is equivalent to 

(2.2) EHo [exp(it12 log )h + ' "  + itp2 log Ap)] 

= (1 -- 2it3) -1/2 1 + -- 
n 

j = l  

c J ( 1  1 -  2itj 1 ) )  +o(1 /n ) .  

Setting tl . . . . .  tk = tm+l . . . . .  tp = 0 and tk+l . . . . .  t m =  t, k < m,  
the following corollary follows immediately from (2.2). 

C O R O L L A R Y  2.1. Consider the likelihood ratio statistic )~k,r~ for testing Ilk 
vs. Hm, k < m. )~k,m is Bartlett correctable under Ilk. 

3. Proof 

Here we give our proof of Theorem 2.1. We divide our proof into 4 parts. First, 
we setup necessary notations. Second, we discuss choosing appropriate parame- 
terization to make our calculation simpler. Third, we give stochastic expansion of 
2 log £j. Finally, we evaluate joint characteristic function of 2 log )~1,..., 2 log ,~p. 

3.1 Notation 
Let 0 = (01, . . . ,  0 p) E Op be the parameter vector. We use tensor notation 

and we index parameter components by superscripts. Although we mostly follow 
standard tensor notation as in McCullagh (1987), we shall later introduce some 
simplifying notational convention for convenience. Let 0 ° = (01°, . . . ,  0 p°) be the 
true parameter vector, i.e. O0 = {0°}. 

We denote higher order derivatives of the log likelihood function and related 
quantities as follows. Let 

O k 
g~-..jk = tj~...jk (x; O) - OOJl . . .  OOJk log f ( x ,  0), 

and 

(3.1) 

1 n 

= n } - ] e j l .  0°),  
i = 1  

Lj,...jk : Eoo [ej~...j~ (x; 0°)1, 

Z j l . . . j k  ~- V ~ ( ~ . . j l . . , j k  - -  Lj,...jk). 

Since the dimensionality of xi's is irrelevant, subscript i for x is used to index the 
observation. 

Denote the higher order mixed cumulants and moments by 

ail...~,~l ,Jl'"J,~2 ..... k~ '"kmh ---- cum0 (~il ...i,, 1 , gJl""J,~2 ' " " " ' gkl'"kmh ), 

Li,. .4,~ ,jl...jm2 ..... k~...k,, h : Eo (~1...i,~1 tj~...j,~2 "'" ~kl...~mh )" 
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Note that n's and L's are functions of 0. However, 
evaluated at 0 ° and in that case omit 0. 

Differentiating the identity 

we usually use these quantities 

Eo -6-~ log y(z,O) = 0  

the following well known relations on the third order and fourth order mixed 
derivatives can be easily established: 

Lijk + Lij,k[3] + Li,j ,k = O, 

n~jk + nij,k[3] + n~,j,k = 0, 

Lijkz + Lijk,t[4] + L~j,kl[3] + Lo,k,l[6 ] + Li,j,k,l = 0, 

~ k l  + ~k,~[4] + ~j,k~[3] + ~j,k,~[6] + ~,j,k,~ = 0. 

General result of this type is given in Skovga~rd (1986). 
In addition to the standard tensor notation and summation convention, we 

introduce further notational convention for convenience. We shall later assume 
that the Fisher information is the identity at e °. Because of this assumption, we 
often encounter terms of the following general form 

5iJ#..+..#...j..., 

where 5 ij is the Kronecker's delta• In this case we simply write 

#...i...P...i .... 

Furthermore, in order to discuss joint characteristic function, we need to consider 
terms of the form P ~-~=1 t~z~zi. Omitting the summation sign we simply write this 
as t i z i z i .  

More formally, we introduce the following notational convention for our proof. 

Notational convention on summation.  Indices appearing more than once as 
subscripts are interpreted as running variables and summed over. 

3.2 Parameterization 
Here we try to choose some canonical parameterization, which makes our 

derivation simpler. First by considering 0 - 0 °, 0 ° can be taken to be the origin, 
i.e., /90 = (0 , . . . , 0 ) .  Then in some neighborhood of the origin we can choose 
parameterization such that 

(3.2) 

o0  = {(0, 0 , . .  •, 0)},  
01 -~- {(01, 0 , • • . ,  O) 101 : free}, 

Op_l = {(01, . . . ,0P-1,0)  [ 0 1 , . . . , 0  p-1 :free}, 

o~  = { ( o ~ , . . . ,  O~)le~,..., o~: free}. 
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Now, considering appropriate triangular linear transformation 0 i ~ t~O j where 

= 0 for i > j ,  we can assume without loss of generality that  the Fisher infor- tj 
mation at the origin is the identity (matrix), i.e., 

(3.3) 

where 5ij is the Kronecker's delta. 
Further simplification is possible by considering nonlinear reparameterization 

in a neighborhood of the origin. Define new parameter vector T = (71, . . . ,  T p) by 
the following relation 

(3.4) Oi : Ti -~- 1--a}kTJTk2 -b ~a~klTJTkT l + ' ' ' .  

