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Abstract .  For independent random variables X and Y, define S --- X + Y. 
When the conditional expectations E[g(X) I S] - a(S) and E[h(X) I S] - b(S) 
are given, then under certain assumptions, the density function of X has the 
form of u(x)k(a)e ~ ,  where u(x) is uniquely determined by the functions a(.) 
and b(.). 
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1. Introduction 

Let X, Y be two independent random variables and g(.), h(.) be two functions. 
Suppose that  

E[g(X)  ] S] = a(S) and E [ h ( X )  I S] = b(S), 

where S = X + Y, then for several special forms of g(.), h(.), a(.) and b(.), the 
distributions of X and Y have been proved to be members of the one-parameter 
exponential family. Studies on this topic can be found in Kagan (1993), Li et al. 
(1994), Wesolowski (1989) and the references given therein. Some related results 
are given in Wang et al. (1995). 

In this paper, we give a general result for discrete distributions which is a 
complement to some results given in Kagan (1993). Our result can also be con- 
sidered a generalization of Theorem 1 given in Patil and Seshadri (1964) for the 
discrete case. 

* Now at Department of Biostatistics, University of Rochester, 601 Elmwood Ave., Rochester, 
NY 14642, U.S.A. 
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2. The main results 

THEOREM 2.1. Let X and Y be two independent discrete random variables 
whose sum, denoted by S, has positive probabilities on and only on the set N =- 
{0, 1 , 2 , . . . , N } ,  where 1 < N < +oo. We further assume that X and Y have 
positive probabilities on the set {0, 1}. Suppose that 

(2.1) E[g(X) ] S] = a(S) and E[h(X) IS] = b(S), 

where the functions g(.), h(.), a(.) and b(.) satisfy 

( 2 . 2 )  [ g (o )  - a ( s ) ] [ h ( s )  - b ( s ) ]  - [ h ( 0 )  - b ( s ) ] [ g ( s )  - a ( s ) ]  # 0,  

for l < s < N, and 

(2.3) g(0) - a ( 1 )  # 0 .  

Then, for every x C N ,  P r ( X  = x) = u(x)k(a)e ~x, where a = ln[Pr(X = 
1 ) / P r ( X  = 0)], and u(x) is determined by consistent values of functions g(.), h(.), 
a(.) and b(.). 

PROOF. Let P(x)  =- P r ( X  = x) and Q(y) - e r ( Y  = y). From the as- 
sumptions in the theorem, we can easily conclude that  X and Y have positive 
probabilit ies on and only on two subsets of N .  From the definition of conditional 
expectation, for s _< N,  we have the following linear system 

(2.4) 

8 

E [ g ( x )  - a(s)]P(x)Q(s - x) = 0 
x = 0  

8 

E [ h ( x )  - b(s)]P(x)Q(s - x) = O. 
x = 0  

Choose s = 1, and let t =_ P(1)/P(O). We get P(1)  = cltP(O), and Q(1) = 
dltQ(O), where 

g(1) - a(1) 
Cl = 1, and dl = - 

g(0) - a(1)" 

Now we complete the  proof by induction. Suppose tha t  for i < n - 1 < N,  
we have P(i) = citip(o) and Q(i) = ditiQ(O), where ci and di are uniquely 
determined. Next,  by choosing s = n, we can rewrite (2.4) as 

( 2 . 5 )  

[g(O) - :(n)]P(O)Q(n) + [g(n) - a(n)}P(n)Q(O) 

-t- ~ [g(i) - a (n ) ]P (O)Q(O)dn_ ic i t  ~ -- 0 

[ h ( 0 ) - b ( : ) l P ( O ) Q ( n ) + [ h ( n ) - b ( n ) ] P ~ ) Q ( O )  

+ ~=~1 [h(i) -b(n)]P(O)Q(O)d,~_ici t  -- O. 
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Divide both  equat ions by P(0)Q(0) .  Then, by assumption (2.2), this sys tem has 
a unique solution for P(n)/P(O) and Q(n)/Q(O). Therefore, 

(2.6) P(n) = c~tnP(O) and Q(n) = dnt~Q(O), 

where cn and dn are uniquely determined.  By induction, (2.6) holds for every 
N integer n satisfying 1 < n < N.  Let a -- lnt .  Since ~ x = o P ( x )  = P(0)(1  + 

E N  ~x~ N x=l c~e ) = 1, then P(0)  -- 1/(1 + Y~x=I c~e~) • Finally, by defining k(a) - 

1/(1 + 2_,~=1 c~e ), we get the desired result. 

Remark 2.1. The proof  provides a method  to compute  P(x)  and Q(y) when 
the functions g(.), h(.), a(.) and b(-) axe given. Note tha t  an and dn are uniquely 
determined by the functions g(.), h(.), a(.) and b(-). Hence if N < +oc ,  then for 
some n < N,  we may have c~ -- 0 and dn -- 0. 

Mult ivariate extension of this result is given in a technical report  available 
from the authors.  

As an application of the above result, we give the following corollary. 

COROLLARY 2.1. Let X ,  Y ,  S and N be defined as in Theorem 2.1. Suppose 
that 

(2.7) E ( X  I S) = a(S) and E ( X  2 [ S) = b(S). 

Then, for every x e N ,  P r ( X  : x) = u(x)k((~)e ~x, where a = ln[Pr(X = 
1 ) / P r ( X  = 0)], and u(x) is uniquely determined by consistent values oy funetions 
a(.) and b(.). 

PROOF. This is a special case of Theorem 2.1 with g(x) = x and h(x) = x 2. 
Therefore, we only need to verify tha t  conditions (2.2) and (2.3) axe satisfied. In 
fact, 

g(0) - a ( 1 )  = - a ( 1 )  = - E ( X [ S  = 1) 

= - P r ( X  -- 1 ) P r ( Y  --- 0 ) / P r ( S  -- 1) < 0, 

and hence (2.3) is satisfied. Next,  

[9(0) - a(s)][h(s) - b(s)] - [h(0) - b(s)][g(s) - a(s)] = s2a(s) - sb(s). 

When s > 1, it can be easily verified tha t  s 2 E ( X  [ S = s) - s E ( X  2 [ S = 
s ) > 0 .  

Remark 2.2. It can be easily verified tha t  condition (2.7) can be replaced 
by many  other  conditions. For example, it can be replaced by 

(2.8) E ( X  I S) = a(S) and E ( X  3 ] S) = b(S). 
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Corollary 2.1 can be used to characterize any X and Y whose probability func- 
tions are positive on the set N .  Particular cases are binomial, negative binomial 
and Poisson distributions. 

Example 2.1. Let X, Y, S and N be defined as in Theorem 2.1 with N = 
2k > 1. Then 

S 
E ( X  I S) = ~ and 

S(2k - s )  
Var(X I s )  - 4 ( 2 k  - 1) 

hold if and only if 

Pr(X = i) = Pr(Y = i) = ( ~ ) p i ( 1 -  p) k-i, 

w h e r e 0 < i < k ,  0 < p <  1. 

Example 2.2. Let X,  Y, S and N be defined as in Theorem 2.1 with N = 
+co. Then formulas 

(2.9) E ( X I S ) = a + b S  and V a r ( X I S ) = c + d S  

are true if and only if X and Y have Poisson distributions. In (2.9), a, b, c, d are 
some constants satisfying 0 < b < 1, d ¢ 0. 

This example is also studied in Kagan (1993). 
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