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Abstract .  Bahadur representation of the difference of estimators of regres- 
sion coefficients for the full data set and for the set from which one observation 
was deleted is given for the M-estimators which are generated by a continuous 
C-function. The representation is invariant with respect to the scale of residu- 
als and it indicates that the bound of the norm of the difference is proportional 
to the gross error sensitivity. Then for the C-function which corresponds to the 
median it is shown that the difference of the estimates for the full data and for 
data without one observation, although being bounded in probability, can be 
much larger than indicated by the gross error sensitivity. 

Key words and phrases: Sensitivity analysis, influential points in M-esti- 
mation, scale invariance. 

i. Introduction 

Diagnostic tools of the regression analysis have attracted, due to the evident 
reasons, a lot of attention, and presumably in the all recent monographies on 
the regression analysis they are more or less thoroughly discussed (e.g. Bates and 
Watts (1988), Rousseeuw and Leroy (1987) or Sen and Srivastava (1990)). Of 
course, there are also monographies treating only this topic (e.g. Atkinson (1985), 
Belsley et al. (1980), Chatterjee and Hadi (1988) or Cook and Weisberg (1982)). 

One of the efficient and simple tools of LS-regression diagnostic has been a 
formula expressing the difference of estimators of regression coefficients for the full 
set of data and for the set of data obtained when excluding one observation from 
the original data. The formula may be written as 

y T ~ ( n )  h 
( I . i )  ~'LS~(~-I'e) _ ~'LS?~(n) = - { [ X ( ~ - I ' ~ ) ] T x ( n - I ' e ) } - I X e (  Y¢ - ~ ~'LS J 
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(where notation is nearly selfexplaining, nevertheless, X (n- 1,t) is the design matrix 
after deletion of the g-th row and Xe is the g-th row (assumed as a column vector) 
of the design matrix for the full data). For the M-estimators we cannot generally 
expect that we shall succeed to derive an exact formula for such a difference, not 
being even able to give an explicit formula for M-estimators themselves. But we 
may expect to derive an asyinptotic representation for it (for the linear models 
and an absolutely continuous ~-functions see Vfgek (1992a, 1992b)). This paper 
gives such representation for the nonlinear model for the M-estimators generated 
by continuous C-functions. It is proved that the upper bound of norm of the dif- 
ference of estimates is proportional to the gross error sensitivity. The difference 
of estimators of regression coefficients for the full set of data and for the set of 
data from which one observation was deleted is also studied for the ~-function 
corresponding to median, i.e. for ~m(Z) = sign(z). It is shown that in this case, 
the difference of the estimates, even if bounded in probability, may be much larger 
than it is indicated by the gross error sensitivity. The approach considers (for con- 
tinuous ~-functions) the studentized residuals which reflects the fact that in many 
statistical packages, the evaluation of M-estimators is based also on studentized 
residuals. The reason for the studentization of residuals is of course the fact that 
it allows to use standardized ~b-functions. Moreover, in the special case when the 
regression model is linear, we obtain as a "premium" the invariance of the estima- 
tor; for more complete discussion see Rubio and Vf~ek (1996). Since we want for 
the estimator generated by ~m to show only its "subsample instability", we shall 
keep the text as simple as possible and hence we shall not assume studentization of 
residuals (moreover, since Cm(Z) = sign(z), and because the studentization does 
not change the sign, the value of ~m is invariant with respect to scale). 

At the end of the paper, we shall offer a numerical study which brings a 
possibility to create an idea how much may be L]-estimator, as an example of M- 
estimators with the discontinuous C-function, "subsample instable" in comparison 
with the other M-estimators. 

In the LS-regression analysis the formula (1.1) might have already been used 
by Sir Francis Galton, when looking for the (most) influential point. In an iterative 
way, it was utilized even for finding the subsets of the influential observations 
(although it is not generally the same as searching for the influential subset as a 
block). The same is possible for our case. We shall return to this problem in the 
concluding remark when we will be able, with the help of the presented results, to 
explain the problem better. 

~(n-l,e) 
Since the estimator ~'LS for n -- 1 observations is included in the formula 

(1.1), it may seem that the considerations which will follow may be related to 
those in the jackknifing. But the resemblance is just formal, on the level of the 
formulas. The diagnostic studies are aimed to construct the tools which will help 
to reveal the influential point(s) (or influential subsets) among the data, while the 
goal of the jackknifing is to decrease (the order of) the bias (and possibly to find, 
as a byproduct, a strongly consistent estimator of the variance of the estimators 
in question). 
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2. Notation and setup 

Let N denote the set of all positive integers, R t the l-dimensional Euclidean 
space (if g = 1 we shall not write it), R + the nonnegative part of the real line and 
(gt, Jl, P) a probability space. We shall consider for all i • N the model 

(2.1) Y/-- g(Xi,/3 °) + ei 

where for some fix p, q • N, {Xi}i°C=l is a sequence of vectors from R q and 
/3 0 = (/3 o,/3o, . . . ,~o)T is a vector of regression parameters (,,W,, stays for the 
transposition). Moreover, a function g : R q+p ~ R is assumed to be two times dif- 
ferentiable (see Conditions A below) and finally, {e~}i~l, ei : ~t --* R is a sequence 
of independent identically distributed random variables (i.i.d.r.v.). Let us denote 
F(z) the distribution functions of el. Our study will consider the M-estimators 
of/3 o given as 

(2.2) 

and 

(2.3) 

~(n) =argmin{ ~p([Y i -g (x i ' / 3 ) ]&~l )  } ~ c R p  i=l 

~(~-l,e) = argmin p([Y~ - g(Xi,/3)]dn 1) 

¢~cRP ~, i~=~ 

where p : R ~ R is assumed to be absolutely continuous (denote the derivative-- 
at the points where it exists--by ¢) and ~n is a preliminary estimator of the scale 
(see Conditions C below). 

3. Conditions 

We are going to give the conditions we shall need for the preliminary consid- 
erations and later in the paper. 

CONDITIONS A. 
i) There is a positive 50 such that  for any/3 • R p, 1[/3 -/3°11 < 5o 

0 02 
PJO-'-z-g(x'/3 ) (j -- 1 ,2 , . . . , p )  and O/3jO/3kg(x,/3) (j,k = 1 ,2 , . . . , p )  

exist for any x E R q. Let us denote the vector of the first partial derivative 
and the matrix of the second partial derivative simply by gP(x,/3) and g'(x,/3), 
respectively, and their coordinates and elements by g~ (x,/3) and g~t k (x,/3). 

ii) The functions g~k (x,/3) (j, k -- 1, 2 , . . . ,  p) are uniformly in x E R q Lips- 
chitz of the first order in/3 in the 50-neighborhood of/3o, i.e. 

3(L > O) V(~ E R p, II~ - ~°11 < 5o) 
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H / x 1! ' X  max sup gjkt ,/3) -gsk~ ,/~°)1 < Z .  II~'- ~'°ll. 
l ~ j , k~p  xE Rq 

Moreover, let 

max sup max{Ig(x, 3°)l, lg~(x,3°)l, " o 
l<j ,k<p xERq 

1 n I X 0 iii) There is a regular matrix Q = l im~ E i = l { g  ( i~/3 )[g'(Xi,3°)] T} (de- 
note (Q)ij = qij). 

Remark 1. Let us observe that  Condition A (ii) implies that  there is J < 
such that  

! ,,7 x ma~ sup m~{Ig(~,~)¢,  ¢g~(x,~)l, [g~k( ,Z)I} < g- 
l < j ,k<p x~ Rq ¢3E t~P~IIf3-f?o (( <50 

Finally, observe that  the matrix Q is positive definite. 