Here the coefficients a}k , a}kl,.. ,  are invariant under the permutation of subscripts. 
Note that  the Jacobian of (3.4) is the identity at the origin and (3.4) is 1-to-1 in 
some neighborhood of the origin. Furthermore for our purpose (3.4) can be taken 
as a polynomial with finite but sufficiently high degree and there is no problem of 
convergence. 

The Fisher information in terms of T at the origin remains to be the identity 
and (3.3) is satisfied. Next lemma specifies the form of nonlinear reparameteriza- 
tion in (3.4) such that (3.2) remains to be satisfied. 

LEMMA 3.1. (i) and (ii) are equivalent. 
(i) For all m <_p, 

(0 n ,  0 ~+1  , . . . ,  ep) = (0, 0, . . . ,  0) ~ ,  (era, ¢ ~ + 1  , . . . ,  Cp) = (0, 0, . . . ,  0). 

(ii) 
a~12...~k = 0  if max( i2 , . . . , ik )  < il. 

PROOF. Consider m -- p. We want 

(3.5) 0 p = 0 ~ rP = 0 

for arbitrary values of 01,. . .  ,0 p-1. We claim that a necessary and sufficient 
condition for (3.5) is 

(3.6) a~l...ik = 0 if m a x ( i l , . . . , i k ) < p .  

Note that  (3.6) holds if and only if 0 p can be written as 

0p _- rp(1 + bit  j + bjk~-Jv k + . . . ) .  

This holds if and only if T p = 0 =~ 0 p = 0. Conversely, writing 

r p = 0p(1 + bjTJ q_ bjkTJTk +. . . ) -1  
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and expanding and expressing the right hand side in terms of 8, Tp can be wri t ten 
as 

r p = toP(1 + cjto j ÷ CjktoJto k ÷ . . . ) .  

Therefore top = 0 ~ T p = O. 
Next consider m = p -  1. Assume (3.5) or equivalently (3.6). We want to 

ensure that  

(3.7) (top-1 top) = (0, O) ¢:~ (T p - l ,  T p) = (0, 0). 

We claim that  a necessary and sufficient condition for (3.7) is 

(3.8) aP(~.l.ik = 0 if m a x ( i l , . . . , i k )  < p - 1, 

which is equivalent to 
top--1 : 7.p-1(1 + A)  + TPB 

for some polynomials A, B. Hence (3.8) holds if and only if (v p - l ,  T p) = (0, O) 
(top-l, top) = (0, 0). Conversely, expressing the right hand side of 

Tp -1 = top-l(1 + A) -1 _ TPB(1 + A) -1 

in terms of to, we see that  (top-i, top) = (0, 0) ~ (r  p - l ,  Tp) = (0, 0). 
Arguing recursively, we prove the lemma. [] 

From Lemma 3.1, if m a x ( i 2 , . . . , i k )  > il  then we can choose the value of 
a~12...~k for our convenience. 

Now by choosing appropria te  nonlinear reparameterization,  we can make some 
of the higher order cumulants  vanish. Consider the following relation. 

02 0to ~ 0to~ 020 ~ 
ejk(x;  T) -- Or jOrk  log f ( x ,  to(T)) -- OTJ Or k g ~ ( X ;  tO) + OrJOr-------~g~ (X; O). 

Evaluating this at the origin we obtain 

e i k ( x ; r ) = e y k ( X ; t o ) + a T k e ~ ( x ; t o  ) (at r = 0 ,  0 = 0 ) .  

Therefore at the origin 

Cov~=0(~jk(x; v), ~(x; r)) = ~,~k + aj%~.. 

00 ~ 00~ 00~ 
tjk~(x; r) - 0rJ 0 r  k O r ~ / ~ ( x ;  0) + 

03to" 
~- OTJOTkOT l ~c~(X; to) 

020 ~ 00~ 
0rJ0rk 0r  z l~z(x; 0)[3] 

Letting 

we can make ~i,jk vanish for (i, j ,  k) such that  max(j ,  k) > i. Similarly from 
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we obtain at the origin 

Hence for max(j, k, l) _> i letting 

~}k~ = - ~ , j k l  - ~]kk~,~ [3] 

we can make ni,jkl vanish. Arguing recursively we have the following lemma. 

