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A b s t r a c t .  Stein-type and Brown-type estimators are constructed for general 
families of distributions which improve in the sense of Pitman closeness on 
the closest (in a class) estimator of a parameter. The results concern mainly 
scale parameters but a brief discussion on improved estimation of location 
parameters is also included. The loss is a general continuous and strictly bowl 
shaped function, and the improved estimators presented do not depend on it, 
i.e., uniform domination is established with respect to the loss. The normal 
and inverse Gaussian distributions are used as illustrative examples. This work 
unifies and extends previous relevant results available in the literature. 
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I. Introduction 

Let  X and Y be independent  r andom variables, where X has a normal  dis- 
t r ibut ion  N ( # ,  a 2) and Y / a  2 has a chi-squared dis tr ibut ion X 2 with n degrees of 
freedom. Assume tha t  # and a 2 are unknown and tha t  based on (X, Y) we want 
to es t imate  ~r 2 by an es t imator  6 using as cri terion P i tman ' s  measure of closeness 
(PMC) under the quadrat ic  loss (6 /a  2 - 1) 2. Kubokawa (1991) showed tha t  the 
closest es t imator  of a 2 in the class of affine equivariant  est imators  cY ,  c > 0, is 

1 and mn is the median  of X2n . He also showed tha t  60 6o : coY,  where co : m---~ 
can be improved on by considering a larger class of scale equivariant es t imators  

X 2 
5=¢(z)Y, z -  

Y 

for ¢ a positive function. Specifically he found a Stein (1964)-type improved 
es t imator  

6~ = ¢~(Z)Y, ¢~(Z) = min c o , -  
'mn+l 

509 



510 STAVROS KOUROUKLIS 

and a Brown (1968)-type improved estimator 

5B : ¢B(Z)Y, ¢B(Z) : { a0, Z < r 
c0, Z _> r, 

where r is any positive constant  and a0 is the reciprocal of the median of the 
conditional distribution of Y given tha t  Z < r when # = 0 and er 2 -- 1. Note tha t  
Z is a maximal invariant under the scale group and also a test statistic for testing 
# = 0 .  

Analogous results were obtained by Kourouklis (1995a, 1995b) for the expo- 
nentiat scale parameter  and quantiles. 

For co = (p, o2), let G(yl z;w) and H(ylr;co ) denote the conditional distri- 
bution functions of Y given tha t  Z = z, z > 0, and given tha t  Z < r respectively. 
Let also Fn(y) be the distribution function of Y when a 2 = 1 (i.e., the X2n distribu- 
tion function). Then the following stochastic ordering-type conditions are satisfied 
(see Example 3.1 in Section 3). 

A. G(ylz;co) < G(ylz;coo ) for y > 0 and coo -- (0,02). 
B. g(y lr ;co  ) <_ g ( y l r ; w o  ) for y > 0 and coo = (0,02) • 
C. H(ylr;col) < F~(y) for y > 0 and col = (0, 1). 

Examinat ion of the approach used by Kubokawa (1991) reveals tha t  the first con- 
dition plays an important  role in deriving 6s, whereas the latter two in deriving 

6B. 
The purpose of this paper is to exploit these conditions and to demonstra te  

that ,  when they  hold, Stein-type and Brown-type improved estimators can be 
derived for general families of distributions. We present results mainly for scale 
parameters but  we also discuss briefly est imation of location parameters.  The loss 
we use is a general continuous and strictly bowl shaped function and the improved 
estimators presented turn out to be independent of it, i.e., we establish uniform 
domination with respect to the loss. Stein-type improvements also turn  out to be 
testimators.  We note tha t  test imators with respect to PMC were first introduced 
by Keating and Czitrom (1989). 

In Section 2 we describe our framework and conditions and obtain the main 
results. In Section 3 we present two illustrative examples from the normal and 
inverse Gaussian distributions. The latter is, in particular, interesting because 
it is not a pure location and scale model. Section 4 treats briefly the location 
parameter  case. 