CONDITIONS B.  

i) The function ~b allows decomposition in the form 

(3.1) ¢ = ~ + Vc 

where ~ba has a derivative ~ which is Lipschitz of the first order and ¢c is a 
continuous function with derivative ~brc being step-function. Let us denote by 
Dc = {rci, re2 , I'ch¢ }, (h~ finite) the points of jumps of ~'  

' "  " " C "  

ii) a2 = varF e~ E (0, oc) and there is a positive 00 such that  F(z) has a 
h~ 00, a" rc~ + ~o]. Let H < oc density f which is bounded on D¢(¢0) -- [Ji=] [ a - r c i -  

be corresponding upper bound of f on D~(Oo). 
iii) There is a finite K such that  SUpzCDd#o)I~(z)l < K as well as 

iv) EF¢(-~) - 0 and "~ = ~r-lEFg) '(~) > 0. 

Remark 2. Conditions B essentially coincide with those of Hampel et al. 
(1985), Section 2.5a (of course, restricted on the continuous C-functions), however, 
the form of these (especially decomposition (3.1)) follows JureSkov£ (1988). Some 
heuristic comments on them may be found also in both references. 

4. Notation (continued) 

In accordance with the given conditions, let us enlarge the notation which 
was introduced above. Since/3o will be fix throughout the paper, we shall write 
instead of g(X~,/30 + n-1/2t + n - 1 / 2 - ~ u )  simply g(Xi, n-~/2t, n-U2-~u). When 
u will be equal to zero we shall write only g(X~, n-U2t), however, when also t 
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will be zero, we shall write g (Xi ,3  °) instead of g(Xi, n-1/20). Similarly, we shall 
abbreviate 

and 

(4.1) 

g~(Xi,n-1/2t, n-1/2-~u)= , 0 gj(Xi,3 + n-1/2t + n-U2-~u), 

g~(Xi,n-1/2t, n-1/2-~u) = ,, o gyk(Xi, 3 + n-1/2t + n-1/2-~u), 

' X  g ( i,n-1/2t, n-1/2-~u) 
~ -  I X I " ' ' ~  [gl ( i, n-1/2t + n-U2-~u), g2(Xi, n-U2t + n-U2-~u), 

gp(Xi, n-1/2t + n-1/2-~u)] T, 

g~((Xi, n-1/2t + n-1/2-¢u) 

- [gjl(Xi, n-1/2t + n - - 1 / 2 - - T u ) ,  '/ I X . . . ,  _ tt gj2[ i,n-1/2t + n-1/2-~u), 

" "X n-1/2t gjn[ i, + n-1/2-ru)] T, 

5(Xi, n-1/2t, n-1/2-~ u) ---- g(Xi, 30 + n-1/2t + n-1/2-~ u) - g(Xi, 3°), 

s( Xi, n-U2t, n-1/2-T u, (Te n-1/2v) 

= ¢([ei - 5(X~, n-1/2t, n-U2-~u)]a-Xe -n-~/%) 
/ x g (Xi, n-1/2t, n-1/2-~u) 

- ~)([ei - -  5(Xi, n-1/2t)]eT-le-n-1/~V)g'(Xi, n-U2t), 

n 

S(n-1/2t' n-1/2-Tu' ~en-1/2v) : E 8(Xi, n-1/2t, n-1/2-r~t, ~Ten-1/2v). 
i=1 

Similarly, as for the derivatives of the function g, we shall denote by sj(Xi, n-1/2t, 
n-1/2-~u, ce n-1/%) and by Sj (n-1/2t, n-U2-~u, ae ~-1/2v) the j - th  coordinates of 

the vectors s(Xi, n-1/2t, n-1/2-~u, ae n-I/~v) and S(n-1/2t, n-1/2-ru, aen-1/%), 
respectively. Finally, for any M > 0 let us put 

(4.2) TM = { t , u  • RP, v • R +  : ma {lit]l, ]ru[i,v} M}. 

The range of indices or variables (used in just introduced notations) will be clear 
from the context or it will be indicated at the place where they will be used. 

5. Preliminaries 

We shall prepare now two lemmas for deriving the Bahadur representation of 

LEMMA 5.1. Let Conditions A be fulfilled and let C-function have a deriva- 
tive ¢1 which is Lipschitz of the first order, i.e. ¢ = Ca. Moreover, let varF el ---- 
a 2 6 (0, c~), E F ¢ ( ~ )  = 0 and tEF¢ ' (~) [  < oc. Then for any fix ~- • [0, ½] there 



474 JAN /~MOS VISEK 

are sequences of random matrices {/~(T)}~_ 1 such that maxl<i,j<p = 
o(1) a.s. as n ~ c~ and we have 

(5.1) sup S ( n - U 2 t  + n - U 2 - ~ u ,  ae ~-~/2~) 
T~ 

= O(n  -~) a.s. as n ~ cc. 

The proofs of the all lemmas are given in the Appendix because they are 
mostly of technical character  and would only burden the reading of the paper. 

Remark 3. Lemma 5.1 was given in a general way although it will be later 
used only for the specified values of r ,  namely 0 and ½. Nevertheless, its present 
form allows to give the proof in a t ransparent  and simple way simultaneously for 
both these values (see the Appendix).  

LEMMA 5.2. Let Conditions A hold and let the funct ion ~b have a derivative 
¢ '  such that f o r - o o  = ro < rl < - . .  < rh < ~ and real numbers a0, a l , . . . ,  ah-1 ,  
~p' (x) = ak for x E (rk, rk+l] for k = 0, 1 , . . . ,  h -  1 and ~p' (x) = ah for x ~ (rh, ~ ) ,  
i.e. ¢ = ~ .  Moreover, let varF el = a 2 E (0, co) and let in a ~)o-neighborhood of 
the points (rrl, a r 2 , . . . ,  arh the distribution funct ion F have a bounded density f .  
Finally, let Eg~b( ~ ) = O. Then for any fix T e [0, _112 there are sequences of random 
matrices {/~n(T)}n~_l such that maxl<i,j<p ](b/,~(~-))~jl = o(1) a.s. as n --~ c~ and 

we have 

(5.2) sup S (n -1 /2 t ,  n -1 /~ -~u ,  ae  *~-1/~) 
"/-M 

= O p ( n  - ~ )  as  ~ ~ ~ .  

6. Bahadur's representation for continuous ~b-functions 

In this section, we will give Bahadur 's  representation of n(/~ (n) - ~(n-l,e)).  
The plan on how to do tha t  is simple. At first, using Lemmas 5.1 and 5.2 for ~- = 0 
we shall prove tha t  n (~  (n) - ~(~-1,~)) = Op(1), and then using the same lemmas 

1 for r = ~ we derive the representation. 

We are now going to specify the conditions on/3(~), ~(,~-l,e) and an- 

CONDITIONS C. 
i) The estimators ~(n) and ~(n-l,~) given by (2.2) and (2.3) are v/-~-consist - 

ent in the following sense 

V(¢ > 0) ~ (K > 0 and no E N)  V(n E N , n  > no and £ = 1 , 2 , . . . , n )  
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P ( v ~ l l ¢ ?  (") -  °11 > K) < a and P(v/-nll ) -  °11 > K) < a. 

ii) There is a location invariant and scale equivariant, v/n-consistent esti- 
mator 5 ,  of a, i .e.  

x/~(5n - a) = Op(1) as n ---+ oc. 

Remark  4. It is clear that  under Conditions A and B, in the case when 
¢~ - 0, the estimators/~(~) and/~(~-l,e) fulfill the following relations (see (2.2) 
and (2.3)): 

n 
(6.1) ~ ¢ ( [ y /  _ g(Xi, ~(n))]~nl )gt (Xi, ~(n)) --__ 0 

i=1 
and 

n 
(6.2) ~ ¢ ( [ y /  _ g(Xi, ~(n-l,g))]anl)g,(Xi, ~(n--l,~)) ---- O, 

i----1 iCg 

respectively (where ~ is again a preliminary estimator of scale of residuals). Some- 
times the M-estimators (for the linear model) are even defined as solutions of the 
equations (6.1) and (6.2). 