LEMMA 3.2. Consider the sequence of nested hypotheses in (3.2). Without 
loss of generality we can choose parameterization such that at 0 ° = (0, 0 , . . . ,  O) 

(3.9) nil,~..i~ = 0 /f max( i2 , . . . , i k )  _> il. 

The simplification in (3.9) is very useful for calculation of O(1/n) terms needed 
to prove our result. 

REMARK 3.1. Consider the following quantities obtained by the procedures 
described above: 

gjk(x; O) + a]kgc~(x; O) i0=o, 
O l  . ~ • ejkl(X; O) + ajkea~(x , 0)[3] + ajklea(x , O) IO=O, 

where 
a i jal... = 0 if max(j,  k , l , . . . )  < 

and otherwise defined recursively by the relations 

~i,jk + a]kSia = O, 

~,jk~ + a]k.~,.~[3] + aj%zS~. = o, 
, ° , .  

It can be easily shown that  these quantities are invariant under any nonlinear 
transformation of the coordinate system from 0 = (01, . . . ,  0 p) to ~ = (~1, . . . ,  ~p) 
of the form 

(3.10) 
1 1 

0 ~ = ~:* + ± a j k ~  k + ±,i~kz~J-~k-~ z + . . .  
2 6 J 

(a}kV.. = 0 for max(j,  k , l , . . . )  < i). 

This can be proved in an analogous way as Subsection 7.2.3 of McCullagh (1987). 
However, in our case the nonlinear transformation of the coordinate system, (3.10), 
has to be adapted to the nested subspaces in (3.2), whereas McCullagh (1987) 
considers nonlinear transformations with no restrictions. 
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REMARK 3.2. In this paper we are considering the finest sequence of nested 
subspaces in (3.2). More often, one considers just one intermediate subspace Oq, 
0 < q < p, corresponding to a composite null hypothesis, or even no intermediate 
subspace. Similar argument to the proof of Lemma 3.2 shows that  we can choose, 
without loss of generality, parameterizations such that 

~il,i2.-.~k = 0 if il < q or max( i2 , . . . , ik )  > q 

at 0 ° corresponding to the nesting Oo C Oq COp, and 

(3.11) ~i1#2..-i~ = 0 for all indices 

at 0 ° corresponding to the nesting (~0 COp. The possibility to choose a parame- 
terization satisfying (3.11) for testing a simple null hypothesis is well known (e.g., 
McCullagh and Cox (1986), Subsection 7.2.3 of McCullagh (1987)). 

3.3 Stochastic expansion of log likelihood ratio 
Here we give a stochastic expansion of 2 log A in terms of the random variables 

Zil...ik defined in (3.1). From Section 2 of Hayakawa (1977) and Section 7.4 of 
McCullagh (1987) we have 

1 
(3.12) 21ogA = ZiZi + -~Zi jZiZj  + -~--~LijkZiZjZk + !ZiaZjaZiZj 

n 

1 
+ 3n z~jkZ~zjZk + 1L~k"Z~aZ~ZJZkn 

1 
+ ~--n(Lijkl + Lijankla[3])ZiZjZkZl + Op(1/n). 

Note that in (3.12) indices i, j,  k, a , . . .  run from 1 through p. Now the stochas- 
tic expansion of the 1 degree of freedom component Aq for Hq-1 vs. H a can be 
obtained from (3.12) by the following simple argument. Consider the likelihood 
ratio statistic A0r for H0 vs. Hr. Because of (3.2), the stochastic expansion for 
2 log A0r is the same as in (3.12) except for the range of indices, which is now 1 up 
to r. Therefore, the stochastic expansion for 

2 log Aq = 2 log A0q - 2 log A0,q--1 
is as in (3.12), where at least one of the running variables equals q. From this 

~ i = i  t/2 log Ai, needed to argument it follows that the stochastic expansion of P 
evaluate the characteristic function, can be written as 

1 1 
(3.13) 2ti logAi = tiZiZi + -~nnZijZiZjtmax(i,j) + -~--~L,jkZiZjZktmax(i,j,k) 

1 1 
+ -Z~Zj~Z~Zjtm~x(~,j,~)+ ~nZ~jkZ~ZjZktm~x(~,j,k) 

n 

Jr ! LjkaZiaZiZjZktmax(i,j,k,a) 
n 

1 
+ ~ (LijaLkl, [3] )ZiZj ZkZltmax(i,j,k,l,a) 

1 
+ ~nL~3k, Z~ZjZkZ, tm~(~,j,k,~) + op(1/n). 
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3.4 Evaluation of the joint characteristic function 
We now evaluate the joint characteristic function of A1,..., Ap using the 

stochastic expansion (3.13). Prom now on, we omit the pure imaginary number 
i for convenience and write 2tj log Aj instead of 2itj log Aj. We take the expec- 
tation in two steps. First, we consider conditional expectation given the first 
order derivatives Z1,. . . ,  Zp and then we evaluate the expectation with respect to 
Z l ,  . . . , Zp:  

(3.14) E[exp(2tj log Aj)] = E[E(exp(2tj log Aj) t Z1,. . . ,  Zp)]. 