2. Framework and main results 

2.1 Framework 
We consider the following framework. Data  X comes from a distr ibution 

tha t  depends on an unknown parameter  w = (7, 0) where 0 is the component  of 
interest and ~ is a nuisance component.  Further,  there is a statistic Y, which 
is a function of X ,  whose distribution is absolutely continuous with respect to 
Lebesque measure on (0, co), does not depend upon 7, and has ~ = ~-(9) > 0 as a 
scale parameter.  Thus, Y has density f(y; T) = 1 y 7 f ( 7 ) ,  y > 0. The problem is to 
est imate 7 based on X .  
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The criterion for selecting an estimator 5 of ~- is Pitman's measure of closeness 
(PMC) with respect to a general loss of the form L(5/T), where L(t) is continuous 
on (0, co) and strictly bowl shaped assuming its minimum at t = 1, i.e., strictly 
decreasing for 0 < t < 1 and strictly increasing for t > 1 with L(1) = 0. We 
refer to the book by Keating et al. (1993), to a special issue of Communications 
in Statistics, Theory and Methods ((1991), Vol. 20, No. 11), and to the discussion 
article by Robert  et al. (1993) for a detailed account on PMC. Here, according to 
PMC an estimator 51 is called Pitman closer to T than 52 if 

(2.1) P~(L(51/T) < L(52/T)) >_ P~(L(52/T) < L(51/T)) for all w 

with strict inequality for some w. Setting 

(2.2) PC(51,52; w) = Pw(L(51/T) < L(52/T)) + 1pw(L(51 /7  ) = L(52/T)) 

(2.1) equivalently becomes 

1 
(2.3) PC(Si, 52;w) _> ~ for all w. 

In the sequel, it will be more convenient to work with (2.2) and (2.3) rather than 
(2.1). 

Let C be the class of estimators given by 

C = { c Y  : c > 0}.  

For this class and under absolute error loss Keating (1985) established Rao's (1981) 
phenomenon, i.e., that shrinking the unbiased estimator to a minimum risk esti- 
mator does not improve the PMC property. 

Let 

1 
(2.4) Co = - -  and 50 = coY, 

m 

where m is the median of Y when T ---- 1. Nayak (1990) showed that 50 is the 
unique closest estimator of ~- in the class C. Note that 60 does not depend on the 
loss and is median unbiased for T (Ghosh and Sen (1989)). However, 5o utilizes 
information supplied by the data X only through Y. This observation sets the 
ground for improving on 60 (in the sense of PMC). 

2.2 Stein-type improvement 
Following Stein (1964), for improving on 60 we consider a larger class of esti- 

mators than C, namely, 

D = {¢(Z)Y : ¢ is positive (measurable) function} 

where Z is a properly chosen statistic (function of X) .  Invariance considerations 
are helpful in choosing Z, but  not crucial, see Section 3. With Z granted, Theorem 
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2.1 below describes a general way for constructing an estimator 5 in D which 
improves on 50. For the theorem we assume that the conditional distribution of Y 
given Z = z, when well defined, has a unique median m(z; w). 

THEOREM 2.1. Suppose that there exist a (Borel) set B and a positive (mea- 
surable) function ¢(z) defined on B such that m(z;~) > (resp. <)¢(z) for all w 

T 

and all z • B. Define 

¢(z) = min Co, resp. max c o , ¢ ~  , z • B 

co, z C B .  

Then, 5 = ¢(Z)Y is closer to ~- than 50 = coY provided P~(5 ¢ 50) > 0 for some 
Cal. 

PROOF. We consider only the case m(z;~) _> ¢(z). Let z be such that ¢(z) 
T 

Co. Then, z • B and ¢(z) = 1 Y ~-~ < co. By the properties of the loss, L ( - -4~  ) < 

n ( ~ )  holds iff Y-~ > u(z) , where the point u(z) satisfies ~ u(z) < 1 < c0u(z), see 

Keating et al. ((1993), p. 148) or gourouklis (1995a). Hence u(z) < ¢(z)  < "~(~;~) 
a n d P ,  o(L(5/~-) < n(5o/T) I Z = z) = P~(~- Y > u(z) [ Z  = z) > 5"1 Now, (2.2) 
entails PC(5,5o;W) _> 1P~(5 ¢ 5o) + 1P~(5 = 50) = 1 with strict inequality 
whenever P~o(5 ¢ 50) > 0. This completes the proof. 