Remark  5. In Rubio and Vf~ek (1996) it is shown how the result of Liese and 
Vajda (1995), concerning the consistency of the estimator/~(n) in a nonstudentized 
framework, can be generalized for the studentized version and then strengthened to 
v~-consistency. Further, in Rubio et al. (1994) it is shown that under conditions 
given here, the v~-consistency of ~(~) follows from its consistency. Moreover, also 
in Rubio and Vf~ek (1996) it is proved that under conditions given here, there is 
for the case ¢ = Ca + ¢c a v~-consistent solution of the equation (6.1) (the result 
follows from the fix-point theorem and the idea is due to Jana Jure~kov~). Also the 
result of Rao and Zhao (1992) seems to be in a straightforward way genaralizable 
for nonlinear setup (this results applies also for C-functions with jumps but on the 
other hand C-function has to be monotone and of course we cannot reach in (6.1) 
and (6.2) precise equality, see discussion in the Section 8). So, it seems that there 
may appear very diverse conditions for consistency of the M-estimators for general 
C-functions, and hence we have preferred to give Conditions C in the present form. 

LEMMA 6.1. Let Conditions A, B and C hold. Then 

n(~(n) _ ~(,~-l,t)) = Op(1) as n -~ oc. 

THEOREM 6.1. Let Condit ions A, B and C hold. Then uni formly in ~ E N 
we have: 

(6.3) n(~(n-- l '~)  - - ~ ( n ) )  --~ --~nEFI~J (e-~l ) Q-lgt(X~,~ (n)) 

• ¢ ( [ Y ~ - g ( X t , ~ ( ' ~ ) ) ] O g I ) + o p ( 1 )  as n - - , o o .  
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1 and taking into account Lemma 6.1 we may PROOF. Considering r = 

subst i tu te  t ~ - i  = x/771( /~(~)  - Jr°), ~t~_l = (n - 1).  (/~(~-l,e) _/~(n)) and ~3~ = 
v / ~ ( l o g & n -  l o g ~ ) i n t o  (5.1) and (5.2) and we obtain 

n 
Z - 

i=1 ,i:~e 
--  ~3([Y/ --  g(Xi,~(n))l~nl)glin)(Xi,~(n))] 

+a-lEF~'(~)Q(n-1)(~(n-l 'e)-~(n))=op(1)  as  ~ ----+ (x). 

Then utilizing Lemma 6.1 once again, and employing (6.1) and (6.2) we have 

~3([Yg - g(Xe,/~(n))]o-~l)g'(X& ~(r t ) )  

÷(y-lEF~b'(e~l)Q.n(~(n-l'g)-~(n))=Op(1) as n--+ oo. 

Finally, taking into account the regularity of the matr ix Q, we conclude the proof  
of the theorem. [] 

Remark 6. The uniformity in g which has been stated in Theorem 6.1 has 
to be interpreted (as follows from the proof of the theorem) in the following way: 

V(¢ > 0 and (5 > 0) 3(no E N)  g(n  E N , n  _> No and t~ = 1 , 2 , . . . , n )  

p(n(~(n-l,e) _ ~(n)) 

E-I~/, ' -{- n F W (e~lG ) Q-l~l(X,,~(n')~)([Y£-~(X£,~(n))]°"nl) > (5) .~ g, 

i.e. no is the same for all ~ = 1, 2 , . . . ,  n. It does not mean necessarily tha t  

P(  max n(/~ (n-l'g) - /)(n)) 
\ l<e<~ u 

Jr-O'nEFI~ , (e~lG)Q-lg'(Xe,~(n))~([(Yg-..q(Xe,/~(n))]&~ -1) > 5 )  < c. 

Remark 7. Prom (6.3) it is clear tha t  the upper  bound ofnll~(n)--~(n--l't)]l is 
proport ional  to the gross error sensitivity. In other words, deleting one point from 
the data  may cause only some "reasonable" change of the est imate of regression 
coefficients. We may interpret this si tuation by an assertion that  the est imator  is 
stable on subsamples.  
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7. Preliminaries (continued) 

Now, we are going to study the behavior of the difference of estimates for Om 
(let us recall that Om = sign(z)). The goal of this part of paper (as well as of the 
numerical examples) is to demonstrate that the difference of the estimates for the 
full data and for data from which we have deleted one observation, can be much 
higher for the discontinuous O-function than for the continuous one. As it was 
pointed out by the referee, it is sufficient to show it for Om because for any other 
discontinuous 0-function, we may expect even a worse behavior of the difference 
of estimates. 

Under Ll-estimator we shall understand 

(7.1) 

and 

(7.2) 

/~(L,,n) =a rgmin  ~-~pm(Yi - xT/~) 

/~ (Ll ,n - - l , t )  = a r g m i n {  ~ p m ( Y i - X T / 3 )  i=1 

where pro(z) = Izl. It is clear that the studentization does not play any role here 
because dividing all residuals by a number, it is the same as to divide the whole 
sum in (7.1) and (7.2) by that number. That is why (7.1) and (7.2) do not include 
an estimate of scale. 

LEMMA 7.1. Let supl<i<~ IIX ll < ~ and let the density f (z)  exist and is 
Lipschitz of the first order in a neighborhood of zero. Moreover, let there is a 

1 n regular matrix Q -- limn~-c¢ n )-~i=1 Xi XT" Denote again (Q)ij -- qij. Further 
denote W(s), s E R + a Wiener process defined on a space (~*, A*). Then for any 
(k = 1 ,2 , . . . , p )  there are stopping times #ik(n,t ,u) and aik(n,C) such that for 
any t, u E TM, #ik(n, t, u) < nik(n, C), ~'~inl nik(n, C) is bounded in probability 
and 

(7.3) 
n 

X i k  { O m (  e i  --  n - 1 / 2 x T t  _ n - - I X / T u )  _ O m ( e  i --  n-1 /2xTt )  } 
i=1 

p ,) + 2f(0) = 9  W . k(n,t,u . 

j = l  

where "=9" denotes the equality in distributions. 

8. Subsample behavior of Ll-estimator 

Remark 8. As we have already mentioned in Remark 6 for the continuous 
0-functions the equations (6.1) and (6.2) hold. Generally, they do not hold for 
non-smooth p-functions, derivative of which is discontinuous. Nevertheless, to be 
able to apply Lemma 7.1 in a similar way as we have used Lemmas 5.1 and 5.2, 
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we need to have (6.1) and (6.2) fulfilled at least approximately, say tha t  we would 
like to have 

(s.1) i=1 -9-~) ] g (  ~' = Op(1). 

We shall t ry  to make an idea how far we may expect it for M-est imators  with the 
discontinuous ~-function. 

General conditions under which (8.1) is fulfilled for the discontinuous ~- 
function are not known, al though for some of them, e.g. for ~)med, given by 

- 1  if x < 0, 

~2med : 0 if X = 0, 

1 if X > 0  

we may reach again even precise equality in (8.1)--under  some conditions for 
symmet ry  of g ' (X i ,  fl) without  which it, seems questionable to use #)med. 

To create an idea about  the problem let us look at first on the much simpler 
case of est imating location parameter  in the case when the central model is as- 
sumed to be the s tandard  normal one. After all, in other cases, under assumptions 

which was used in Huber 's  paper (Huber (1964)), namely tha t  log ~ is strictly 
convex, we may, for theoretical considerations, assume tha t  we transform random 
variables to the normal ones. Let us assume tha t  we shall use skipped Huber 's  
~-function ~H(X) ,  i.e. ~H(X)  = --~H(--X)  and 

x if x E [0, a], 

CH(X) = a if x E (a, b], 

0 i f x > b  

for some 0 < a < b < oe. Let Y(1) _< Y(2) _< "'" <_ Y(n) be our observation (in 
fact we may assume YO) < Y(2) < " "  < Y(n) because if any sharp inequality is 
distorted the (absolute) continuity, is questionable; from the similar reasons we 
have also Y(~) - Y(j) ¢ 2b for i , j  = 1 , 2 , . . . ,  n a.e. for any n E N).  Now, let us 
observe tha t  for t E ( -oo ,  Y(1) - b) U (Y(n) + b, oo) we have ~ - 1  ~H(Y(i)  -- t) = O. 