For the first step we need the conditional expectation. Relevant conditional 
expectations (see Section 5.6 of MeCullagh (1987)) are 

1 
(3.15) E(Zij [ Z x , . . . ,  Z , )  = i~k , i jZ  k ~- -~- -~(Ni j ,a ,b  --  I~k , i j l~k ,a ,b ) (ZaZ  b -- Gab ) 

+ o(n-1/2), 

(3.16) E(ZijZkz [ Z1,.. . ,Zp) = E(Zij I Z1,. . . ,Zv)E(Zkz ] Z1, . . . ,Zp) 
+ Cov(Z j, I z l , . . . ,  zp) 

~- ga,i  j Z a  l~b,kl Z b "~ I'~i j ,k  I --  ga, i  j ga,kl  + o(1). 

(3.15) and (3.16) can be easily derived from asymptotic expansion of the joint 
density of Zi and Zij. 

Now we can carry out the calculation of the conditional expectation of the 
joint characteristic function. By expanding the exponential function in (3.14), and 
taking the conditional expectation of (3.15) and (3.16), we can see that 

(3.17) E[exp(2tilogAi ]z l , . . . , z , ) ]  

= exp(tizizi + A1 + A2) x (1 + B1 + B2 + " "  + B7) + o(1/n), 

where 
1 

A1 = 3vr~LijkZiZjZktmax(i,j,k), 

1 
A 2  = - ' ~ l g k , i j Z i Z j Z k t m a x ( i , j ) ,  

1 

1 
B 2  = ~ n Z i Z j Z k Z l ( g i j , k l  -- t~a , i jga ,k l ) tmax( i , j ) tmax(k , l ) ,  

1 
B 3  = - z i  z j t m a x (  i,j,a) ( l'~c,ial'~d,jaZcZd -[- I~ai,aj -- I~c,iaNc,ja ), 

n 
1 

B4 = Vnl'ga,ijkZaZiZjZktmax(i,j,k)~ 

1 
B 5 ---- - -n jkat~b, iaZiZjZkZbtma.x( i , j , k ,a  ), 

n 

1 L B6 = i~n ( ai jLak l [3] )Z iZ jZkZl tmax( i ' j ' k ' l ' a ) '  

1 
B 7 = ~ - - n L i j k l Z i Z j Z k Z l t m a x ( i , j , k , l ) .  
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We combine (3.17) with the Edgeworth expansion of the density of Z l , . . . ,  Zp 
and take the expectation. The Edgeworth expansion of the the density of z l , . . . ,  zp 
can be written as follows (see Takemura and Takeuchi (1988)). 

(3.18) f ( Z l , . . . ,  Zp) - 
t [ 

(2~r)p/2 exp - 

+ 

+ 

1 1 1 
-~ ZiZi -4- -~--'-~t~i,j,kZiZjZk + ~ q l ( Z )  

1 
~ n  (t~i'j'k'l -- t~i'j'at~k'l'a[3])ZiZjZkZl 

lq2(z)] + o(1/n), 

where ql is linear in z l , . . . ,  Zp without the constant term and q2 is a second degree 
polynomial in Z l , . . . ,  Zp without the linear terms. Concrete forms of ql and q2 are 
irrelevant for establishing our result. Denote 

1 1 
C1 = -~tci,j ,kzizjzk + ~ q l ( z ) ,  

1 
C2 = -~n (t~i,j,k,l -- t~i,j,at~k,l,a[3l)ziZjZkZl + lq2(z)'n 

We combine (3.17) and (3.18) and our problem is reduced to evaluating the 
following integration term by term: 

(3.19) E(exp(2t~ log Ai)) 

= f 2t )z zi+ Ai + A2 +C1) 
x {1 + B1 + B2 + ' "  + B7 + C2}dzl'"dzp + o(1/n). 

At this point the following simple recursive argument is useful. 

LEMMA 3.3. In order to prove Theorem 2.1 it is su~icient to prove that all 
the O(1/n) terms containing tp in (3.19) do not contain t~, i < p, and are linear 
(i.e. first degree polynomial) in 1/(1 - 2tp). 

PROOF. If the assertion is true, then for some Cp we can write 

E(exp(2 t i l °gAi ) )=l - I (1-2 t i ) - l /2{  h(tl' ' '" ' tp-1) + e-2 (n  1 -12tp 1)} 
+ o(1/n). 