Implementation of Theorem 2.1 requires the derivation of an appropriate lower 
m(z;w) or upper bound for ----7-- as a function of w. We next give simple conditions which 

guarantee such a bound. Let the conditional distribution of Y given that Z = z be 
absolutely continuous with respect to Lebesque measure with density g(y [ z; w), 
y C S~, and set G(y I z;w) = fog(t I z;w)dt. Thus, m(z;w) is the unique median 
of G(y l z;w). 

Assume that there is a (Borel) set B and a value 70 of 7 (the nuisance pa- 
rameter) such that the following conditions hold. 

(A.1) G(y ] z;w) <_ (resp. >)G(y I z;w0) for y • S~, z • B, w = (7,0), and 

~0 = (70, e) .  
(A.2) ~- = ~-(0) is a scale parameter for G(y I z; w0), i.e., 

G(y l z;wo) = G l  ( Y ; z )  , y E S~o , z c B, 

for some distribution function G1 (-; z). 
Note that (A.1) is ensured when, for z E B, 

(Aql) ~ is increasing (resp. decreasing) in y E S~ o g(ylz;~o) 
cf. Lehmann ((1959), p. 74). 

Let now 
re(z) = median of G1 (.; z), z E B. 

and S~ C S~ o, 

We then have the following result. 
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THEOREM 2.2. Suppose that (A.1) and (A.2) hold. Define 

{ { m--~z)}( { 1 } )  ¢~(z) = min Co, resp. max co,-~(~ , z E B 

co, z qt B .  

Then, 6s = Cs(Z)Y is closer to T than 5o = coY provided P~(5s ~ 50) > 0 for 
s o m e  03. 

PROOF. (A.1) and (A.2) give m(z;~) > (resp. <)m(z~o) _ re(z) for all w 
T 

and z E B. Theorem 2.1 now applies with ¢(z) = m(z), z E B. 

Remark 2.1. The estimator 6s does not depend on the loss. 

2.3 Brown-type improvement 
Following Brown (1968), for improving on 60 we consider a subclass of D, 

namely, estimators of the form 

f ao~ Z E E 
(2.5) 51 = ¢ ( z ) Y ,  ¢ ( z )  = 

t eo, Z q~ E .  

Here, a0 is a positive constant and E a (Borel) set to be chosen properly. The 
choice of a0 and E is discussed later on. The next theorem describes a general 
way for constructing an estimator 61 of the form (2.5) which improves on 6o. For 
the theorem we assume that  the conditional distribution of Y given that  Z E E is 
well defined and has a unique median m(E; w). 

THEOREM 2.3. Suppose that ao and E in (2.5) are chosen so that 

(2.6) 0 < a0 < Co 

and 

(2.7) m(E;w) >_ 1 for all 
T a 0 

02. 

Then, the estimator 51 is closer to 7 than 50. 

PROOF. By conditioning on the event (Z E E) and using (2.6), (2.7) and 
a similar argument as in the proof of Theorem 2.1 we obtain P~(L(51/T) < 

1 E). Then, (2.2) gives PC(51,5o;w) > ½P~(Z E L(6o/~-),Z E E) > ~P~(Z E 
E) + ½P~(Z ~ E) = 1  ~, which completes the proof. 

Implementation of Theorem 2.3 requires the derivation of an appropriate lower 
bound for m(E;~) as a function of w. Then as a0 can be taken the reciprocal of 
this bound provided (2.6) is also satisfied. Regarding the choice of E, as in Brown 
(1968) and Brewster and Zidek (1974), we have found in applications that  taking 
as E a suitable acceptance region of a test for the nuisance parameter ~ usually 
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works. It is evident that to bound m(E;w) , a similar approach can be followed as 
in Subsection 2.2. This approach is described below. 

With E granted let the conditional distribution of Y given that Z E E be 
absolutely continuous with respect to Lebesque measure with density h(y [ E; ~), 
y c M~. Let also H(y [ E; w) = f~ h(t [ E; w)dt, so that m(E; w) is the median 
of H(y I E; w). Finally, let F(y) = fY f(t)dt so that m in (2.4) is the median of 
F(v). 

