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Abst rac t .  A direct method for multistep prediction of a stationary time 
series involves fitting, by linear regression, a different autoregression for each 
lead time, h, and to select the order to be fitted, kh, from the data. By contrast, 
a more usual 'plug-in' method involves the least-squares fitting of an initial 
k-th order autoregression, with k itself selected by an order selection criterion. 
A bound for the mean squared error of prediction of the direct method is 
derived and employed for defining an asymptotically efficient order selection for 
h-step prediction, h > 1; the Sh(k) criterion of Shibata (1980) is asymptotically 
efficient according to this definition. A bound for the mean squared error of 
prediction of the plug-in method is also derived and used for a comparison of 
these two alternative methods of multistep prediction. Examples illustrating 
the results are given. 
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1. Introduction 

There has been much interest recently in the question of using lead-time 
dependent estimates or models for multistep prediction of a time series. Thus, 
Kabaila (1981), Stoica and Soderstrom (1984), Weiss (1991) and Tiao and Xu 
(1993) consider estimation of the parameters of a specified model separately for 
each lead time by minimising the sum of squares of the within sample prediction 
errors. Also, Findley (1983), Gersch and Kitagawa (1983) and Lin and Granger 
(1994) recommend selecting and fitting a new model for each lead time. Additional 
references include Greco et al. (1984), Milanese and Tempo (1985), del Pino and 
Marshall (1986), Hurvich (1987) and Wall and Correia (1989). Grenander and 
Rosenblatt (1954) and Cox (1961) are two early references in which the h-step 
prediction constants, h > 1, for a finite predictor are obtained separately for each 
h by minimising a relevant mean squared error of prediction. Also, Pillai et al. 
(1992) address the maximum entropy question when the objective is multistep 
prediction. 
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From a statistical methodological point of view, the 'direct' method of 'tuning' 
the parameter estimates or model selection for multistep prediction is quite a 
general one and it may be applied whenever the notion of a 'true' model generating 
a time series can be regarded as being implausible and the model fitted for one- 
step prediction can be viewed simply as a useful approximation for the stochastic 
structure generating the time series. It is thus probably unsurprising to find that 
the cited references cover a rather broad range of different classes of time series. 

The direct method may be viewed as an alternative to the widely-used 'plug- 
in' method, see Box and Jenkins (1970), in which the multistep forecasts are 
obtained from an initial model fitted to the time series by repeatedly using the 
model with the unknown future values replaced by their own forecasts. Whittle 
((1963), p. 36) observed that the plug-in method is optimal in a least-squares 
sense if the fitted model coincides with that generating the time series, or, in a 
somewhat restricted sense, for prediction only one step ahead. As, in practice, 
all fitted models may be incorrect, this observation suggests that for multistep 
prediction the plug-in method may be improved upon by adopting a different 
approach and the direct method may be interpreted as being one such approach. 

In this paper, a mathematical optimality result for the direct method is es- 
tablished. A result of this type has so far not been available and it contributes 
towards theoretically underpinning the method in support of which strong empir- 
ical evidence has already been presented in the cited references. 

Our result is in the context of the autoregressive model fitting approach which 
provides a natural setting for considering this method because an autoregressive 
representation exists under weak conditions (Brillinger (1975), p. 78) and the 
notion of an incorrect model is readily formulated. 

On the assumption that T consecutive observations from a discrete-time infi- 
nite order autoregressive process, {xt}, are available, a new autoregressive model 
is selected and fitted for each lead time h _> 1. A direct procedure, involving a 
linear least-squares regression of xt+ h on xt, x t - 1 , . . . ,  Xt-k+l, is employed for esti- 
mating the autoregressive coefficients. Here, k = kh, say, is a random variable and 
its value is selected anew for each h. In Section 4, an asymptotic lower bound for 
the h-step mean squared error of prediction of the direct method is derived, and 
in Section 5 we show that this bound is attained in the limit if  kh is selected by 
the Sh(k) criterion of Shibata (1980) and also if it is selected by suitable versions 
of the FPE and AIC criteria of Akaike (1970, 1973). 

An asymptotic lower bound for the h-step mean squared error of prediction, 
h > 1, of the plug-in method when the initial autoregressive order, k = kl, is 
selected from the data is also derived in Section 6. The results here point to a 
two-fold advantage in using the direct method: first, the bound on its h-step mean 
squared error is smaller than that for the plug-in method, and, secondly, the latter 
bound is not attainable and thus the actual mean squared error for the plug-in 
method could be larger than this bound. The difference between these two bounds 
depends upon h and on the autoregressive coefficients generating {xt}. We discuss 
this point further in Section 7. 

In Sections 4 and 5, we also generalise to h > 1 the results for h = 1 of Shibata 
(1980), who stated, without proof, that an optimality property established by him 
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for the Sl(k) criterion would also hold for the Sh(k) criterion when predicting h 
steps ahead. The generalization involved is non-trivial however, especially a for- 
mulation of optimality for the direct method with respect to the plug-in method. 
The technical machinery required is also more complex because for h > 1 an aim 
of model selection is not to 'whiten' the observed time series so as to produce as 
residuals a series of (approximately) uncorrelated random variables, but instead 
it is to produce a series which (approximately) follows a moving average process 
of order h - 1. Furthermore, we also relax a Gaussian assumption invoked by 
Shibata (1980, 1981). Indeed, the work of this author serves to clarify the re- 
lationship between the objectives of consistency and efficiency in order selection 
by showing that whereas for a finite order process, AIC is not consistent, for an 
infinite order autoregression it is asymptotically efficient for one-step prediction 
and for spectral estimation. By contrast, an objective of this paper is to show that 
this last result does not hold for multistep prediction but that an asymptotically 
efficient order selection is still possible by selecting a new order for each h with a 
criterion specifically suggested for this purpose. 

2. Preliminaries 

Our results hold under a varying combinations of assumptions, and it will be 
useful to label some of these at the outset. 

Suppose that  the observed time series is a realization of a stationary process 
{xt} (t = 0, ± 1 , . . . )  satisfying the following assumptions: 

ASSUMPTION 1. 
resentation 

That  {xt} possesses a one-sided infinite autoregressive rep- 

O<3 

E a(j)xt-y = et, a(O) = 1, 
j=O 

in which {et} is a sequence of independent identically distributed random vari- 
ables, each with mean 0, variance a 2, and the a(j) are absolutely summable real 
coefficients such that the polynomial 

(2.1) A ( z ) = E a ( j ) z J  5 0 ,  Izl ~ 1. 
j=O 

ASSUMPTION 2. That {xt} does not degenerate to a finite order autoregres- 
sive process. 

The existence of higher order moments of {et} is also assumed, but the number 
of moments varies in different results, to ensure flexibility we state the following 
assumption: 

ASSUMPTION 3. For a value of s = So, say, to be further specified 

(2.2) E(I¢ I < 
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Our main Theorems 4.1, 5.1 and 6.1 hold when so -- 16 in Assumption 3, but 
Proposition 3.1 only with so = 8 and Lemmas 4.1-4.3 with So = 4. 

Assumption 1 ensures that  {xt} has a representation 

o ~  

(2.3) xt = ~ b(j)et-j,  b(O) = 1, 
j=o 

in which the b(j) are absolutely summable and satisfy (2.1) but  with b(j) replacing 
a(j), and 1 + b(1)z + b(2)z 2 + . . . .  [A(z)] -1. 