Now put t v = 0. Then because of the recursive nature of the subspaces in (3.2), 
we have exactly the same problem with dimensionality reduced by 1. Therefore 

h ( t l " ' " t P - 1 ) = h ( t l " ' " t p - 2 ) + c P - 1  ( n  1 -  2tp_l 1 1).  

This recursive argument implies (2.2). [] 
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REMARK 3.3. For our proof we have to eliminate not only the terms of the 
form 1/(1 - 2tp) k, k > 2, but  also terms of the form (1 - 2ti)/(1 - 2tp). This is 
an added complexity in considering joint characteristic function of the component  
likelihood ratio statistics. 

Our proof now consists of exhaustive verification of each term of (3.19) that  
each term of the order O(1/n) containing tp is linear in 1/(1 - 2tp). 

3.4.1 Terms containing third order cumulants 
We begin by considering the term exp(A1 + A2 + C1). Using Lijk = t~ijk = 

--nij,k [3] -- t~i,j,k, we have 

exp(AI + A2 + C1)=exp (DI + D2 + D3 + ~nql(z) ) 

1 1 E DiDj = 1 + E Di + --~ql(z)+ ~ E ( D i )  2 + 
i<j 

1 l q l  (z)2 + 
+ ~ q l ( z )  E Di + o(1/n), 

where 

1 
D1 = -~--~ni,j,kzizjzk(1 -- 2tmax(i,j,k)), 

1 
D2 = -~--~ak,ij Zi Zj Zk (1 -- 2tmax( i,j,k ) ) , 

1 
D 3 -  2Vrd~k#jZiZjZk(1 -- 2tmax(i,j)). 

Note that  ~ D~ + q l (z ) /v  ~ is an odd polynomial in z and this vanishes by integra- 
tion. Furthermore, the index for t agrees with one of i, j ,  k and hence integration 
of terms ql(z)~-~Di yields only linear terms in 1/(1 - 2ta), a < p. Also ql(z) 2 is 
quadratic in z and yields only linear terms in 1 / ( 1 -  2ta), a _< p. We see that  ql(z) 
is irrelevant for our argument. We note here that  q2(z) is quadratic as well and 
irrelevant for our proof. 

Therefore, integrations of only 6 terms (D1) 2, (D2) 2, (D3) 2, DID2, D1D3, 
D2D3 require close inspection. 

These terms consist of basic terms of the form 

zizjzk(1 - 2t~)zlzmz~(1 - 2tz), 

where a E {i , j ,k} and ~ E {l,m,n}. We only need to consider the case where 
each distinct index appears even times. 

Suppose that  a #/3.  Then both a and/3 have to appear at least twice. These 
lead to terms linear in 1/(1 - 2ta), a < p. If a = /3  and if there are at least 4 a 's  
in {i,j, k, l, m, n}, then again only terms linear in 1/(1 - 2ta), a _< p, appear. 

We see that  the only essentially difficult terms to check are of the form 
(1 - 2t~)2(Za)2ZaZbZcZd, where a ,b ,c ,d  ~ a. Integrating (z~) 2 out we have 
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(1 - 2ta)ZaZbZcZd, a, b, c, d ~ a. We have to verify that  terms of this type  in DiDj 
cancel somewhere in the entire expression of the joint characteristic function. 

Consider (D1) :, (D2): ,  (D3) 2, D1D2, D1D3, D2D3 in turn. 
1. (D1)2: In 

~(D1) 2 = 1 
~ n  ni,j,k nl,m,hZ~Zj zkzt ZmZh (1 -- 2tmax(i,j,k)) (1 -- 2tma~q,m,h) ), 

we need to consider the case max(i,j ,  k) = max(l,  m, h). If these are less than p, 
then tp does not appear. Therefore, we can restrict our a t tent ion to the following 
term, which remains to be canceled. 

1 
(3.20) ~nnp,ijnp,k,l (1 -- 2tp)Z~ZjZkZZ (i, j ,  k, l < p). 

2. (D2)2: Noting ai,pj = 0 by (3.9), similar reasoning applied to (D2)2/2 
yields the following te rm yet to be canceled. 

1 
(3.21) ~nap,ijap,kl(1 -- 2tp)ZiZjZkZl 

3. D1D2: Similarly D1D2 yields 

1 
(3.22) -~nl~P,i,ji~p,kl (1 - 2tp)ZiZjZkZt 

4. (D3)2: In 

(3.23) 

( i , j , k , l < p ) .  

(i , j ,k,1 < p). 