Assume that there is a value 771 of ~/such that the following conditions hold. 
(A.3) H(y l E; w) <_ H(y I E; wl) for y E M~, w = (U, 0), and wl = (~1,0). 
(A.4) ~- = T(0) is a scale parameter for H(y [ E;wl), i.e., 

y E M~ 1 , 

for some distribution function H1 (.; E). 
(A.5) Hi(y; E) < F(y) for all y such that 0 < Hi(y; E) < 1. Note that (A.3) 

is satisfied when 
(A'.3) h(ylE;~) is increasing in y E M~ 1 and M~ C M~ 1 and (A.5) is satisfied h(ylE;wl) 

when 
(A'.5) hl(y;E) is strictly increasing in y > 0, where hi(y; E) is the density of 

H1 (y; E). 
Let now 

(2.8) m(E) = median of HI('; E). 

We then have the following result. 

THEOREM 2.4. Suppose that (A.3), (A.4), and (A.5) hold. Define 

= 

1 
CB(Z) = m ( E ) '  Z e E 

co, Z ~ E 

Then, 5s is closer to r than 5o. 

PROOF. (A.3), (A.4), and (A.5) ensure that m(E;~) > m(E;~D = m(E) > m. 
7 "  - -  T 

1 Hence, Theorem 2.3 applies with ao = ~---(-~. 

Remark 2.2. As with 58, the estimator 5s does not depend on the loss. 

Remark 2.3. Kubokawa ((1991), Proposition 3.3) showed that, contrary to 
decision theory, in the case of normal variance a Brewster-Zidek (1974)-type esti- 
mator (which is the smooth version of the Brown-type estimator ~B in the intro- 
duction) is inferior to 50 in the sense of PMC. His proof rests on general conditions 
as B and C rather than special properties of the normal distribution, and thus the 
same result holds for general families of distributions considered here. 
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3. Applications 

Here we present two examples il lustrating the conditions in Section 2. More 
examples axe given in Kourouklis (1995c) and include the multivariate normal 
distr ibution for the est imation of the generalized variance (Kubokawa (1990)) and 
the exponential distr ibution for the est imation of the scale parameter  (Kourouklis 
(1995a)). 

For later use we denote by fk(Y; A) and Fk(y; A) the density and distr ibution 
functions of 2 Xk(A). When A = 0 we simply write fk(Y) and Fk(y). Also, recall 
tha t  mk denotes the median of X~- 

Example 3.1. (Normal distribution) Let U and Y be independent,  where 
U ,.~ Np(it, "rip), Y/"r ~ X 2, and it and "r are unknown. We want to est imate 
T based on X -- (U ,  Y). This problem was studied by Kubokawa (1991) for 

v and for improving on 50 we choose Z IJ ufl 2 squared error loss. Here 50 -- ~ - y 
by invariance considerations. Let w = (it, "r), w0 = (0, "r) = Wl, B = (0, oc), and 
E -- (0, r) for r > 0. Then, it is easy to check tha t  

g(y [ z;w) = , y > O, z E B 

and 

h(y; E,  w) = , y > O, 

where A -- Iltull~ Now (A~.I) holds since ~ is increasing in t, by the well-known • /p (~) 

monotone likelihood ratio property of Xp2(A). (A'.3) is satisfied since ~ is 
Fp(t) 

also increasing in t, by Lemma 4.2 in Cohen (1972). (A.2), (A.4), and (A'.5) 
can be verified by simple inspection. Thus,  Theorems 2.2 and 2.4 apply. Here 
m ( z )  = l+z , z > 0, and the improved est imator of Theorem 2.2 is 5s -- 

minf  ~Y , llv]12+Y~ Note tha t  /is is a tes t imator  which chooses among Y-Y- the 
L_ m n  m n + p  ~ "  W't n 

closest est imator of T when it is unknown, and ri uIJ2+Y the closest est imator of T 
r a n +  p ' 

when it is known to be 0. 