The covariance function of {xt} is defined by R(u) = E(xtxt+u) (t ,u = 
0, +1 , . . . ) ,  its spectral density function by 

(2.4) f (#)=(27~)  -1 ~ R(s )exp( - i s# ) ,  

and the autoregressive transfer function by A(#) = A{exp(- i#)} .  
For any integer n and all h _ 1, we may write 

o o  

(2.5) X~+h = -- ~ Ch(j)xn+l-j + Zn+h, 
j----1 

where --¢h(j) is the coefficient of xn+l- j  (j = 1, 2 , . . . )  in the linear least-squares 
predictor, ~ ( h ) ,  say, of x~+u based on the infinite past, {xt, t <_ n} and 

(2.6) 
h - 1  

Z~+h = E b(j)en+h-j 
j=O 

is the h-step prediction error. As in Bhansali (1993), 

j - -1  

(2.7) Ch(j) = - ~ a ( u ) b ( h -  1 + j - u )  (j = 1 ,2 , . . . ) .  
u=0  

The corresponding mean squared error of prediction is given by 

h - 1  

(2.8) V(h) = E[{Xn+h -- ~n(h)} 2] ---- a 2 Z b2(j) (h > 1). 
j=O 

Denote the k-th order (direct) linear least-squares predictor of Xn+ h based on 
the finite past, {Xn, Xn-1, . . .  ,Xn-k+l}, k > 1, by 

(2.9) XDhk(n) ~ -- Z CDhk(j)Xn+l-j 
j = l  
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and the corresponding prediction error of XDhk(n) by 

(2.10) ZDhk(n) = Xn+h -- ~Vh~(n) .  

Let ~Dh(k) = [¢Dhk(1),.. . ,  CDhk(h)]', ah(k) = JR(h), R(h + 1) , . . . ,  R(h + 
k -  1)1', ~h  = [¢h(1),¢h(2), . . . ] ' ,  it(k) = [ R ( u -  v)](u,v = 1 , . . . , k ) ,  R -- [ R ( u -  
v)l(u,v = 1, 2 , . . . ) .  We have, 

(2.11) 

(2.12) 

~Dh(k) -- - R ( k ) - l a h ( k ) ,  
k 

VD(h, k) = E[{ZDhk(n)}2J = RiO ) + E CDhk(j)R(j + h - 1). 
j = l  

A consequence of Baxter's (1963) inequality is, Bhansali (1993), 

k 

(2.13) E ]¢Dhk(j) -- Ch(J)l -< E ICh(J)l, 
j = l  j = k + l  

and, as k ~ oc, VD(h, k) ~ V(h), for each fixed h _> 1. 
Having observed x l , . . . ,  XT, suppose as in Shibata (1980) that  the k-th order 

estimate, ~Dh(k) = [¢Dhk(1),.. . ,  CDhk(k)l' of • ,h (k )  is obtained by regressing 
Xt+h on xt, x t - 1 , . . . ,  Xt-k+l and by minimising the quantity 

(2.14) N-1  E Xt+h Ac E CDhk(j)XtTl-J 
t=KT j = l  

with respect to the CDhk(j). Here, KT is a preassigned upper bound for the 
autoregressive order, k, N = T - h - KT + 1 and the subscript D stands for the 
direct method,  that  is, the ¢Dhk(j) and ~)Dhk(j) are obtained in accordance with 
the direct method.  

We make the following assumption regarding KT: 

ASSUMPTION 4. That  {KT} is a sequence of positive integers such that  as 
T ~ oo, KT -"* O0 but K 2 / T  ~ O. 

Set Xt(k)  = [xt, x t - 1 , . . . ,  Xt-k+l]', 

T-h 

-~h(k)-= N -1 E Xt(k)Xt(k) ' ,  
t = K T  

T-h 
ah(k) = N-' ~ X,(k)x~+h, 

t = K T  

T-h 

J~(o) = g -1 Z xL~, 
t = g T  
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and denote the minimised value of the sum of squares (2.14) by VDh(k), which, as 
in Bhansali (1993), yields a direct k-th order estimator of V(h). We have, 

(2.15) 
(2.16) VDh(k) = dh(O) + 

Shibata (1980) proposed that the value of k to be used here be selected by 
minimising the following criterion: 

(2.17) Sh(k) = VDh(k)(N + 2k) (k = 0, 1 , . . . ,  KT). 

We will denote the corresponding order selected by ~DT(h), i.e., 

Sh{]~DT(h)}= inf Sh(k). 
O<k<KT 

The Cholesky decomposition of R(k) -1 is given by 

(2.18) R(k) -1 = C(k)r (k) - l c ( k ) '  (k = 1 , 2 , . . . , K r ) ,  

where G(k) = [ak-v(U -- v)], with as(t) = O, t > s, a~(O) = 1, is lower triangular 
and ~3(k) = Diag{a2(k - 1) , . . . ,  62(0)} is diagonal. 

An implication of Assumption 2 is 

(2.19) VD(h, k) >__ V(h), 1 < k < KT. 

For an infinite-dimensional vector, c = [c], c2,...]~ and a positive definite ma- 
trix, C, we define the norms II c l l =  (c' c) 1/2, II cll c = (c' Cc) 1/2, II C II = sup [t Ccll, 
Ilcll _< 1. Norms for finite-dimensional vectors and matrices are defined analogously 
and a finite-dimensional vector is sometimes regarded as infinite-dimensional with 
undefined entries 0. 

3. Mean squared error of the direct method 

Suppose as in Shibata (1980) and Akaike (1970) that  the process to be pre- 
dicted, {yt}, is independent of and has the same stochastic structure as {xt}. Let 
99hk(n) be defined by (2.9) but with the y's replacing the x's, and let 

(3.1) 
s = l  

be the corresponding direct estimate of Yn+h, where the ~Dhk (S) are based on the 
observed realization, Xl , . . . ,  XT, of {Xt} and are calculated as in (2.15). 

Let Ey and Ex denote expectations with respect to the {yt} and {xt} pro- 
cesses, respectively, and Eylx the conditional expectation with respect to {yt}, 
conditional on {xt}. As in (2.5) and (2.6), we may write, yn+h = ~n(h) + 5n+h, 
where ~ln(h) and ~ + h  are defined analogously to 2,~(h) and Zn+h, respectively, but 
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with the y's replacing the x's and with 2~+h denoting the h-step prediction error 
of the {Yt} process. Hence, on using the identity Ey = ExEyl~ , and noting that 
under the assumption stated at the beginning of this section, {Yt} is distributed 
independently of {xt}, the mean squared error of YDhk(n) is given by 

(3.2) E~[{~Dhk(n) -- Yn+h} 2] 

= - 9 hk(n) --   n+h} 2] 

= Ey [{Z~+h }2] + ExEylx [{YDhk (n) -- YDhk (n)}2] 

Y(h) + G { l 1 4 D h ( k )  = - ¢ IIR}. 

We next develop an asymptotic approximation for the second term to the 
right of (3.2) by evaluating the probability limit of the quantity occurring inside 
the curly brackets, since an analytic evaluation of the actual expectation of this 
term is not straightforward; see Bhansali and Papangelou (1991) for a discussion 
of this point. To this end, set 

(3.3) QD(k) = H4Dh(k) -- "~hl[2R. 