1 ~(D3) 2 = 8n ak,ij aZ,mhZiZj Zk Zl ZmZh (1 -- 2tmax(i,j)) (1 -- 2tmax(m,h)), 

(i < a < p). 

1 2 (Zp)2(Za)4(1 - 2ta) 2 (a < p) 

1 2 2 2 + ~nnp,~i(zi) (%) (za)2(1 - 2t~) 2 

Integrating zp and z~ out yields 

% 2  1 (a < p) 
8n P'~ 1 - 2 t p  

-J- ll~2,ai(Zi) 2 ~-- 2ta 
zn I -- 2tp 

(i <: a < p). 

we need to consider the case max(i,  j )  = max(m,  h) = a (say). If a = p then 
ak,ij = 0 and the term vanishes. Therefore a < p and relevant terms in (3.23) are 

1 4 
~n~k,a,~t,,~,~zkzt(za) (1 -- 2ta) 2 (k, l _< p and a < p) 

1 
÷ ~ - t C k  a i i C l , a m Z k Z l Z i Z m ( Z a ) 2 ( 1  --  2ta) 2 (k, l < p and i, m < a < p). 

Z• ' 

tp appears only from the case k = l --- p and i = m, and we have 
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The first term is linear in 1/(1 - 2tp). Therefore remaining term to be canceled is 

1 2 , z , 2 1 - 2 t ~  ( i < a < p ) .  
(3.24) ~n~p,~[ i) 1 2tp 

5. D I D 3 : D 1 D 3  is irrelevant. Actually in 

~i , j ,kz iz jzk(1  - 2tmax(i,j,k))~l,mhZlZmZh(1 -- 2tmax(m,h)) 

we set max(m, h) = max(i, j, k) = a. If a = p then nZ,mh = O. On the other hand 
if a < p then tp does not appear. 

6. D2D3: Similarly D2D3 is irrelevant for our proof. 
The terms coming from D i D j ' s  which have to be canceled are (3.20), (3.21), 

(3.22), and (3.24). These terms have to be canceled by terms in B1 , . . . ,  B7 and C2. 
We now pick up terms from B1 , . . . ,  BT, C2, which contain third order cumulants. 

1. BI: Consider 

1 
2n nm,i j ~m,k,l ( Zk ZZ -- 5kl ) Zi Z j tmax( i,j ) 

1 1 
~_ -- ~n l~m, i f fCm,k , lZkZ lZ iZ j tmax( i , j )  + -~nl~m, i j tCm,k ,kZiZj tmax( i , j ) .  

The second term on the right hand side obviously yields only linear term and can 
be ignored. In the first term, if max(i , j )  = p then ~m,~j = 0. Therefore, we only 
need to consider max( i , j )  < p. The only case where tp appears is k = l = p and 
i = j < p, and integrating zp out we are left with 

i t~ 
(3.25) 2n ~m,ii~m,p,p 1 - 2tp (zi)2 ( m < p  and i < p ) .  

2. B 2 : B 2  is irrelevant. Actually if tp appears from 

Zi Z j Zk Zl tea, i j I'~a, kl tmax(i ,j) $max (k,/), 

then either max(i, j )  = p or max(k, l) = p and hence ~a,ij~a,kl = O. 
3. B3: 

1 1 
-- Zi Zj ZcZdtmax(i , j ,a)  I%,ia ICd,ja -- -- Zi Zj tmax(a,  i , j)  ICc,ia I%,ja. 
n n 

In the second term if max(a, i, j )  = p then ~c#~c,ja = 0, otherwise if max(a, i, j )  < 
p then tp does not appear. Therefore, the second term is irrelevant. Consider 
the first term. Again if max(a, i, j )  = p then ~c#~d,j~ = 0. Therefore, let 
m a x ( a , i , j )  < p. The only possibility where tp appears is when c = d = p and 
i = j < p. Integrating zp out, the remaining term to be canceled is 

1 t¢ 2 tmax(a,/) 
(3.26) n v,~, ~--~-~p (Zi) 2 (a , i  < p). 
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4. B4, BT: Ba and B7 do not contain third order cumulants.  
5. Bs: 

1 
- Lj ka ~b , ia  Zl Zj  Zk Zb tmax(i ,j, k, a). 
n 

If a = p then ~b,~a = O. Therefore, let a < p. If max(/ ,  j,  k) < p then because b 
has to be equal to one of i, j ,  k, tp can not appear. Therefore, the only remaining 
possibilities are either b = j = p > i = k or b = k = p > i = j .  Therefore, we have 

Integrating zp out and using 
as  

2 L~piap,~ (zp) 2 (zi)2tp. 
n 

L a p i  = - - ~ p , a i  --  ~p ,a , i ,  we o b t a i n  t h e  remaining t e r m  

1 2 2tp 2 
(3.27) + i < , ) .  