Example 3.2. (Inverse Gaussian distribution) Let X --- ( X 1 , . . . ,  Xn),  n ~ 2, 
be a random sample from an inverse Gaussian distr ibution IG(# ,  A) with density 
(~A ~ 1 / 2 , r - 3 / 2  ^..~r-A(x-/z) 2 1 

2~J - ~ P t  2~--5-~G--~ ~, x > 0, where # > 0 and A > 0 are unknown. We 

want to est imate T = ~ based on X .  In the literature, 7 is usually referred to as a 
measure of dispersion and plays for the inverse Gaussian the analogous role of a 2 
for the Normal N(v ,  a2). The decision theoretic est imation of v was studied by Pal 
and Sinha (1989), MacGibbon and Shorrock (1995), and Kourouklis (1996). It is 

1 n n 
known tha t  ) (  = n )-~i=1 Zi ,  Y = ~-~i=1 ( ~  - ~ )  are complete and sufficient, and 
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are independent with IG(#, nA), 2 distributions respectively (Tweedie (1957), T X n - 1  

or Chhikara and Folks (1989)) Besides, n~(2-")2 is distr ibuted as X21 (Shuster 
• p 2 ) ~  7 

(1968)). In this case 50 - Y and for improving on 50 we choose Z = v ,  
r a n - - 1  ' 

~(2-1)2 For motivating this choice, note tha t  Z is a test  statistic where V = 
for testing tha t  (the nuisance parameter) # -- 1. We refer to Pal and Sinha 
(1989) for another motivation and point out that ,  unlike the previous example, 
here invariance does not seem to play a major  role in choosing Z. Let w = (#,)~), 
w0 = W l  = (1,~), B = (0, c~) and E = (0, r) for r > 0. Also, denote by k(t;a;) 
and K(t; w) the density and distr ibution functions of V respectively. Then, using 
the independence of V and Y, it is easy to check tha t  

and 

yk(yz; )fn-l(y/ ) 
g(y l z;w) = f o  tk(tz;w)fn_l(t/ r)dt, 

K(ry;w)fn-l(y/T) 
h(y I : J o  K(r t ;w) fn_ l ( t /T )d t '  

y > 0 ,  z E B  

y > 0 .  

k(t;~) It is shown in Kourouklis (1996) tha t  ~ is increasing in t, and this in turn  
g(t;~) implies tha t  ~ is also increasing in t (Cohen (1972)). It now follows tha t  (A' .I)  

and (A'.3) are satisfied. Besides, (A.2), (A.4), and (At.5) can be directly verified, 
so tha t  Theorems 2.2 and 2.4 apply. Here, it can be shown tha t  m(z) = r~ l + z  ' 

z > 0, and the improved estimator in Theorem 2.2 is 58 -- min{ Y Y+y ~ Note 
m n -  l ' m,~  ~" 

( X i - - 1 )  2 Y 
tha t  Y + V = v ' n  and 58 is a test imator  which chooses among 

z---~ i = 1 X l  r a n - 1  ' 

the closest est imator when # is unknown, and Y+___~y the closest est imator when tt 
~ytr~ ' 

is known to be 1. 

4. Improved estimation of a location parameter 

In this section we consider the framework of Section 2 except tha t  T is now 
a location parameter,  i.e., Y has density f(y; T) = f ( y  - T), y E R, T C R. The 
problem is to estimate T by an est imator 5 using as criterion P i tman ' s  measure 
of closeness with respect to a general loss of the form L(5 - w), where L(t) is 
continuous and strictly bowl shaped assuming its minimum at t = 0, i.e., strictly 
decreasing for t < 0 and strictly increasing for t > 0 with L(0) -- 0. 

Let C be the class of estimators given by C = {Y + c : c E R}, Co = - m  
and/50 = Y + co, where m is the median of Y when 7 = 0. Nayak (1990) showed 
tha t  50 is the unique closest estimator of ~- in the class C. For improving on 50, 
the techniques of Section 2 can be employed again. Below we discuss briefly only 
Stein-type improvements. 

We consider a larger class of estimators than  C, namely, D = {Y + ¢(Z) : ¢ 
is a real valued (measurable) function}, where Z is a properly chosen statistic 
(function of the full data  X) .  In analogy to Theorem 2.1 we have the following 
result, for which we assume tha t  the conditional distribution of Y given tha t  Z -- z, 
when well defined, has a unique median re(z; w). 
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THEOREM 4.1. Suppose that there exist a (Borel) set B and a (measurable) 
function ¢(z) defined on B such that re(z; w) - • >_ (rasp. <)¢(z) for all w and 
all z E B .  Define 

f min{c0,-¢(z)}(resp, max{c0,-¢(z)}), z e B ¢(z) 
tco,  z gt B .  