It follows from (3.2) that the probability limit of QD (k) provides an approximation 
to the mean squared error of h-step prediction up to V(h) when Yn+h is predicted 
by ~]Dhk(n), and, in fact, it could serve as a substitute for this mean squared error. 

We may write, 

( 3 . 4 )  QD(k) = {VD(h, k) - V(h)} + 114oh(k) -- ~Dh(k)ll~(k ). 

The probability limit of the stochastic term on the right of (3.4) is evaluated 
below in Proposition 3.1; an explicit proof of this proposition is omitted, but one 
can be constructed from the results of Section 4. 

PROPOSITION 3.1. Let {kT} be a sequence of integers such that 1 < kT ~_ 
KT and kT ---+ ~ as T ---+ ~ ,  and suppose that Assumptions 1, 2, 3 with So -- 8 
and 4 hold. Then, for each fixed h > 1, 

(3.5) p l i m  (N/kT)fl~Dh(kT) -- ODh(kT)lt2(k) = V(h). 

For k = 1, 2 , . . . ,  KT, let 

(3.6) FDhT(k) = {VD(h, k) - Y(h)} + (k /N)Y(h) .  

We have the following corollary. 

COROLLARY 3.1. Under the assumptions stated in Proposition 3.1, 
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An implication of Corollary 3.1 is that if for a fixed h > 1, k = kT ---+ oe, as 
T ~ ce, then the quantity, QD(k), defined by (3.3) and whose probability limit 
we seek to evaluate, behaves like FDhT(k) asymptotically. 

The second term to the right of (3.6) provides a measure of the variance of 
~Dh(k) in estimating (I~Dh(k), and, by contrast, the first term measures the bias 
due to employing a finite k-th order predictor for h-step prediction in place of that 
based on the infinite past. 

We introduce the following definition, which is partially motivated by the 
ideas of Akaike (1970) and Shibata (1980). 

DEFINITION 3.1. Let {k*DT(h)} be a sequence of positive integers which at- 
tains the minimum of FDhT(k ) for each T and a fixed h > 1, that is, 

k*DT(h ) = argmin FDhT(k). 
I<k<KT 

As in Shibata (1980), it follows that if as T -* cx~, KT --* oo and K T / T  -~ 0, 
FDhT(KT) --* 0, and hence for any fixed h _> 1, as T -* ce, FDhT{K•T(h)} -~ 0 
and k*DT( h ) --* cx~. 

The following theorem may be established as in Theorem 3.1 of Shibata 
(1980). It shows that, for each h ~ 1, the sequence k*DT(h ) asymptotically yields 
the value of k at which QD(k) is minimised. However, k*DT(h ) is a function of the 
unknown parameters V(h) and Oh and its value will be unknown in practice. In 
Section 4, Theorem 3.1 is extended to the case where k = koT(h) is a random 
variable and the direct method is used for selecting its value separately for each h. 

THEOREM 3.1. Let Assumptions 1, 3 with so = 8 and 4 hold. Then, for any 
{kT} such that 1 <_ kT < KT, any 5 > O, and each h >_ 1, 

lira P ( [ l l ~ D h ( k T )  - Ohl I~ /FDhT{k*DT(h)}]  >__ 1 - 5 ) =  1. 
r --* oo 

4. Bound on the mean squared error of prediction of the direct method 

From (2.10) and (2.15), we may write, for every h > 1, 

(4.1) ~Dh(k) - -  OD(k) = - R h ( k )  -1 N -1 E Xt(k)ZDhk(t) • 
t : K T  

We show first that Rh(k) -1 on the right of (4.1) may be replaced by R(k)  -1. 
We have the following lemma in which 

T - - h  2 

(4.2) QDI(k) = N -1 t E-KT Xt(k)ZDhk(t) • 
R(k)-i 
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LEMMA 4.1. If Assumptions 1, 3 with so = 4 and 4 hold, for any fixed 
h> l, 

PTli~moo {l<k<KTmax I[H*Dh(k)--~hl]2/FDhT(k)]- 11} 

=pli~Ino¢" \l<_k<_Kr( max I[QDI(k) - {kV(h)/N}]/FDhT(k)I).  

PROOF. The result follows as in Lemma 3.3 of Shibata (1980), after using 
(4.1), (3.6) and noting that  for all 1 < k < KT, 

(4.3) {FDhT(k)} -1 <_ M(N/k) ,  

where M denotes a bounded constant, and in the sequel, not necessarily the same 
constant each time. [] 

We show next that  Z D h k ( t )  on the right of (4.2) may be replaced by Zt+h, that  
is, QDl(k) by QD2(k), where 

(4.4) QD2(k) = N -1 T-hE Xt(k)zt+h 2 

t = g T  R ( k ) -  1 

LEMMA 4.2. Let Assumption 1 hold. Then, for all 1 <_ k <_ KT, and any 
fixed h > 1, 

N E  
T- -h  2] 

g - 1  E Xt(k){ZDhk(t)--Zt+h} 
t = K T  

2 

< M k f h(J)l 
j = k + l  

PROOF. The lemma follows from Anderson ((1971), p. 450), see also Lemma 
3.1 of Bhansali (1981), and the inequality (2.13). [] 

LEMMA 4.3. If Assumptions 1, 2, 3 with So = 4 and 4 hold, for any fixed 
h > l ,  

F 1 

O. 

PROOF. We have, on using (2.19) 

(4.5) {FDhT(k)} -1 ~_ {VD(h, k) --  g(h)}  -1 < M, 1 < k < KT. 
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It thus follows from Lemma 4.2 that,  with K = KT, 

E 
N -1  T-h 2 ] 

max E Xt(k){ZDhk(t) - Zt+h} /FDhT(k) 
I<k<KT 

-- -- t:KT 

_< i ~ E i -~ ~ X~(k){z~h~(t) - ~ MKg/T 
k = i  t=KT 

and converges to 0 as T --* oc. The lemma may now be established by using the 
Cauchy-Schwarz inequality and noting that  

(4.6) max ][R(k)-~l] ~ M, [] 
I<k<KT 

Now, consider QD2(k). On using the Cholesky decomposition, (2.18), for 
R(k) -1, we get 

(4.7) QD2(k) = E N-1 E Zt+hZmk(t-- u + t) { a 2 ( k -  u)} -1. 
u : l  t:KT 

We show that  Q m ( k )  may be further simplified by replacing z m k ( t  - u + 1) 
and a-2(k  - u) by et+l-u and a -2 respectively. Put  

(4.8) QD3(k) = E 0"-2 N-1 E Zt+hgt+l-u ' 
U:I t = K T  

LEMMA 4.4. I f  Assumptions 1 and 3 with so = 8 hold, for any fixed h > 1, 

2 

~,u=l v=k--u+l 

PROOF. The result follows from (2.13) and the results of Brillinger ((1975), 
p. 20); see also Lemma 3.2 of Bhansali (1981). [] 

LEMMA 4.5. tf Assumptions 1, 2, 3 with So = 8, and 4 hold, for any fixed 
h > l ,  

o. L I<k<KT I{QD2(k) - = 

PROOF. The lemma follows from (4.5) and Lemma 4.4 on noting that  

K 

k = l  
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and converges to 0 as T ~ c~ by Assumption 4. [] 

Let {zt} be defined by (2.6), but with t replacing n + h and let Rh-l(u) = 
E(ztzt+~) (t, u : 0, + l , . . . )  denote its covariance function, where 

h-l-I~l 

(4.9) Rh-l(u) = a 2 E b(j)b(j + [u[) (lul _< h -  1), 
j=o 

and Rh-l(u) ---- 0, lul h. 
For h = 1, the following temma agrees with Lemmas 3.2 and 3.4 of Shibata 

(1980), who, however, requires {xt} to be Gaussian. 