6. B6: 

1 
(3.28) 12n ( L~ijLakl [3])ZiZjZkZltmax(i,j,k,l,a) 

is the hardest  t e rm to look at. If max( i , j ,  k, l, a) < p in (3.28) tp does not appear. 
Therefore let max(i ,  j ,  k, l, a) = p. 

First consider a part icular case, where i = j = k = l = p and a _< p. Then  by 
integrating zp out and letting L~pp = - ~ ,p , p ,  (3.28) becomes 

(3.29) 3 tp .2 (a < p). 
4n (1 -- 2tp) 2 ~"'p'p 

Next consider the case where not all of i, j ,  k, l are equal to p. The relevant 
subcases are of the following 2 types: (i) i , j ,  k, l < p, or (ii) two of / ,  j ,  k, 1 equal to 
p. For the subcase (i), we need a = p for tp to appear. Then  Lpij = -ap#j  - ap#,j, 
Lpkl = - - ~ p , k l -  ~p,k,Z and (3.28) is 

(3.30) 1 (ap,ij + ap,i,j)(ap,~l + ap,k,t)zizjzkzltp ( i , j ,  k, l < p). 

For t h e s u b c a s e  (ii), let i = j < k = I = p a n d a _ <  p. Then  Lapp = -aa,p,p, 
L~ij = - ~ , ~ -  aa,i,i, Lap~. = Lapj = - a p , ~ i -  a~,p#. Therefore, for this case (3.28) 
becomes 

1 
12n {~a,p,p(~,ii + a~,~,i) + 2(gp,~i + g~,p#)2}tp(Zp)2(zi) 2. 

Considering the  symmetry,  there are 6 possibilities of this type. Therefore, the 
t e rm to be canceled is 

(3.31) 
1 tp 

2n 1 - 2tp 
( i < p  and a < p ) .  
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We saw 3 types of terms (3.29), (3.30) and (3.31) to be canceled from B6. 
7. C2: Consider 

2~n (ai,j,~ak,Z,a[3])ZiZjZkZl. 

If i = j = k = l = p and a _< p, then integrating z,  out we have 

3 2 1 (a < p). 
(3.32) 8nn ap'v'~ (1 - 2tv) 2 

Otherwise for tp to appear two of i, j ,  k, l have to be equal to p. Let i = j < k = 
l -- p and a < p. Then we obtain 

1 1 
24n (aP'v'aai'i'a + 2a2#'a)(zi)2 1 - 2tp ( i < p  and a < p ) .  

Considering the symmetry, there are 6 possibilities of this type. Therefore, the 
remaining term to be canceled is 

1 1 
(3.33) + 1 _ 2 t .  ( i < p  and a_<p). 

We have enumerated all the remaining terms containing third order cumu- 
lants. Our list of these terms which have to be canceled (including terms coming 
from DiDj's) is as follows: (3.20), (3.21), (3.22), (3.24), (3.25), (3.26), (3.27), 
(3.29), (3.30), (3.31), (3.32), and (3.33). 

Adding together (3.20), (3.21), (3.22), and (3.30), we see that  tp vanishes. 
Sum of (3.29) and (3.32) reduces to a linear term in 1/(1 - 2tp). Adding (3.33) to 
(3.31) cancels some terms in (3.31) and (3.31) is reduced to 

1 t p 2 
(3.34) 2n l _ 2tp(aa,p,vaa#i + 2ap,ai + 4ap,aiaa,p#)(zi)2 (i < p and a < p). 

Our reduced list of remaining terms is now: (3.24), (3.25), (3.26), (3.27), and 
(3.34). Rewrite (3.25) as 

1 1 

4n ~a,ii aa,p,pl - 2tp 
1 1 - 2ti 

- - ( z i )  2 + ~naa,iiaa,P,pl 2tp(Zi) 2 (a_<p and i < p ) .  

The second term becomes linear in 1 / ( 1 -  2tp) when zi is integrated out and can be 
ignored. Add the first term to (3.34). Then the first term within the parentheses 
of (3.34) no longer contains tp. Now add (3.27) to (3.34). Then (3.34) is reduced 
to 

1 tp ~2 fz.~2 p,~i~ ~/ (i, a < p). (3.35) 
n 1 -- 2tp 

Here we ignored the case a -- p since then ~p,p~ = 0. 
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Now remaining terms to be canceled are: (3.24), (3.26), and (3.35). Write 

tmax(a,i) = tp + (1 - 2tp) - ~(1 - 2tmax(a#)) 

in (3.26). Then the first te rm cancels (3.35). The second term is irrelevant. Now 
consider the third term: 

1 2 21 -- 2tmax(a,i) 
(3.36) 2n ap'~(zi) 1 - 2tp 

If i < a then max(a,  i) = a and this cancels (3.24). We are left with the  case i _> a. 
Then (3.36) is 

1 a2 , ~ 2 1 - 2 t i  
2n P'ai[zi) 1 - -2 tp '  

which is linear in 1/(1 - 2tp) after integrating zi out. 
We have now checked all terms containing the third order cumulants  and 

verified tha t  these terms yield only terms linear in 1/(1 - 2tp). 