Since for any 'n ~ N and any w E f~ we may find t E R so tha t  t E 
( -oe ,  Y(1)(w)) U (Y(~)(w),oo), it is clear tha t  we may obtain inconsistent solu- 
tion of (8.2) (as well as of (6.1)). In other words, for strongly redescending ~- 
function (regardless whether continuous or discontinuous) among the solutions 
of (8.2) is at least one inconsistent. Nevertheless, for t = Y(1) - b we obtain 
E n  ~ n i = 1  ~ H ( Y ( i )  - -  t) =- a and for t Y(n) + b we finally get ~ i = 1  ~ ) H ( Y ( i )  - -  t )  ---- - a .  
Moreover, ~ i ~ l  ¢H(Y(i)  -- t) is continuous (and nonincreasing) in t except for a 
finite number of discontinuities, at which it has the positive jumps equal to a. It 
implies tha t  there is at least one point t(~) E (Y(1) - b, Y(n) + b) such tha t  

n 

(8.2) _ i(n)) = O. 

i=l 
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We may observe that the reason why for ~)H w e  are able to fulfil (8.2) is a "com- 
pensation" of the jump(s) by a decrease of the value of the terms which have 
argument in the linear part of the C-function. 

It is easy to see that the point(s) which solves (8.2) is a (local) minimum of 
the function ~-]in=l p (Y( i )  - t )  because - - ¢ H ( Y  -- t)  is increasing in t. Moreover, at 
any point t* of jump of o zin__i P(Y(i )  - t )  we have 

n n 

lim 0 ~--~p(Y(i)-t)  > lim 0 ~ ' ~ p ( Y ( i ) - t )  
t-*t* -~ i=1 _ t-~t~ bt i=1 

so that the function }-]i~1 P(Y(i )  - t)  either increases when t -~ t*, and then for 
t > t* again decreases or increases less steeply, or decreases for t -* t*,  and then 
for t > t* it decreases more steeply. Anyway, the function ~-~i~1 P(Y( i )  - t )  cannot 
have at t* minimum. So we may conclude that the global minimum is among the 
points for which (8.2) holds. 

More detailed analysis would reveal that a similar situation holds for many 
C-functions, namely that  we may hope to fulfill 

n 

Z ¢(~  - t) = op(1) 
i----1 

for rather large family of C-functions. 
Some difficulties may appear e.g. for skipped median (or for some other esti- 

mators with both types of jumps). 
Let us now consider the linear regression. We would want again to show that 

there is a point ~ such that 

Z ¢-(Y(,) - x [ ~ ) x ~  = o. 
i=1 

Let us consider at first }-]~1PH(Yi -- L .  x T ~ )  for II~ll = 1. We easy verify that 
for any 

a ~  n 
OL PH(Y~ -- L . x T 7 )  

i=1 i=1 

is nonincreasing in L (except for finite number g (g < 2n) of positive jumps), and 

along similar lines as above we again find that  there is L (1) < 0 such that for 
L < L (D we have ~-~=1Cg(Yi -- L - x T v ) x T  V -= 0 and 

n 

, , ( Y ~  - L# ~ . x T . y ) x f  v = ~ Ixf-yl. ~ 
i----1 iEI(D 
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w h e r e  ~-~1) {i E N :  s ign(XT3')¢H(Y/--  L 0)  T = . X i "y) = a}. Similarly, we may find 

an upper "bound" L (2). Then there is again at least one L~ C (L(1),L (2)) such 
that  

• T T (8.3) E ~pH(Yi -- L , - X ~  "y)X i 3' = 0. 
i=1 

Due to similar arguments  as above we find that  at one of these points (if they 
y~ are multiple) the function Y~.~=~ PH( i -- L • x T T ) ,  as the function of L, at tains 

its minimum, and that  the points Yi - L~ • x T 7 ,  i = 1, 2 , . . . ,  n are not points 

of discontinuity of the function ~bH. Let P0 = inflJM=] Y~n=l p g (Y i  -- L ~ .  X T T ) .  
Taking into account the compactness of the surface of unit ball we find that  there 
is a 70, 117011 = 1 such that  

n 

- • " y o ) .  PO -~ P H  (Yi L *  T "yo 
i=1 

Let us recall tha t  the points Yi - L* T ~o " Xi 70, i = 1, 2, . . . ,  n are not the points of 

discontinuity of the function ~bH, i.e. in the neighborhood of the point fl = L~o70 
the function ~ = 1  pH(Yi - - x T f l )  has (continuous) partial derivatives, and hence 

~ d H  T ^ T - X i f l ) X  i = O. 

i=1 

It is clear tha t  to derive Bahadur  representation, we do not need necessarily tha t  
(6.1) and (6.2) hold but  what  we really need is 

(8.4) 
n 

i=1 

- E ~p([Y~ - g(X~, ~(n- l , t ) ) l~ i )g , (Xi , /~ (n - l , e ) )  = %(1).  

i=1 
l e t  

Numerical experiences say that  even (8.4) may be sometimes too optimistic 
expectation,  nevertheless, we have typically (for linear model) the left hand side of 
(8.4) bounded (coordinatewise) by maxl<t<n  IX~tl. In fact, usually the si tuat ion 
is as follows. Either for "even" number  of observations we have difference in (8.4) 
nearly equal to zero and for "odd" sample size the absolute value of the difference 
is under the bound  maxl<t<n  IXitl, or vice versa for "odd" sample size it is neaxly 
zero etc. (When we spoke about  "even" and "odd" sample size we have meant  tha t  
we successively delete points from the data.)  Nevertheless, for the next theoretical  
considerations, we shall assume that  (8.4) holds. 

LEMMA 8.1. Let suPl<i<o o HXi[I < oo and the density f ( z )  exist and is Lip- 
sehitz of the first order in a neighborhood of zero. Moreover, let (8.4) hold and let 
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there is a regular matrix Q = lim,~_~ 1 ~--~ 1 x i x T "  Denote again (Q)ij = qij 
n = 

Finally, let for some ~ C {1, 2 , . . . ,  n} 

n(~(L~,n) _/~(L~,,~-l,t)) = Op(1). 

Then 

n(~(Ll,n) _ / ~ ( L l , n - l , e ) )  = ~ f - l ( O ) Q - 1 X i ~ m ( y  e _ X T, ~(L~,n)) + 7"~n 

where n----7) ½f-I(O)Q-I[W(1)-W(2)I+op(1) with W (j) = ( W ( E i = I  t t i l "  (J)'nt , t,u)), 
W n (j) n . ( j ) l  t ,  U)) )  T for for s o m e  (~i=1 tti2 (n, t, u) ) , . . . ,  W ( ~ i =  1 trip t,~, j = 1, 2 stopping 

U) times #ik (n,t ,u),  i = 1 ,2 , . . . , n ,  k = 1 ,2 , . . . , p ,  n E N, t ,u  ¢ TM and where 
again W(s) is a Wiener process defined on a space (~*, .4*). 