LEMMA 4.6. 
1 < k < KT, and every fixed h >_ 1, 

Let Assumptions 1 and 3 with So = 16 hold. Then, for all 

(4.10) 

(N/k)E{QDa(k)} = V(h), 
h-1 

E[{N QD3(k) -- kV(h)} 21 = 2k E {Rh-l(u)}2 + O(1) + O(k2/N), 
u------h+l 

g4cum{QD3(k), Qo3(k), QD3(k), QDa(k)} = kC1 + O(k4/N), 

E[{NQ13(k) - kV(h)} 41 = 12k2C2 + 48kC1 + O(k4/N), 

where, 

4 
tCI[-~ 48//u=-h+l ~ [Rh-l(U)[}~ 

h-1 
C2 = E { 1 -  ( lu l /k)}{1-  ([ul/g)}2Rh_l(u). 

u=-h+l 

PROOF. The lemma follows from Assumption 1 and the results of Brillinger 
((1975), p. 20); the details are omitted. [] 

Proposition 4.1 and Theorem 4.1 below generalise to h > 1, Proposition 3.2 
and Theorem 3.1 of Shibata (1980). 

PROPOSITION 4.1. Let Assumptions 1, 2, 3 with So = 16, and 4 hold. Then, 
for every fixed h > 1, 

PROOF. The result follows from Lemmas 4.1, 4.3, 4.5, 4.6 and an argument 
employed in the result (3.5) of Shibata (1980). [] 
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THEOREM 4.1. Let Assumptions 1, 2, 3 with So = 16, and 4 hold. Then, for 
any random variable, kDT(h), possibly dependent on Xl , . . . ,  XT, every fixed h > 1 
and for any 5 > O, 

lim P([ll~Dh{kDT(h)} --OhlI~/FDhT{k*DT(h)}] > 1 --5) = 1. 
T----* c<~ 

PROOF. The result follows from Proposition 4.1 and Definition 3.1. [] 

Theorem 4.1 provides an extension of Corollary 3.1 to the situation in which, 
for each fixed h > 1, the fitted autoregressive order, k = ~DT(h), say, is a random 
variable and its selected value is possibly based on the observations, x l , . . . ,  XT, on 
{xt}. For this situation, the theorem shows that with any order selection, kDT(h), 
QD{kDT(h)}, which, as discussed below (3.3), is the substitute mean squared error 
of prediction up to V(h), is never below F;ghT{kDT(h)} , in probability. In this 
sense FDhT{k*DT(h)} provides a lower bound for QD(k) when the autoregressive 
order is selected separately for each h by the direct method. We accordingly define 
an asymptotically efficient order selection for h-step prediction as follows: 

DEFINITION 4.1. For the direct method of fitting autoregression for h-step 
prediction, h _> 1, an order selection, kDT(h), is said to be asymptotically efficient 
if 

P T l i m ( [ l l ~ D h ( ~ D T ( h ) }  -- ~hfl2 /FDhT{k*DT(h)}]) = 1. 

5. Asymptotically efficient h-step order selection 

We now show that the autoregressive order selection by the Sh(k) criterion, 
(2.17), is asymptotically efficient in the sense of Definition 4.1, and that small 
changes to this criterion do not affect this property, and thus obtain appropriate 
generalisations to the case h > 1 of the corresponding results of Shibata (1980). 

For a fixed k > 1, let 

(5.1) 

We then have 

(5.2) 

T - h  

VDh(k)  = N -1 E {ZDhk(t)}2" 
t=KT 

Hence we may write, for all k = 1, 2 , . . . ,  KT, 

Sh(k) = N FDhT(k)+ gl(k)+ g2(k) + g3(k), (5.3) 

where 

g l ( k )  = 2 k { V D h ( k )  -- V(h)} + N V ( h ) ,  

g2(k) {k Y(h) gll~Dh(k ) 2 = - -  - -  V D h ( k ) l I R ~ ( k ) } ,  

g 3 ( k )  = N{?Dh(k) -- VD(h, k ) } .  
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Proposi t ion 4.1 shows tha t  as compared with the  first term, the fourth te rm 
to the  right of (5.3) is small, uniformly in 1 < k < KT.  Lemma 5.1 below examines 
the second term. 

LEMMA 5.1. I f  Assumpt ions  1, 2, 3 with So = 16, and 4 hold, for  any fixed 
h > l ,  

p Tlimo~ [l_<l~I_<8~T Ik{VDh(k)--  V ( h ) } / { N F D h T ( k ) } I ]  -= O. 

PROOF. On using (5.2), we may write 

(5.4) If~oh(k) -- V(h)l  <_ 114oh(k) -- '~Dh(k) II&h(k 

+ If/Dh(k) -- VD(h,k) l  + IVD(h, k) -- Y(h) l .  

Now, by Lemma 3.3 of Shibata  (1980) and our Proposi t ion 4.1, 

(5.5) p lim max [kll@Dh(k ) -- ODh(k)ll 2 / {NFDhT(k ) } ]  = O. 
T---*~ I < k < K T  h(k)  

Also, since E[{f/Dh(k) -- Vm(h, k)} 2] = o ( g - 1 ) ,  uniformly in 1 < k < KT,  

K 

E E [ { f / D h ( k ) -  VD(h ,k )}  2] <_ M K T / N  
k = l  

and converges to 0 as T --* c~. Thus, in view of (4.5), 

(5.6) p l i r n  max [ k l f / D h ( k ) - V D ( h , k ) l / { g F D h T ( k ) } ] = O .  
I <k<KT 

The lemma now follows from Assumption 2 and the inequality (4.5). [] 

Consider now the last te rm to the  right of (5.3). If {k~T } is a sequence of 
positive integers such that  k~T ~ oc, as T --+ cx), then for every 1 < k <_ K T  and 
each fixed h > 1 we may write 

(5.7) [f/Dh(k~T ) -- VD(h, k~T)] -- If/oh(k) -- VD(h, k)] 

= 2['~Dh(k~T) -- "~Dh(k)]'[&h(gT) -- ah(gT)]  

+ ['~Dh(k~T) -- @Dh(k ) ] ' {Rh(gT)  -- R ( K T ) }  
• + 

where ODh(k~T ) is considered as a K T  × 1 vector with undefined entries set equal 
to zero. We show below that  the  contr ibution of the two terms to the  right of (5.7) 
is asymptot ical ly  negligible. 

OC. 

and 

LEMMA 5.2. Let Assumpt ions  1, 2 and 4 hold and that k~T ---+ co, as T --+ 
Then, for  every fixed h >_ 1, as T -+ oc, 

max  I{@Dh(k~T) -- ODh(k)} ' {&h(KT)  -- a h ( K T ) } / { F D h T ( k ) } l ,  
I <k<KT 
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m a x  
I <k< KT 

I{ODh(k~T) -- ODh(k ) } ' { t th (KT)  -- R ( K T ) }  

• { O D h ( k ~ T )  + O D h ( k ) } / { F D h T ( k ) } l  

converge in probability to zero• 

PROOF. The result follows from (4.5) and the inequality (2.13) by noting 
that 

E{Idh(u) -- R(h - 1 + u)l } ~ M T  -1/2, 

E { [ D ( T ) ( u , v )  - R ( v  - u)l } < M T  -1/2, 
I ~_u~_KT, 

1 < u, v <_ KT, 

where dh ( u ) denotes t he typical element of &h (KT) and D (T) ( u, v) t hat of ~lh ( KT ). 
[] 

We now establish the asymptotic efficiency of the order selected by the Sh(k) 
criterion for all fixed h > 1. We also show that small changes to the Sh(k) criterion 
do not affect the asymptotic efficiency of the selected order. 