3.4.2 Terms containing fourth order cumulants 
Verifying terms containing fourth order cumulants  is much simpler than  the 

last subsection. Picking up relevant terms we have the following list of terms. 

1 
(3.37) B1 : ~-~ngij,k,l(ZkZl -- 5kl)ZiZjtmax(i,j), 

1 
(3.38) B2 : ~nZiZjZkZlgij,kltmax(i,j)tmax(k,l), 

1 
(3.39) B3:  --ZiZjtmax(i,j,a)t~ai,aj, 

n 
1 

(3.40) B7 : 12nLiJklZiZjZkZ~tmax(i,j,k,~), 

1 
(3.41) C2: -~nt~i,j,k,lZiZjZkZl. 

Using Lijkl = --tcijkj[4] -- aij,kl[3] -- aij,kj[6] -- ai,3,k,l expand (3.40). If 
max( i, j ,  k, l) < p in (3.40), then tp can not appear. Therefore, we only need 
to consider the  case max(i,  j, k, l) =- p in (3.40). Then there are at least two 
p's among i, j ,  k, l and tcijkj[4] = 0. Therefore in (3.40) we can let Lokl = 
--a~j,kl [3] -- aij,k,t [6] -- ai,j,k,~, max(i,  j,  k, l) = p, and reduce (3.40) to the following 
form 

1 1 1 
(3.42) 4na~j ,k lz iz jzkzztp-  ~t~ij,k,IZiZjZkZltp -- ~-~l~i,j,k,IZiZjZkZltp 

(max(i ,  j, k, l) = p). 

Now we examine cumulants  a~,j,~,l, a~j,k,z and tc~j,kZ in turn.  
1. a~,j,k,z: Adding the last t e rm of (3.42) to (3.41) we have 

1 
24n ai,j,k,tzizjzkz~ (1 -- 2tp) (max(i,  j,  k, l) = p). 
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Integrat ing zp out, this t e rm yields only linear terms in 1/(1 - 2ta), a _< p. 

2. ~ij,k,l: First  we take care of 5kZ in (3.37). Consider t~ij,k,kZiZjtmax(i,j). 
This obviously yields terms linear in 1/(1 - 2ti). In (3.37) and (3.42) we are left 
with 

1 
~n~ij,k,ZZiZjZkZl(tm~x(i,j) -- tp) (max(i,  j ,  k, l) -- p). 

This is non zero only if p > max(i ,  j ) .  Because the indices have to  appear  in pairs, 
p > i = j .  Therefore  we have 

1 1 
~n~, , ,p ,p(t ,  - tp)(z , )2(zp)  2 - 4n~,,,p,p{(1 - 2t,) - ( 1  - 2tp)}(z i )2(zp)  2. 

Integrat ing zi and Zp out we get a t e rm linear in 1/(1 - 2ti) and a t e rm linear in 
1/(1 - 2tp). 

3. ~ij,kl: Consider 

1 1 1 
~nt~ij,klZiZjZkZltmax(i,j)tmax(k,l) q- nt~ai,ajZiZjtmax(a,i,j) -- ~nt~ij,klZiZjZkZltp. 

(i) t~pp,pp appears  only when i = j = k = l = p. In this case by integrat ing zp out  
the coefficient for app,vp becomes t p / {4n (1  - 2tp)}, which is linear in 1/(1 - 2tp); 
(ii) app,ii wi th  i < p appears  in the form 

lapp,ii(Zp)2(z•)2tpti 1 
- 

Integrat ing this out, the  coefficient for app,ii becomes - t p / { 2 n ( 1  - 2tp)},  which is 
linear in 1/(1 - 2tp); (iii) gpi,p~ with i < p appears  in the form 

2 l';pi'pi ( tp ) 2 ( zi ) 2 ( Zp ) + ~ t~pi'pi ( zi ) 2 tp - l t~pi'pi ( Zi ) 2 ( Zp ) 2 tp " 

Integrat ing zi and zp out, the coefficient for t~pi,p i is shown to be 0. 
We have now exhausted all relevant terms and completed our proof  of Theo-  

rem 2.1. 
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