PROOF. Taking into account (7.3) and (8.4) one may perform the proof in 
a nearly the same way as the proof of Theorem 6.1. [] 

Remark 9. We know already from Lemma 6.1 that for the continuous C- 
function the normed difference of the estimators n(~ (n) - ~(n-l,e)) is Op(1). The- 
orem 6.1 specifies this information, so that we may give for the function ¢ which 
is bounded, an upper bound for this difference and this upper bound is valid ex- 
cept for a set of small probability. In other words, we may make an idea about 
stability of the estimation when adding or excluding one observation. (And the 
numerical experiences say that the approximation works for rather small number 
of observations, usually about twenty, see Vi~ek (1992b).) On the other hand, for 
Ll-estimator even if we know that  the difference is bounded in probability, the 
upper bound may be pretty large (and numerical experiences confirm much larger 
"fluctuation" of Ll-estimator in comparison with the estimators with smooth C- 
functions). 

It implies that for the "continuous" case, if the "tuning" constant of the 
corresponding @function is properly assigned to winsorize really some residuals, 
maxl<e<~ I]n(~ (n) - ~(n-l,e))l I is nearly deterministically given. For the "discon- 
tinuous" case it is not so. 

9. Numerical examples 

In this section, we shall offer three numerical examples which may illustrate 
behaviour of M-estimators for continuous and discontinuous C-functions. As the 
discontinuous C-function we shall use era(z) because for it the theoretical result 
was derived. Earlier than we shall present the promised examples of real data we 
present one simple example of invented (not simulated) data  which enlightens the 
reason which is behind possible "unstable" behaviour of/~(LI,~). The data are 
given in Table 1. 
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Table 1. Ll-data. 

1 2 3 4 5 6 7 8 9 10 11 12 

x -1 .00  - 0 . 7 5  - 0 . 5 0  - 1 . 0 0  - 0 . 6 5  - 0 . 5 0  0.50 0.65 1.00 0.25 0.75 1.00 

y 1.00 1.25 0.75 - 1 . 0 0  - 0 . 7 5  - 0 . 6 5  0.50 0.75 1.00 - 0 . 4 0  -1 .00  - 1 . 0 0  

Table 2. Results of L1 analysis of Ll-data. 

In tercept  Slope 

Full da t a  0.0 1.0 

D a t a  wi thout  point  7 - 0 . 2  - 0 . 8  

0 

0 

0 /" 
! I 

Fig. 1. Ll-data. ]~ ( L l ' n )  - the main diagonal, ~ ( L l , n - l , ~ )  _ the other one (point 7 
denoted as full circle was deleted in the latter case). 

In the next  examples, the results of L1 analysis and the regression analysis 
performed by M-es t imators  with continuous C-function will be presented. It is 
worthwhile to say before it in a few words. 

Firstly, which software was used. For the evaluation of L1 results we have 
used software which is due to  Jaromir  Antoch from Charles Universi ty (and we 
are thankful  to have this possibility). The  software was checked on many  numerical  
examples (for which correct  values of es t imator  was known from li terature)  as well 
as with results obta ined by other  software products  (e.g. Koenker 's  program for 
evaluating regression a-quantiles).  

For evaluating other  M-es t imates  the software by Alfio Marazzi was used (we 
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are also very glad for the possibility to use it). This software studentizes the 
residuals, so that  the selection of the tuning constant does not represent a crucial 
problem. 

Secondly, the examples given below should offer a possibility to the reader to 
create an idea about the changes of the estimates when deleting one (influential) 
observation from data. Nevertheless, we should remind that the large changes of 
the intercept can be caused by small changes of the estimates of slopes when data 
are sufficiently far from the origin. So, although the values of the estimates of 
intercept were included in the tables (to be completed), please ignore the changes 
of the intercept. 

Example 1. Engine Knock Data (16 cases, firstly used in Mason et al. 
(1989)). The data record dependence of engine knock number on the spark timing, 
on the air/fuel ratio, on the intake temperature and on the exhaust temperature. 
The data were used in Hettmansperger and Sheather (1992) to demonstrate the 
instability of LMS. When the authors of the latter paper included the data in the 
computer, they wrote wrongly one digit (the value of regressor "Air" for the sec- 
ond observation was written 15.1 rather than 14.1 which is the correct one) and it 
caused in some sense a surprising behaviour of high breakdown point estimators, 
see Hettmansperger and Sheather (1992) and Vi~ek (1992c). In Table 3 the results 
are given for the "contaminated" data. Due to the fact that  the Engine Knock 
Data contains only 16 cases one may object that it is too small number to reveal 
something about behaviour of an estimator (see e.g. Rousseeuw (1993)). So we 
have restricted ourselves on two regressors (air/fuel and intake) and intercept to 
reach the "thumb rule" of 5 cases per dimension, see again Rousseeuw (1993). 

Table 3. Results of L1 analysis of Engine Knock Data (point 3 was deleted). 

Intercept Air/Fuel Intake 
Full data 31.84 2.471 0.594 

Data without point 3 34.10 1.500 0.950 

Before we continue further, let us note that in the case of Engine Knock Data 
deletion of the point 3 causes also the largest possible changes for Huber and 
Hampel estimator but, as Tables 4 and 5 (see the next page) demonstrate, they 
are not drastic. For the next two examples, deletion of the point which causes the 
largest change of L1 (i.e. points 20 and 3, respectively) does not causes the largest 
change of Huber 's  and Hampel's estimator. But  the largest change in both cases 
is not larger than about 5% in comparision with the largest change. 

Example 2. Health Club Data (30 cases, Chatterjee and Hadi (1988)). The 
data describe dependence of time in a one-mile run on the weight, on the resting 
pulse rate per minute, on the arm and leg strength and on the time in a ¼ mile 
trial run. 
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Table 4. Results of regression analysis of Engine Knock Data (Huber ~p with tunning constant 
1.2 was used, point 3 was deleted). 

Intercept Air/Fuel Intake 

Full data 31.97 1.785 0.896 

Data without point 3 32.71 1.639 0.937 

Table 5. Results of regression analysis of Engine Knock Data (Hampel ¢ with tunning constant 
1.2 was used, point 3 was deleted). 

Intercept Air/Fuel Intake 

Full data 27.58 2.096 0.885 

Data without point 3 28.49 1.934 0.929 

Table 6. Results of L1 analysis of Health Club Data (point 20 was deleted). 

1 mile Intercept Weight Pulse Strength 

Full data -57.03 1.090 -0.928 -0.317 4.853 

Data without point 20 8.69 0.806 -2.238 -0.365 5.958 

Table 7. Results of regression analysis of Health Club Data (Huber ~ with tunning constant 
1.2 was used, point 20 was deleted). 

1 mile Intercept Weight Pulse Strength 

Full data 8.06 1.303 -0.777 -0.538 3.969 

Data without point 20 12.18 1.273 -0.868 -0.531 4.048 

Table 8. Results of regression analysis of Health Club Data (Hampel ~b with tunning constant 
1.2 was used, point 20 was deleted). 

Intercept Weight Pulse Strength ¼ mile 

Full data 12.49 1.316 -0.873 -0.553 4.004 

Data without point 20 12.82 1.298 -0.849 -0.549 4.019 
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Table 9. Results of L1 analysis of U.S. Crime Data (point 3 was deleted). 

485 

Intercept Age Education Police Income 
Full data 450.3 0.426 -0.018 -2.096 -0.795 

Data without point 3 389.5 0.507 0.250 -1.818 -0.946 

Table 10. Results of regression analysis of U.S. Crime Data (Huber ¢ with tunning constant 
1.2 was used, point 3 was deleted). 

Intercept Age Education Police Income 
Full data 406.8 0 .476 0 .241  -2.073 -0.819 

Data without point 3 404.6 0 .472 0 .248  -2.066 -0.811 

Table 11. Results of regression analysis of U.S. Crime Data (Hampel ¢ with tunning constant 
1.2 was used, point 3 was deleted). 