Let k°DT(h) be the order selected by minimising a new criterion, 

(5.8) S~(k) = {N + 2k + ~hT(k)}VDh(k), 1 < k < KT, 

in which ~'~hT(k) denotes some function of k. 
The following theorem generalizes Theorems 4.1 and 4.2 of Shibata (1980) to 

the case h > 1: 

THEOREM 5.1. Let Assumptions 1, 2, 3 with So = 16, and 4 hold, and that 
~hT(k) in (5.8) is such that 

i) PTlim ~ max I~hT(k)l /N} = 0 ;  [ I~k~_KT 

ii) plim Ii~km<_aXKT I[~hT(k)- ~hT{k*DT(h)}]/[NFDhT(k)] } 
% 

O. 

Then for every fixed h >>_ 1, 

a) plim[ll~Dh{kDT(h)}--Oh,l~/FDhT{k*DT(h)}] = 1; 

b) the selection, k°DT(h), is asymptotically efficient. 

PROOF. To establish a), observe that for all T = 1, 2 , . . . ,  

P[Sh{kDT(h)} <_ Sh{k*DT(h)}] = 1• 

By (5.3), however, this result implies that 

P([FDhT{kDT(h)} --FDhT{k*DT(h)}] ~-- ZhT) = 1, 
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where 
3 

zh~ = N -1 ~{9,(kS~(h)) - gi(~.~(h))}. 
i = 1  

Now, Proposition 4.1 and Lemmas 5.1 and 5.2 imply that, as T ~ ec, Z h T  "---) 

0, in probability. It follows therefore by a standard argument that  for any 5 > 0, 

lim P([FDhT{]~DT(h)}/FDhT{k*DT(h)}] <_ 1 + 6) = 1. 
T----* oo 

The result a) now follows from Proposition 4.1 by deducing first that this last 
result and the definition of k*DT(h ) imply that 

P Tlim [FDhT{klT(h) } /FDhT{k*DT(h) }] = 1. 

Also, b) follows from a), conditions i) and ii) and Proposition 4.1; see also 
Theorem 4.2 of Shibata (1980). [] 

As examples of the alternative criteria whose asymptotic efficiency also follows 
from Theorem 5.1, we have the following: 

1) The h-step Final Prediction Error Criterion: 

(5.9) FPEh(k )  = VDh(k)(1 + k/T)(1 - k /T)  -1 (k = O, 1 , . . . ,  KT); 

2) The h-step information criterion 

(5.1o) AICh(k)  = T In VDh(k) + 2k (k = 0, 1 , . . . ,  KT), 

which, for h = 1, reduce to the FPE and AIC criteria of Akaike (1970, 1973) 
respectively; see also Bhansali (1993). 

6. Bound for the mean squared error of the plug-in method 

Let &(k) -- [&k(1),..., 5k(k)] = ~Dl(k)  be the k-th order least-squares esti- 
mate of the autoregressive coefficients, and denote the corresponding theoretical 
parameter by a(k) = [ak(1),.. .  ,ak(k)]' = (I)Dl(k), k = 1 , . . . ,  KT. We also write 
~2(k) = yv(1,  k). 

Now, put 

(6.1) 
-a(k)' ] 

~(a) = L / ; - ; l O 2 - 1 J  ' 

where Ik-1 and Ok-1 respectively denote an identity matrix and a vector of zeros 
of dimension k - 1, and define r(k) analogously but with a(k) replacing 6(k) in 
(6.1). 
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As in Yamamoto (1976) and Lewis and Reinsel (1985), the k-th order plug-in 
estimator, ~ph(k)  = [¢Phk (1) , . . . ,  CPhk (k)]', of the h-step prediction constants is 
given by, with ek = [1, 0 , . . . ,  0] ~, 

(6.2) ~ph(k)  = -e~F(k)  h (h >_ 1), 

the corresponding theoretical parameter, ¢Y~Ph (k) -~ [¢Phk(1), '" ,  CPhlz(k)]' is de- 
fined analogously but with r(k) replacing F(k) on the right of (6.2). 

Denote the k-th order plug-in predictor of Xn+h, h > 1, based on {xn, 
x n - ] , . . . ,  Xn-k+l} by 

k 

(6.3) 2phk(n) = - ~ ¢phk(j)xn+l-j .  
j = l  

The corresponding h-step prediction error is denoted by 

zphk (n) ---- Xn+h -- 2Phk (n) 

and the mean squared error of prediction by 

Vp(h, k) -~ E[{ZPhk(n)}2]. 

We have, as in Bhansali (1981), 

f (6.4) Vp(h, k) -- IBh_l,k(#)121Ak(#)12f(#)d#, 
7~ 

where, with tOk(j) = e'kr(k)¢ek (j >_ 1),/3k(0) ---- 1, Bh-l ,k(#) denotes the transfer 
function of the [3k(j) (j = 0, 1 , . . . ,  h - 1) and Ak(#) that of the ak(j), ak(O) = 1. 

We note that if {x~} is a finite autoregressive process of order m, m < k, then, 
for all h > 1, 

ODh(k) = Oph(k) = O(k, h), 

where/b(k,  h) = [¢h(1), . . . ,  Ch(k)]' and Ch(J) = 0, j > m, and now ~ph(k) ,  pro- 
vides an approximate maximum likelihood estimator of O(k, h), and it is asymp- 
totically efficient for all h > 1; by contrast, ~Dh(k) is asymptotically inefficient 
for h > 1. Under Assumption 2, however, ODh(k) may be different from Oph(k) 
and for all k > 1 and each fixed h > 1, 

(6.5) Vp(h, k) >_ VD(h, k) >_ V(h). 

Moreover, since, as k --~ c~, ak(j) --* a(j), for every fixed j >_ 1, CPhk(j) --~ 
¢(j)  and Vp(h, k) -+ Y(h), for all h > 1. 

Now, as in Section 3, suppose that the process to be predicted, (Yt}, is inde- 
pendent of and has the same stochastic structure as {x~}. Let ~Iphk(n) be defined 
by (6.3) but with yi replacing xi, i = 1 , . . . ,  k and let 

k 

yphk(n) ~ -- Z ~Phk(8)Yn÷l-s 
s = l  
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be the corresponding plug-in estimate of Yn+h, where the Cehk(S) are based on 
x : , . . . ,  XT and are calculated as in (6.2). 

As in (3.2), the mean squared error of prediction of 9phk(n) is given by 

Ey[{~)Phk(n) --yn+h} 2] = V(h) + Ex{Qp(k)} 

where 
Qp(k) = IIg~ph(k) -- ~htl~. 

Moreover, we now have, 

(6.6) Qp(k) = {Vp(h, k) - V(h)} + ll4ph(k) -- Oph(k)ll2(k) + w(k), 

where 

(6.7) w(k)  = 2 { V p h ( k )  - V h } ' R { C p h ( k )  -- V ~ h ( k ) ) .  