Then, the estimator 5 = Y + ¢(Z) is closer to V than 5o = Y + Co provided 
P~(5 ~ 50) > 0 for some w. 

An application of Theorem 4.1 is given in Kourouklis (1995c). 

Acknowledgements 

The author wishes to thank the two referees for their helpful comments that 
led to the improvement of the presentation. 

REFERENCES 

Brewster, J. F. and Zidek, J. V. (1974). Improving on equivariant estimators, Ann. Statist., 2, 
21-38. 

Brown, L. (1968). Inadmissibility of the usual estimators of scale parameters in problems with 
unknown location and scale parameters, Ann. Math. Statist., 39, 29-48. 

Chhikara, R. S. and Folks, L. J. (1989). The Inverse Gaussian Distribution, Marcel Dekker, 
New York. 

Cohen, A. (1972). Improved confidence intervals for the variance of a normal distribution, J. 
Amer. Statist. Assoc., 67, 382-387. 

Ghosh, M. and Sen, P. K. (1989). Median unbiasedness and Pitman closeness, J. Amer. Statist. 
Assoc., 84, 1089-1091. 

Keating, J. P. (1985). More on Rao's phenomenon, Sankhyd Ser. B, 47, 18-21. 
Keating, J. P. and Czitrom, V. (1989). A comparison of James-Stein regression with least squares 

in the Pitman nearness sense, J. Statist. Comput. Simulation, 34, 1-9. 
Keating, J. P., Mason, R. L. and Sen P. K. (1993). Pitman's Measure of Closeness: A Compar- 

ison of Statistical Estimators, SIAM, Philadelphia. 
Kourouklis~ S. (1995a). Estimating powers of the scale parameter of an exponential distribution 

with unknown location under Pitman's measure of closeness, J. Statist. Plann. Inference, 
48, 185-195. 

Kourouklis, S. (1995b). Estimation of an exponential quantile under Pitman's measure of close- 
ness, Canad. Y. Statist., 23, 257-268. 

Kourouklis, S. (1995c). Improved estimation under Pitman's measure of closeness (unpublished 
manuscript). 

Kourouklis, S. (1996). A new property of the inverse Gaussian distribution with applications, 
Statist. Probab. Left. (to appear). 

Kubol~wa, T. (1990). Estimating powers of the generalized variance under the Pitman closeness 
criterion, Canad. J. Statist., 18, 59-62. 

Kubokawa, T. (1991). Equivariant estimation under the Pitman closeness criterion, Comm. 
Statist. Theory Methods, 20, 3499-3523. 

Lehmann, E. L. (1959). Testing Statistical Hypotheses, Wiley, New York. 
MacGibbon, K. B. and Shorrock, G. E. (1995). Estimation of the lambda parameter of an inverse 

Gaussian distribution, Statist. Probab. Lett. (to appear). 
Nayak, T. K. (1990). Estimation of location and scale parameters using generalized Pitman 

nearness criterion, J. Statist. Plann. Inference, 24, 259-268. 



518 STAVROS KOUROUKLIS 

Pal, N. and Sinha, B. K. (1989). Improved estimators of dispersion of an inverse Gaussian distri- 
bution, Statistical Data Analysis and Inference (ed. Y. Dodge), North-Holland, Amsterdam. 

Rao, C. R. (1981). Some comments on the minimum mean square error as a criterion in estima- 
tion, Statistics and Related Topics (eds. M. Csorgo, D. A. Dawson, J. N. K. Rao and A. K. 
Md. E. Saleh), 123-143, North Holland, Amsterdam. 

Robert, C. P., Hwang, G. J. T. and Strawderman, W. E. (1993). Is Pitman closeness a reasonable 
criterion? (with discussion), J. Amer. Statist. Assoc., 88, 57-76. 

Shuster, J. (1968). On the inverse Gaussian distribution, J. Araer. Statist. Assoc., 63, 1514-1516. 
Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal distribution 

with unknown mean, Ann. Inst. Statist. Math., 16, 155-160. 
Tweedie, M. C. K. (1957). Some statistical properties of inverse Gaussian distributions I, Ann. 

Math. Statist., 28, 362-377. 