Intercept Age Education Police Income 
Full data 403.1 0.477 0.281 -2.120 -0.781 

Data without point 3 399.9 0.471 0.292 -2.107 -0.773 

Example 3. U.S. Crime Data (47 cases, Vandaele (1978) or Hand et al. 
(1994)). These data are for the crime in U.S.A., and they concern 47 states. 
The goal of the investigation was to find how the crime rate (number of offence 
known to the police per 106 population) in 1960 depended on age distribution, on 
the fact whether the offence was accomplished in southern state, on the educa- 
tional level, on the police expenditure, on the labour force participation rate, on 
ratio of males in population, on the total number of population in the state, on 
the ratio of whites in population, on the unemployment rate, on the median family 
wealth and on the income inequality. The regressors were selected in the following 
way: The variables which appeared in the complete LS and in the complete LTS 
analysis as "highly" insignificant have been deleted (P-value over 0.2). Then LS 
and LTS analyses were repeated and the variables which were still significant were 
taken into account (of course, we do not want to claim that  it is the only possibility 
how to choose). So that  the variables used in the example are: Age distribution 
(the number of males aged 14-24 per 103 of total state population), Educational 
level (mean number of years of schooling of the population 25 years old and over), 
Police expenditure (the per capita expenditure on police protection by state and 
local government in 1960) and Income inequality (the number of families per 103 
earnings below one half of the median income). Their P-values for LS model are 
0.0413 (where 0 .0~  = 10 -r-0.~), 0.032714, 0.03773, 0.06 and 0.03137, respectively, 
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and for the LTS 0.06, 0.03353, 0.06, 0.06 and 0.0 6. 

10. Concluding remarks 

In the LS-regression analysis the formula (1.1) has been frequently used in the 
studentized form (in the situations when the data are "regressionally equivariant" ) 

(10.1) (/~(s3.1'') - flL(S),j)[var(/~(L~31't) -- ~(LnS)j)] -1/2 = ( ] ' r  E - -  X[/~(LrS))O "-1 

~(,~-l,e) ^(n) for j = 1, 2 , . . . ,p ,  or for the norm of the difference /LS -- fits II in the form 

]tI3(LS~j 1'*)- 3(LS),j {f[var ([#(S5 l ' g ) -  a(LS),jlI] -1/2 = {(Yt - x T  fl(LS))a--'I. 

Let us assume the continuous ~b-function. For the M-estimators the presence of 
Op(1 ) in (6.3) generally does not allow to derive directly from (6.3) an approxima- 
tion to the variance of [[/3(~-1,t)_ 3(~)I[- But this fact indicates that the term o v (1) 
in the representation (6.3) may cause that the exact variance of 1[/3 (n-z'/) -/~(n)tl 

of/~J~-l , t ) /~J~))  is much larger than (or 

= E~.2¢ ' ( -~ )  trace{Q-I} var{¢(fYt - g(X,,/3(n))]~n 1)}0"2 or~. H (lO2) 

(or than 

(10.3) a~j) = EF2~b ' ( - ~ ) { Q - 1 } j j  var{~b([Y~ - 9(Xt,/~('0)]&~1)}~2). 

It means that the large values of var I1/~ (,~-1'~) -/3(n)ll (and of var(/~J ~-1'0 -/3J~))) 

might be caused by the fluctuation of [I/~ (n-l't) -/~(n)[I (and of ~.j/}(n-I'*) _ /~n))  
on a set of (very) small probability. But then we may prefer to "studentize" 
]j/~(,~) _/~(n-l,*)]] by (10.2) (or/~!n-l,*) _/~!n) by (10.3)), i.e. by the asymptotic '=3 /=3 
variance of 1[/3 (~) _/~(~-1,~)II rather than by an approximation to the exact variance. 
We obtain 

IY~ - g ( x t , 3 ( n ) ) l  

Ifd ¢~-1'~) - ~ ( ~ ) l l  G ~  -- varl /~{¢([y~ - ~ (x~ ,  Z) ]~;~)}  

or (independently for any j -- 1, 2, . . .  ,p) 

~.j , ( j)  - v a r Z / 2 { ~ b ( [ y t  - g ( Z e , f l ) ] & n l ) } "  

One may also observe that the difference in the prediction of the response 
variable based on the estimate ~(n) or on ~(~-1,~) is proportional to the same 
quantity. In fact, for any £ -- 1,2, . . .  ,n and some X E R p we obtain 

9 ( n ) _  ?( , , -~, , )  = x ~{~(, ,)  _ ~(~-~, , )}  



SENSITIVITY ANALYSIS OF M-ESTIMATES 487 

and hence 

s u p  { l ?  (hI - ?(n-l, )lllxl1-1} = ll (n) - 
IIzll=l 

It also follows from (6•3) that for ~bs - 0 the largest change of the estimates 
of regression coe~cients cannot overcome some bound which is proportional to 
supzeR [¢(z)[. Whenever es ~ 0 the change may be much larger (see (7.3)). It 
hints that it is presumably better to avoid discontinuous ¢-functions. 

Further, as we have already observed in Remark 9 the only random factor in 
(6.3) which depends on the d.f. F is ¢(Y~-g(X~,/~(~))), range of which is bounded 
by infzeR ¢(z)  and supzeR ¢(z).  It means that in the case when the gross error 
sensitivity of the estimator is properly assigned, i.e. when some outliers are actu- 
ally winsorized, maxl<~<n ]]/~(~)-/~(n-l,~) [] is nearly always equal to SUpzcR I¢(z)] 
multiplied by some constant• So, it seems somewhat strange to try to test signifi- 
cance of the largest change of the estimates. It implies that to create a possibility 
to test significance of the change, we need to exclude some, sufficiently large sub- 
sample of data. The percentage of the excluded observations has to be larger than 
the contamination level• We hope the problem will be treated in the forthcoming 
paper. 

Acknowledgements 

We would like to express our gratitude to the anonymous referee for carefully 
reading the manuscript. In fact, the present form of the proof of Lemma A.1 is 
due to him/her. We also thank the valuable suggestions which led to the general 
improvement of the paper, in order that this, as we hope, is easier to read. 

Appendix 

Remark 10. In the proofs we shall need some constants Cm, m = 1, 2 , . . . ,  
definitions of which will be straightforward. The definitions of the constants will 
hold only within the given proof. 

PROOF OF LEMMA 5.1. First of all, let us put 

~(Xi, n-1/2t, n-1/2-r u, e -n-1/2v) 

= min{ei - 5(X~, n-1/2t, n-1/2-¢u), ei - 6(Xi, n-U2t)}a- le  -~-~/%, 

~(Xi, n-1/2t, n--1/2--r U, e -n-1/2v) 

---- max{e/--  (~( Xi, n-1/2t, n-1/2-r u), ei - 5(Xi, n-1/2t) }(7-1e-n-1/2v. 

Under the assumptions of the lemma we have for j = 1, 2 , . . .  ,p 

Sj(n-1/2t, n-1/2-ru, aen-~/2~) 
n 

I ~ ! X = --n-1/2-r E { ¢  (~i)gj( i, n-1/2t, n-1/2-~-tt) 
i=1 

• [g(Xi, n-1/2t, n-1/2-~~t)]Wa-le-n-1/2v 

-- ¢(~i)[gj'. (Xi, n-1/2t, n - ' /2 - r  (t)lT}u 
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where g = g(~-) and ~ = ~l~(7, t ,g,v)  are appropriately selected and we have 
[l~ll < II~[I and 

~i S (~(Xi, rt-l/2t, ~- l /2-ru ,  e-n-~/~v), ~(-~i, n-1/2t, n -1/2-ru, e-n-~/av)). 