The probability limits of the stochastic terms on the right of (6.6) and (6.7) 
may be evaluated as in Section 3 and are given below in Proposition 6.1; for 
related results see Lewis and Reinset (1985) and Bhansali (1993). To save space, 
an explicit proof of this proposition is not given. 

PROPOSITION 6.1. Under the assumptions stated in Proposition 3.1, for 
each fixed h > 1, 

(6.8) 

(6.9) 

p l i m ( N / k T ) l t 4 p h ( k T )  -- @ph(kT)ll2R(k) = V(h),  

p ~ i m ( N / k ~ ) t w ( k ~ ) l  = O. 

Now, for k = 1, 2 , . . . ,  KT, let 

(6.10) FphT(k) = {Vp(h, k) - V(h)} + (k/N)V(h). 

We have the following corollary, which shows that, if the initial fitted order 
k = kT, of the plug-in method is a function of T such that kT ~ cxD, as T ~ co, 
but  sufficiently slowly, then, its substitute mean squared error of prediction up to 
V(h), Qp(k), asymptotically behaves like FphT(k) for each fixed h _> 1. 

COROLLARY 6.1. Under the assumptions stated in Proposition 6.1, 

It may be observed that Proposition 6.1 and Corollary 6.1 establish for the 
plug-in method results parallel to Proposition 3.1 and Corollary 3.1 established 
earlier in Section 3 for the direct method. Moreover, for the plug-in method (6.10) 
affords an interpretation similar to that  of (3.6): thus, the second term to its 
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right provides a measure of the variance of ~ p h ( k )  for estimating Oph(k) and the 
first term measures the bias in using a finite k-th order predictor in place of one 
based on the infinite past. Now, however, an interesting contrast between these 
two methods emerges. Proposition 6.1 shows that asymptotically the direct and 
plug-in methods have the same variance, but, by (6.5), the bias of the plug-in 
method is never smaller. Thus, for all fixed T and h, and each k > 1, 

(6.11) Fphr(k) > FphT(k). 

We now extend this last comparison to the situation in which the initial 
selected order, k, of the plug-in method is a random variable whose value is possibly 
selected by an order determining criterion. The basic approach we take for this 
purpose is to derive a lower bound for the mean squared error of prediction of the 
plug-in method applicable to this situation and then to compare the magnitude of 
this bound with that  derived earlier in Section 4 for the direct method. 

We first introduce the following definition, which parallels Definition 3.1, but 
applies to the plug-in method. 

DEFINITION 6.1. Let {k~T(h)} be a sequence of positive integers which at- 
tains the minimum of FphT(k) for each T and a fixed h _> 1, that is, 

k*pT(h ) = argmin FphT(k).  
I ~ k ~ K T  

Like k*DT(h), k*pT(h ) --~ oc, as T ---* oo, since if KT --~ cx~ but K T / T  --~ O, 
FphT(KT)  --+ O. 

The following theorem establishes for the plug-in method a result similar to 
that established in Theorem 3.1 for the direct method since it shows that, for each 
h __ 1, the sequence k*pT(h ) asymptotically yields the values of k that minimises 
@p(k). 

THEOREM 6.1. Let Assumptions 1, 3 with So = 8 and 4 hold. Then, for any 
{kT} such that 1 ~ kT ~__ KT,  any 5 > 0, and each h >_ 1, 

lim P([ll '~ph(kT) -- Ohll2/FphT{k*pT(h)}] >_ 1 -- 5) = 1. 
T----* cx~ 

However, k*pT(h), like k*DT(h ) is unknown in practice as it is a function of 
the unknown parameters V(h)  and CI, h. Below, we extend Theorem 6.1 to the 
situation in which k = kPT, say, may be chosen by FPE, AIC or related criteria; 
the latter include, with a = 2, and h = 1, the criteria to be introduced in Section 7 
by (7.3), and the former two are given by (5.9) and (5.10), but with h = 1. 

Put  fi[ = T - KT,  

T - 1  

~Z(k ) = ( ~ ) - I  E ZDlk(t + 1)Xt(k) ,  
t : K T  
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and for u ,v = 0 , 1 , . . . , h -  1, let 

(6.12) 
(6.13) 

Hu~(k) = r (k)h- l -~R(k)r (k)  'h-~-~, 

Luv(k) = R(k)-lHuv(k)R(k) -1, 

W~(k)  -- Y(k)'£~v(k) Y(k), 
W ~ ( k )  = Y(k) 'L~(k)  Y(k), 

where Y ( k )  is obtained from IZ(k) by replacing ZDlk(t+ 1) with et+l and L ~ ( k )  
from Luv(k) by replacing R(k) -1 with R(k) -1, and R(k) = Rl(k)  is as in (2.15) 
but with h = 1. 

We may write (Bhansali (1981)), 

(6.14) 
h - 1  h - 1  

u = 0 v = 0  

where/3k(j) = e~r(k)Jek (j = 1 ,2 , . . .  , h -  1) and/3k(0) = 1. 
The following lemma shows that for each fixed (u, v) the error in replacing 

W~. (k) by W I ~  (k) is asymptotically negligible. 

LEMMA 6.1. Let Assumptions 1, 2, 3 with so = 4 and 4 hold. Then, for 
every fixed u, v = O, 1 , . . . ,  h - 1 and each fixed h > 1, 

p lim{ 
I~_k~_KT 

I[Wluv(k) - Wuv(k)l/Fp~r(k)l } = 0 .  

PROOF. The argument is in two parts: the first step is to show that Y(k) 
may be replaced by Y ( k )  on the right of (6.12), and the second to show that  
L~.(k) may also be replaced by L~v(k). To save space the details are omitted, 
but the method used parallels that given earlier in the proofs of Lemmas 4.1 and 
4.2. [] 

We have, for u,v  = 0, 1 , . . . , h -  1, 

E { W I ~ ( k ) }  = t r {a2R(k ) - lHuv(k )}  = W2uv(k), say. 

The orders of magnitude of the variance and the fourth central moment of 
W I ~  (k) are evaluated in the following lemma. 

LEMMA 6.2. Let Assumptions 1, 4 and 3 with so = 16 hold. For every 
u, v = 0, 1 , . . . ,  h - 1, and each h >_ 1, uniformly in 1 < k < KT, 

(6.15) E[{NWluv(k) - W2uv(k))  2] = O(k) + 0(k2/1~); 
N 4 cum{Wlu~(k), Wlu~(k), Wluv(k), Wluv(k)} = O(k 2) -~- O(k4/~J); 
g[{NWluv(k) - W2uv(k)} 4] = O(k 2) Jr- O(k4/~[). 
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PROOF. The lemma follows by applying the rules for evaluating cumulants 
given by Brillinger ((1975), p. 19). [] 

We now show that W l ~ v ( k )  may be replaced by W2~.(k). 

LEMMA 6.3. Let  A s s u m p t i o n s  1, 2, 3 with So -- 16, and 4 hold. Then ,  f o r  

u, v = O, 1, . . . , h - 1, and each f ixed h > 1, 

[ p l i r a  max I { W ~ u . ( k )  - W 2 ~ , ( k ) } / F p h T ( k  = O. 
T--~e~z I <_k<_KT 

PROOF. The temma follows from Lemma 6.2; see also result (3.5) of Shibata 
(1980). [] 

In the following lemma, an expression for W2uv(k) is obtained by using the 
Cholesky decomposition (2.18) for R ( k )  -1.  

LEMMA 6.4. For every u, v = O, 1 , . . . ,  h -  1, each f ixed h > 1, and all k > h, 
with s = h - l - u,  t = h - l - v, k = k - m a x ( s , t )  - l ,  as k --* cx~, 

(6.16) cr-2W2u,(k) = M + / _  { I A j ( ~ ) 1 2 / a 2 ( j ) }  e x p { i l s -  t l # } f ( t t ) d p .  
7r 

PROOF. We have, on using (2.18), for all u, v 

(6.17) a - 2 W 2 ~ , ( k )  = tr{  G ( k ) t H ~ v ( k ) G ( k ) E ( k ) - l } .  

The lemma may now be established by noting that the submatrix in the bot tom 
(k - s) x (k - t) right hand corner of Hu~(k )  has R ( p  - q) as its typical element 
(p = 1 , . . . ,  k - s; q = 1 , . . . ,  k - t), and partitioning the matrices G ( k ) ' ,  G ( k )  and 
E(k) -1 analogously but ensuring that the dimensions of the relevant submatrices 
of the matrix product on the right of (6.17) match. [] 

An implication of Lemma 6.4 is that a uniform bound, valid for all 1 < k < 
KT,  for the mean squared error of the plug-in method may not take a convenient 
form; a useful approximation may be obtained, however, by restricting the choice 
of k to the range kT < k < K T  , where kT --~ oo as T ---* oo is a sequence of positive 
integers. This restriction may be justified because the order selected by AIC and 
related criteria have this property. 

LEMMA 6.5. Let  A s s u m p t i o n s  1 and 3 with So = 4 hold. For  u, v = 0, 1 , . . . ,  
h - 1, each f ixed h > 1 and every  divergent  sequence { k T } ,  with 5uv = 1, u = v, 
5~v -- O, u T~ v, as T --* oc, 

(6.18) I{W2~v(k) - k a 2 6 ~ } / { N F p h T ( k ) } l  
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converges to 0 uniformly in kT < k < K T .  
I f  also Assumpt ions  2, 3 with So = 16 and 4 hold, 

(6.19) i) p l i m  J~k(U) -- ~k(U)J = O, uniformly in 1 < k ~ KT; 

(6.20) ii) [~k(u) -- b(u)J --~ 0, uniformly in kT < k < KT.  

597 

PROOF. The result (6.18) follows directly from Lemma 6.4, while (6.19) and 
(6.20) are established recursively in j = 1, 2 , . . . ,  u on noting that  by Proposi t ion 

4.1, see also Shibata  (1981), k ~-]s=l ]~tk(s) - ak(s)J ~ 0, in probability, uniformly 
in 1 < k < KT; ]/3k(1) -- b(1)] -- Jak(1) -- a(1)] -~ 0, uniformly in kT < k < KT.  [] 

A bound  for the h-step mean squared error of prediction of the plug-in method  
is given in the following two results which for h = 1 agree with Shibata  (1980) but  
hold wi thout  requiring that  kT~ o r  ~PT, is a divergent sequence. 

PROPOSITION 6.2. I f  Assumpt ions  1, 2, 3 with So -- 16, and 4 hold, 

1 [ { l l 4 p h ( k )  -- V II /FphT(k)} -- 1]1 

converges to 0 in probability, uniformly in kT ~_ k < KT ,  for  any divergent se- 
quence { kT } and each fixed h >_ 1. 

PROOF. For any divergent sequence, {kT}, as T ~ cx), 

I [ l l&Ph(k)  -- OPh(k)ll (k) - {kV(h)lN}]lFphT(k)l 

converges to 0 in probability, uniformly in kT ~_ k ~_ t (T ,  by (6.14) and Lemmas 
6.1-6.5; also, since, {Vp(h,  k) - V(h)} -~ 0, as k --* co, uniformly in kT < k < KT ,  
so does Iw(k) /FphT(k)[ .  [] 

THEOREM 6.2. Let Assumpt ions  1, 2, 3 with So = 16, and 4 hold. For any 
random variable, k P T ,  possibly dependent on x l , . . . ,  XT, and such that k p T  ~ 00, 
as T ~ oc, for  any b > O and each h > l, 

lim P ( [ ] ] ~ P h T ( k p T )  - -  Oh]J2R/FphT{k*pT(h)}] >_ 1 - -  5 )  = 1.  
T--+ oo 

PROOF. The result follows from Proposi t ion 6.1, Definition 3.1 and the as- 
sumpt ion tha t  kPT --~ (x), as T ----+ oo. [] 

Theorem 6.2 implies tha t  when k is a random variable, the subst i tu te  h-step 
mean squared error of prediction up to V(h )  of the plug-in method,  Q p ( k ) ,  is 
never below FphT{k*pT(h)} , in probability. For h = 1, as discussed earlier, the 
bound  is a t ta ined asymptot ical ly  if k is selected by AIC, or an equivalent criterion. 
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If, however, the same value of k is used for multistep prediction, the actual mean 
squared error may be greater than the bound; an example is given in Section 7. 

A second difficulty with the plug-in method  is tha t  for each h, FphT{k*pT} > 
FDhT{k*DT}, the asymptot ical ly at tainable bound  for the direct method.  Two 
qualifications apply, however, to this comparison. First, the results are asymptot ic ,  
and with a finite T, the variance term for the direct method  can be expected to 
be larger than that  for the plug-in method;  see Bhansali (1993). Second, for an 
A R M A  model, the difference between their bias terms need not necessarily be 
large, an example is given in Section 7. 

7. Examples and extensions 

Suppose that  {xt} is a moving average process of order 1, 

(7.1) xt  = ~, - / 3 ~ t - 1 ,  IZl < 1, 

where {et} is as in Assumption 1. 
We have, ak(j) =/3J(1 - /32k-2J+2) / (1  - ~32k+2), j = 1 , . . . ,  k, a2(k) = a2(1 - 

/32k+4)/(1 -/32k+2) see Whit t le  (1963). Hence, for one-step prediction, with k = 

1,.. . , /~T, 

FD1T(k) = Fp1T(]~) = [a2fl~k+2(1 - / 3 2 ) / ( 1  - f12k+2)] + (k/N)a2. 

If h = 2, we have, for the direct method,  with all k > 1, 

¢DUk(j) =-- 0 (j = 1 . . . .  , k), 

vD(2,  k) = v ( 2 )  = R(0) = ~ ( 1  + Z~), 
F~2~(k) = (k/N)R(0); 

and from (6.4) for the plug-in method,  with/3k(1) = - ak (1 ) ,  

Vp(2, k) = [1 + {/~k(1)}2]a2(k)+ 2~k(1){ak(k)}2R(1). 

Hence, for h = 2, 

FphT(k) -- FDhT(k) = O-2~2k+2(1 --/32)2(1 -- /32k)/(1 --/32k+2)3 > 0. 

If the predictive efficiency of the direct method  is judged by the ratio e(h, k) = 
VD(h, k)/Vp(h, k), h > 1, we have 

e(2, k) = 1 - O(~  2k+2) 

converges exponentially to 1 as k --~ cx~. For k = 1, 

e(2, 1) = (1 +/3~)4/{~4 + (1 +/3~)4}. 