Using the fact that the derivatives ~b', g' and g" are Lipschitz we obtain (uniformly 
for j , k  = 1,2, . . . ,p ,  n > 45o2M 2, uniformly in 3(/ ~ R q, i = 1 , 2 , . . . , n  and 
t,u~TM) 

~ C1~ 

I;;,(x.~, ~-~/h,  ~ -~ /~-~)  - ;~(x~, ; ° )  I _< ~-~/~. ~ 
and 

Ig~lk(Xi, ?.~-l/2t, ~-1/2-~',~) _ g}tk(Xi ' ~0)[ ~ n - l / 2 .  C3 

where C1, C2 and C3 are finite constants. It implies that 

sup Sj(n-1/2t, n-1/2- 'u ,  ~e '~-1/2~') 
TM 

+ n 1/2-~- ~, , gj (x~, 9 °) [g' ( z .  9°)]% -~ 

The application of the central limit theorem and of the Jaw of large numbers 
concludes the proof of lemma. [] 

PROOF OF LEMMA 5.2. From the character of the C-function it follows that 
I F¢  (~)[  < oc. Let us denote for any u e R p and k e {1 ,2 , . . . , p}  

z(k) = (?~l ,?~2, ' . ' ,~k- l ,Z,0 , . . . ,0)  T 

and 

7~(n-1/2t ,  n-1/2-%,  ad~-~/%) 

= {i e N :  (~(Xi, n-lt2t,  rt-1/2-~u, e-n-W2v), 

((X~, n-lt2t ,  n- l l2-~ u, e-~-~/%) ) 

n {~1, T~,..., ~h} # O} 
Now, we may write for any i = 1,2 . . . .  , n, t, u ~ R p and v E R + 

sj (Xi, n-U2t, n-1/2-¢ u, ~e ~- ~/2v) 

P ~0 uk n--1/2--TZ (k) (r-le-n-ll~v = ~-~/~-~ ~ {-¢([e~ - ~(x,, ~-~/~t, ~ )1 ) 
k=l 

X yj(Ai~l~ 6~1~ ~n ) 
I X X gk( i , n - l l2 t tn -1 /2 - r z  (k)) a-l.e-n-ll2v 

+ ~b([ei - 5(Xi, n-:12t, n - :12- ' z  (k),~ )]~r-:e -~- ' /%) 

× g}~(X~,n-1/zt,n -1/~-" z(~)) }dz. 
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So, for i E 7-ln(n-W2t, n-U2-~u, ae n-x/%) and for t, u, v E TM 

[sj(Xi, n-1/2t, n-1/2-~u, ae~-~/%)] < n -1/~-~ . K-  J .  (J + 1)pl/21[ull. 

Moreover, I{ieu,} = 1 implies that  there is g E { 1 , 2 , . . . , h }  such that  re c 
(~(Xi, n-1/2t, n-1/2-~u, e-n-~/%), ~(Xi, n-1/2t, n-~/2-'u, e-n-i/%)), i.e. either 

rgcre n-~/% + 5(Xi, n-1/2t, n-1/2-ru) ~ ei ~_ r~ae n-~/% + ~(Xi, n-1/2t) 

or 

rg(Te n-1/2v + ~(Xi, n-1 /2 t )  _~ ei ~_ reae n-1/2v + 6(Xi, n-1/2t, n-1/2-rU). 

Assuming 5(X~, n-1/2t, n-Z/2-~u) >_ ~(X~, n-1/2t) we have 

(A.1) F(rgae n-I/% + 5(Xi, n-U2t, I~--I/2--TU)) 
- F(rtae n-~(~/2)~ + 5(Xi, n-i/2t)) 

: n -1/2-¢" £ [Uk f(r~ffen_i(1/2) v -~ ~(Xi,n-1/2~, T~-I/2-TuZ~k))) 

k=l Jo 

x gi(Xi,n-U2t,  n -1/2-'z(k))dz 

and so 
P(I{ ie~.}  = 1) _< 2n -1/2-~ . H .  J .  h .pl/21[ul[ 

(for H see Condition B (ii)). Moreover, -t.o~I~-1/2-~ z_~i=lV'~ [ I{ i~ ,}[}  - < 2n-2rH"  J" 
h. pl/211u H and the Chebyshev inequality for nonnegative random variable gives 
for any C1 > 0 

( 
E ~en-1/~v~I > P . s u p  ) {ieU.} C1 

k 7-M [i=1 ] 

~yen-1/2v~i [ -< Pc  s u P E  sj(Xi,n-1/2t, n-1/2-ru, ) {iET-/n}[ > C1 
\ TM i=l 

<- C~ IE n-1/2-r I{ie~.} , 
k i=1 

i.e. n 
sj(Xi, n-ll2t,  n-1/2-r u, aen-a/%)l{iET~} 

i=l 
= Op(n-2 ). 

Along the same lines we may prove that  

n-1/2-'sup~-M ~ {¢' (~)g;'(X~'D°)[g'(Xi'/3°)]Wl{ie~"}} 

and 

u = Op(n-2~), 
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and since 

= O p ( n - 2 " ) ,  

~j (n- 1/2t, n - 1 /2 - r  u, ae n-1/%) 

: E s j ( X i ,  n-1/2t ,  n -1 /2 - ru ,  (ren-~/2v)I{i¢~} 

i = 1  

+ ~ s j (X i ,  n-1/2t ,  n -1 /2-~u,  aen-1/2")I{iennl,  
i = 1  

the same steps which were performed in the proof  of Lemma 5.1 conclude the proof  
of Lemma 5.2. [] 

LEMMA A.1. Let for some p e N,  {F(n)}~=l, ~2 (n) = {v}~ )lj=l'2~i=l,2,...,pp be a 
sequence of  (p × p) matrixes such that for i = 1, 2 , . . .  ,p  and j = 1, 2 . . . .  ,p 

(A.2) " ('~) l lrn vii = qij in probability 

,~ -,j=1,2 ..... p fixed nonrandom regular matrix. Moreover, let where Q = lqij~i=l,2 ..... p is a 
{0(n)}~__ 1 be a sequence of p-dimensional random vectors such that 

3@ > O) V(K > O) limsupP(l[O(n)[1 > K)  > c. 
n~--+ O0 

(A.3) 

Then 

so that 

3(6 > 0) V(L > 0) 

l imsup P(l[l)(n)o(n)]t > L) > 5. 

PROOF. Due to (A.2) the matrix ];(n) is regular in probability. Let then 
0 < )~ln < "~2n < " " " < /~pn and Zln, Z2n, • • •, Zpn be eigenvalues and corresponding 
eigenvectors (selected to be mutually orthogonal) of the matr ix  [F(~)]w~)(n). Let 

6(~) write P z (for appropriate  vector = (aln, US ----- ~-~j=l ajn jn an an a2n, . . ,  apn)T). 

Then we have 

P 

(A.4) tll2(~)0(n)[I 2 : ~[ajn]2Aj~[[zjn[[ 2 > Aln][0(~)l[2. 
j = l  

Moreover, denoting A1 the smallest eigenvalue of the matr ix  QTQ, we have Aln 
A1 as n --~ oc. The assertion of the lemma then follows from (A.4). [] 

PROOF O F  LEMMA 6.1. Let us recall tha t  according to Conditions C we 
have 

~ V / ~ ( ~ ( n  ) __ / ~ ( n - - l , e ) )  ---_ O p ( 1 )  a s  n ~ 
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and let us put  tn =- V~(~(n)--f /0) ,  Un = V~(~  (n-z'e) _/~(n)) and Vn = v/-n(log ~ n -  
log a).  Then there is a constant  C1 > 0 so tha t  start ing with some n~ we have 

P(max{lltl l ,  I1~111~1} < C1) > 1 - c. 

Considering T = 0 and subst i tut ing tn, u~ and ~ into Lemmas 5.1 and 5.2 we 
obtain  

n 

- 

i = 1  

- - g(x , 

_ [ a ~ l v Q  + Op(1)]n(~(n) _ ~(n--l,~)) = Op(1) as n --* oc. 