It is seen that ,  e(2, 1) = 0.975, if /3 = 0.5; e(2, 1) = 0.946, if /3 = 0.8, and the 
predictive efficiency gain of the direct me thod  is not necessarily substantial .  
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A related question concerns whether or not the same value of k minimises 
FphT(k) for different values of h. That this is not so may be gleaned by a com- 
parison of FpIT(k) and Fp2T(k), which shows that the values of k minimising the 
former and the latter do not always coincide. To illustrate this point, we computed 
the values of these two functions for T = 100, 200, 500, 1000, KT = 30 and several 
different value of/~. For each (T, t3) combination, the values of k that minimised 
FphT(k), h ---- i and 2 were determined. To save space, detailed results are omit- 
ted, but suffice to say that for ~ < 0.5, the same value of k was selected with h = 1 
and h = 2 and for all choices of T. For f~ _> 0.8, however, there was a significant 
discrepancy between the two orders selected. For example, with T = 1000 and 
/3 = 0.8, the orders selected with (h = 1, h -- 2) were (10, 7), which increased to 
(17, 8), for/~ = 0.9 and to (23, 8), for/3 -- 0.95. 

One reason why in the moving average example above the gain in predictive 
efficiency due to the direct method appears small is that the autoregressive coeffi- 
cients, a(j), decrease to 0 at an exponential rate as j -~ ¢c; the difference between 
Vp(h, k) and VD(h, k) then vanishes extremely rapidly as k increases and even for 
moderately small values of k, the numerical value of this difference is negligible. 
It may be anticipated that this would be so for all "short-memory" time series 
models since for this class of models, by definition, the difference between Vp (h, k) 
and VD(h, k) vanishes exponentially as k -~ c~. 

Stoica and Nehorai (1989) consider multistep prediction of observations simu- 
lated from two linear and two non-linear models by fitting an autoregressive model 
to the simulated data, but with the coefficients estimated by minimising a linear 
combination of the squared h-step prediction errors, (2.14), h = 1 , . . . ,  S, the max- 
imum lead time. They report that if the second-order properties of the simulated 
model are well approximated by the fitted autoregressive model then the predic- 
tive efficiency gain by using this 'multistep error' method is small in comparison 
with the usual plug-in method; if, however, an underparametrized model is used 
for prediction then the gain in predictive efficiency can be considerable. 

We note that this finding accords with the discussion given above since in 
the former situation k may be expected to be sufficiently large to ensure that  
the difference between Vp(h, k) and VD(h, k) is small, but  the converse is likely 
to hold in the latter situation when for small values of k the difference can be 
substantially in favour of the direct method. It should be pointed out nevertheless 
that the 'multistep error' method used by these authors is not the same as the 
direct method examined in this paper, since separate model selection for each lead 
time has not been considered, rather the same model is used at each lead time but 
with reestimated parameters and the parameter estimation technique employed 
is also somewhat different from that described in Section 2. In our view, under 
the hypothesis that the model generating an observed time series is unknown, 
the question of model selection for each lead time cannot be separated from that 
of estimation of the multistep prediction constants and they should be considered 
together, since the forecasts may be improved by doing both simultaneously instead 
of only the latter. 

An application of the autoregressive model fitting approach for prediction of 
a 'long-memory' time series has been given by Ray (1993) in whose simulations a 
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fractional noise process is forecast up to 20 steps ahead by the plug-in method, but 
allowing k to vary over a grid of values without recourse to an order determining 
criterion. Her results endorse the use of autoregressive models for predicting a long- 
memory process, but indicate a need for considering models of different orders at 
different lead times, as envisaged in the direct method. 

To illustrate the use of these two methods for multistep forecasting of an actual 
time series, we consider the first 264 observations of the Wolf Annual Sunspot 
Series, 1700-1963, as given by Wei ((1990), pp. 446-447). Priestley (1981) observes 
that this series is unlikely to have been generated by a linear mechanism, and, 
therefore, the present example should point to how the methods might behave 
with possibly non-linear data. 

The plug4n method was applied by fitting an initial 9th order autoregression, 
the model selected by the FPE2 criterion of Bhansali and Downham (1977), and 
the direct method by the Sh(k) criterion, (2.17)--the orders of the different au- 
toregressive models selected by this criterion for each h = 1, 2 , . . . ,  20 were 9, 9, 17, 
17, 16, 15, 14, 13, 12, 11, 2, 3, 3, 3, 7, 6, 11, 10, 9, and 8, respectively. Thus, for 
this series, the autoregressive order selected varies considerably with the lead time, 
h, indicating, first, that the series is highly predictable from its own past--even 
up to twenty steps ahead, and, secondly, that a finite-order autoregressive process 
probably does not provide an adequate representation for the generating structure 
of the series. An explanation for why the selected autoregressive order changes so 
much with different h is, however, not readily given, but it could be related to the 
highly periodic and possibly non-linear mechanism generating the data. It may be 
noted also that the estimates (2.15)-(2.16) do not use the same set of observations 
for different h; nevertheless, under the stationarity assumption, and with T -- 264 
observations in total, the possible effects of missing out a small number of 'recent' 
observations may not be critical. 

The forecasts obtained by the plug-in and the direct methods of the Sunspot 
series for 1964-1983 were compared with the recorded values. 

As a measure of the forecast accuracy, we use the mean absolute percentage 
error, 

(7.2) ] M A P E ( j )  = (20) -1 ~ IV(h) - Y j ( h ) l { Y ( h ) }  -1 × 100 
h = l  

(j = 1, 2), 

where ]Yl (h) denotes the h-step forecast obtained by the direct method for the year 
1963 + h and ]Y2(h) that by the plug-in method and Y(h) denotes the observed 
value for that  year. 

The actual numerical values of the metric, (7.2), were computed for both these 
methods and are shown below: 

Direct Method: 21.9%; 

Plug-In Method: 23.4%. 

The direct method is seen to have a slightly smaller mean absolute percentage 
error in this example. Nonetheless, for the empirical finding to conform with 
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the earlier asymptotic results, this difference should be statistically significant, a 
question we do not pursue here. 

The Sh(k), AICh and FPEh criteria may be viewed, see Bhansali and 
Downham (1977), as special cases with a -- 2 of the following extended crite- 
ria in which a > 1 denotes a fixed constant: 

(7.3) 
S(h'~)(k) = (N + ak)VDh(k); FPEh,~(k) = Vnh(k)(1 + ak/N);  

AICh~(k)  = T ln  f/Dh(k) + ak. 

Let /¢(DaT)(h) denote the order selected by minimising any of the extended 
criteria in (7.3). As in Shibata (1980), if the a(j) decrease to 0 exponentially as 
j --* c~, the selected order would still be asymptotically efficient in the sense of 
Definition 4.1, but it would not be if the a(j) decrease to 0 geometrically. 

Bhansali (1986) defines, with h = 1, a class of generalized penalty functions 
for which the criteria (7.3) are asymptotically efficient with each fixed a. The 
argument given there extends to h > 1 by defining a generalized risk function, 

F(D~)T(k) = {VD(h, k) - V(k)} + at(k /N)V(h) ,  

in which a t > 0 is a fixed constant. It readily follows from Theorems 4.1 and 5.1 
that  with a = a t + 1 and each h > 1 the order selected by any of the criteria (7.3) 
is asymptotically efficient with respect to this extended risk function, provided 
a > 1 remains fixed as T --* c~ and Assumptions 1, 2, 3 with So = 16 and 4 hold. 
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