Finally, taking into account (6.1) and (6.2) 

[a~Z~Q + Op(1)]n(~(~) _ ~(~-1,~)) 

: ¢ ( [ Y ~  - -  g(Xg, ~(n-l'g))]tTnl)gZ(X~,/~(n--l,~)) _[_ Op(1) as n ---* oo. 

The application of Lemma A.1 concludes the proof. [] 

LEMMA A.2. (St~p£n (1987), p. 420, VII.2.8) Let a and b be positive num-  

bers. Further let ~ be a random variable such that P(~  = - a )  = ~ and P(¢  = b) = 

1 - 7r (for a ~r C (0, 1)) and E~ = O. Moreover let ~- be the t ime for  the Wiener  
process W ( s )  to exit the interval ( - a ,  b). Then 

where "=l)" denotes the equality of  distributions of  the corresponding random vari- 
ables. Moreover,  ET  =- a" b = var ~. 

Remark  11. Since the book of St~p£n (1987) is in Czech language we refer 
also to Breiman (1968) where this simple assertion is not isolated. Nevertheless, 
the assertion can be found directly in the first lines of the proof of Proposi t ion 
13.7 (p. 277) of Breiman's  book. (See also Theorem 13.6 on the p. 276.) 

PROOF OF LEMMA 7.1. First  of all, we shall consider 

Sn(t, u) = ~-~[¢m(e~ - n - 1 / 2 x T t  -- n - l X T u )  -- Cm(ei -- n - Z / 2 x T t ) ] X i .  

i = 1  

According to the assumptions,  there is a A > 0 and C1 < c~ such tha t  for any 
Izl < A we have If(z)] < C1. Let us denote ~ i ( n , t , u )  = Cm(ei - n - 1 / 2 X ~ t  - 
n - l X T u )  -- Cm(ei -- n - Z / 2 X T t ) .  It is clear tha t  ~ i ( n , t , u )  ~ 0 with positive 
probabil i ty only if either 

(A.5) ei - n - 1 / 2 x T t  < 0 < ei -- n - 1 / 2 X T t  -- n - l X T u  
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o r  

(A.6) 

+-~ n-1/2XiTt  < ei < n - 1 / 2 x T t  + n - l x T u .  

Let us denote the probability of this event by 7ri(n, t, u) (observe tha t  of course, 
for given i only one of the events (A.5) or (A.6) can appear). We have, s tart ing 
with n > 4pK~C2A -1, in the case (A.5) 

n-1/2 XiT t 

~ri(n, t, u) = f ( z ) d z  < n - lC2  
Jn-1/2XiTt+n-l  XTu 

for some finite positive C2. The same is true for (A.6). Further,  we shall assume 
~ 1  Xie[~i-E~i] and t, u C TM. As a first possibility let us consider tha t  X T u  < 0 
and Xiz > 0. We easy find tha t  

Xie[~i(n, t, u) - EF~i(n,  t, u)] = 2Xig(1 - 7ri(?~ , t,  U)) 

= 2[Xie[(1 - rri(n,t,u)) < 21X~l 

with probability 7ri(n, t, u), 

= -2Xielri(n,  t, u) 

= -2[Xiellri(n, t, u) > -2n- l IX ie[C2 

with probability 1 - 7ri (n, t, u). 

For Xie < 0 we have 

Xie[~i(n, t, u) - EF~i(n, t, u)] = 2Xie(1 - 7ri(n, t, u)) 

= -21X~ei(1 - ¢ri(n, t,  u ) )  > -2IX/el 
with probability :ri (n, t, u), 

= -2Xi~rri(n, t, u) 

= 2lx~lTr~(n, t, u) < 2n-l lXielC2,  

with probability 1 - 7ri(n, t, u). 

Having analyzed in the same way the case X T u  > 0, we find tha t  for X T u  • Xie > 0 

(A.7) 

(A8) 

Xig[~i(n, t, u) - EF~i(n, t, u)] = -2 IN ,  el(1 - ~r~(n, t, u)) > -2IN,el,  

with probability 7ri(n, t, u), 

= 21XielTri(n, t, u) < 2n- l IXf f IC2,  

with probability 1 - 7ri(n, t, u), 

and for X T u  . X~e < 0 

(A.9) X~e[~(n, t ,u)  - E F ~ i ( n , t , u ) ]  = 2[Xiel(1 - 7ri(n,t,u)) < 2[Xiel 

with probability 7ri(n, t, u), 
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(A.10) = -2IXit[~ri(n , t, u) > - 2 n  -1 [Xit]C2 

with probabil i ty  1 - 7ri(n, t, u). 

So, put t ing for X T u  - X i t  > 0 ait( t ,u)  = 21Xie](1 - ~ri(n,t,u)) and bit(t,u) = 
2]Xi t l r i (n , t ,u ) ,  and for x T t  • X i t  < 0 ait( t ,u)  = 2n- l lX i t l l r i (n , t ,u )  and 
bit(t, u) = 2IZit](1 - ~ri(n, t, u)), we may utilize a e m m a  A.2 and define 

#it(n,  t, u) the time for Wiener process to exit the interval ( -air( t ,  u), bit(t, u)) 

W n and we obtain  (since W(#nt (n ,  t, u)) =z) (~-~'~i=1 pie(n, t, u)) - -  W(~--~i= 1 . n - 1  

(see again Theorem 13.6 of Breiman (1968)). Now, due to inequalities which are 
given in (A.7), (A.8), (A.9) and (A.10), put t ing cit = 2n-lIXitlC2 and die = 21xitl 
and defining 

(A.11) ~+(n,  M )  the t ime for Wiener process to exit the interval ( -c ie ,  die) 

and 

(A.12) ~ - ( n ,  M )  the t ime for Wiener process to exit the interval (-die,  cit) 

we obtain 
#i(n, t) < a+(n, M )  + a ; ( n ,  M)  = hi(n, M) ,  

so that  

) (A.13) sup ISnt(t)7-M - EFS~t(t)] = v  "rM # i (n , t , u )  

_sup Iw(s)l:0<8<  i(n,M . 

i=1 

Moreover, see again Lemma A.2, we have from (a.ll) and (A.12) for any t, u E TM 

EFgi (n  , C) ~ 4n-lX2eC2 < n - l C 3  

for some C3 E (0, oo) for all n e N,  i.e. 

It means that  for any positive e there is a constant  C4 and n~ C N so that  for any 
n > h e  

(A.14) P n i (n ,C)  > C4 < - 
i=1 2 
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and then there is also C5 E (0, ~ )  such that 

(A.15) P{sup{IW(s)l : 0 < 8 < C4} > C5} < 2 '  

see e.g. CsSrg5 and R~v~sz (1981). Taking into account (A.13), (A.14) and (A.15), 
we arrive at 

and it means that also 
s u p  Itsn (t) - EFS  (t)Ji 
TM 

is bounded in probability. We shall finish the proof if we show that 

sup IIEFSn(t) -- 2f(O)Qu]l = O(1). 
TM 

Let X f u  > 0. Then 

f 
n-ix~u 

EFXi~i(n, t, u) = 2Xi f ( z  + n-U2Xirt)dz 
JO 

f 
~ - ~ x ~  

= 2Xi [f(0) + f ( z  + n-1/2X~t)  - f(0)]dz 
J0 

= n - lX iXT u f (O)  + Ri*nt. 

Since f (z )  is Lipschitz, we have If(z + n-1 /2Xyt )  - f(O)l < n-UZc6 and hence 

C6 F- X Udz IlRi* tll _< n - 1 / 2  • = n-3/2C611x x[ ll 
J0 

and it implies that (due to (2.3)) 

n f(0) i~=leFXi~i(n,t,u) - Qn. u.  <_ n -1/~11C6. Q,~. ull = Op(1) 

which concludes the proof. [] 
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