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Abst rac t .  This paper considers the asymptotic properties of two kernel es- 
timates f,~ and fn, which have been proposed by Bhattacharyya et al. (1988, 
Comm. Statist. Theory Methods, A17, 3629-3644) and Jones (1991, 
Biometrika, 78, 511-519), respectively, for estimating the underlying density 
f at a point under a general selection biased model. The asymptotic optimal- 
ity of f ,  and f ,  is measured by the corresponding asymptotic minimax mean 
squared errors under a compactly supported Lipschitz continuous family of the 
underlying densities. It is shown that, in general, f,~ is a superior local estimate 
than f,~ in the sense that the asymptotic minimax risk of f ,  is lower than that 
of f,~. The minimax kernels and bandwidths of fn are computed explicitly and 
shown to have simple forms and depend on the weight functions of the model. 

Key words and phrases: Kernel density estimate, minimax mean squared er- 
ror, minimax kernel, bandwidth, weighted distribution, selection biased data. 

1. Introduction 

Let X 1 , X 2 , . . . , X n  be an i.i.d, sample with distribution function G(x) = 
P ( X i  <_ x), x > O, i = 1 , . . . ,  n, and density g with respect to Lebesgue measure 
on the line. Then G is a weighted distribution or selection biased distribution if 
there is an underlying density f and a non-negative weight function w on (0, oo) 
such that 

(1.1) g(x) = w ( x ) f ( x ) / # ,  z > 0 

where # = f o  w( t ) f ( t )d t .  To avoid any identifiability problem for (1.1), we assume 
throughout that  the weight function w(x)  is known. Theory and applications of 
(1.1) have been studied by Cox (1969), Patil et al. (1988), Patil and Taillie (1989), 
Vardi (1985), Ahmad (1995), among others. 

In density estimation, two types of kernel estimates of f ( x ) ,  

w - l ( x )  E K  x 
(1.2) i n ( x ) -  nhnhn i=1 ~n 

and 
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(1.3) 
n ( ) 

1 Z w - I ( X i ) K  x -  Xi 
~ ( X ) -  nhn~ln i : 1  h -n  ' 

have been proposed by Bhattacharyya et al. (1988) and Jones (1991), respectively, 
where hn > 0 is a bandwidth, K(.) a kernel function and 

(1.4) ~n = _1 ~ w _ l ( x i ) .  
n 

i=1 

In statistical literature, the asymptotic efficiency of a density estimate can be 
measured either by a Bayes criterion or by a minimax criterion. Under the mini- 
max criteria, the efficiency of a density estimate can be described by its asymptotic 
minimax mean squared errors (MSE), or its global analogue, the asymptotic min- 
imax integrated mean squared errors (IMSE). Studies of asymptotic minimaxity 
for kernel type estimates in the classical i.i.d, direct sample case can be found 
in Sacks and Ylvisaker (1981), Donoho and Liu (1991b), among others. For the 
special case of length bias model where w(x) = x, Wu (1995) has shown that, 
under a compactly supported Lipschitz continuous family with order one, that is, 

be(C, 1;x,a,b) = { f :  f(y) - 0 if y ~ [a,b],0 _< a < x < b < oc and 

If(x) - I(Y)I -< Clx - Yl for all y E [a,b], some C > 0}, 

fn(x) and in(x) are locally equivalent in the sense that they have the same asymp- 
totically minimax mean squared errors, and furthermore, the minimax kernel is 
a non-negative triangular kernel and the minimax bandwidth is a deterministic 
bandwidth which depends on w(x) = x and is of order n -1/3. 

The aim of this paper is to generalize the approach of Wu (1995) to the 
general selection biased model (1.1) and a more general family of the underlying 
density functions. Specifically, we consider some compactly supported Lipschitz 
continuous families defined by 

(1.5) Y ( C , a ; x , a , b ) = { f : f ( y ) = - 0 i f y ~ t [ a , b ] , 0 _ < a < x < b < e c a n d  

IX(x) -/(Y)I -< el x -  Yl '~ 

for all y E [a, b] and some C > 0} 

where 0 < a _< 1 is assumed to be a known constant, and study the asymptotic 
minimax mean squared errors of fn(X) and fn(Z) under .~(C, a;x,a,  b). Denote 
R(], f (x))  to be the risk (MSE) of any estimate ](x) such that 

(1.6) R(], f (x))  = Eg[f(x) - f(x)] 2. 

The asymptotic properties of in (x) and in (x) are measured by the large sample 
behavior of their minimax risks 

and 

Pn(f; x) = inf sup R(fn, f (x))  
K,h~ fE.T'(C,a;x,a,b) 
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pn(];x) = inf sup n(f~,f(x)),  
K,hn f6.~(C,ol;x,a,b) 

respectively. The families defined in (1.5) include a large class of interesting den- 
sities which are less smooth than the twice differentiable family ~ considered by 
Jones (1991) and Ahmad (1995). Unlike the direct sample case, the compactness 
of the support of f ensures that the minimax mean squared errors of ]~ actually 
exist for those w(x) which might be unbounded when x ~ co, such as the length 
biased model w(x) -- x. Without the compactness on the support of f ,  one has 
to make additional assumptions such as w(x) is bounded away from 0 and oc 
on (0, co), or f o  w(x)f(x)dx < oc and f o  w- l (x) f (  x)dx < cc uniformly for all 
f 6 ~(C,  a; x, 0, oo), etc. Since most real life situations have compact supports, 
such compactness assumption should be mostly realistic. 

The main results of this paper have several interesting features. First, the 
asymptotically minimax MSE of in is always lower than that of ]~. This the- 
oretically justifies the heuristic impression that ]~ is a locally better estimate 
than fn (see Jones (1991) or Ahmad (1995)). Second, since the optimality of 
in (or in) is measured by their mean squared errors, we assume here only the 
minimal conditions that the expectations and variances of ]~ (or ]n) exist for 
all f C $'(C, a; x, a, b) and n > 1. These conditions guarantee the existence of 

R(fn, f(x)) (or R(fn, f(x))) for all f e .~(C,a;x,a,b) and n > 1. Even though 
there are no prior restrictions on bandwidths h~ and kernels K, it is shown in Sec- 
tion 2 that  the natural conditions on h~ and K as assumed in Jones (1991) and 
Ahmad (1995), such as h~ -~ 0 and nhn ---+ oc as n ---+ cc and f K(u)du = 1, are 

necessary to ensure the consistency of ]~ in the sense that l imn-.~ R(9~, f(x)) = 0 
for all f E 9~(C, a; x, a, b). However, the consistency of ]~ may require the value 
of f K(u)du to be other than 1. Third, unlike the usual differentiable families, we 
can not apply Taylor expansions to the less smooth family 5r(C, a; x, a, b). Thus 
our derivations of the minimax kernels and bandwidths are based on the straight- 
forward approach of step by step analysis of the least favorable risks of fn and 
]~. Fourth, the asymptotic minimax risks of in and ]n, and the choices of opti- 
mal kernels and bandwidths depend on the smoothness of w(x). When w(x) is 
continuous at x, our optimal kernels are symmetric about zero. When w(x) is 
discontinuous at x, optimal kernels may be asymmetric about zero. Finally, the 
minimax kernels obtained in this paper have simple forms, and the optimal band- 
widths are deterministic and computationally tractable. For practical purposes, 
it is also worthwhile to develop some data driven bandwidth selection procedures. 
However, to maintain our focus on asymptotic minimaxity, we omit the discussion 
of such procedures in this paper. 

In Section 2, we give some useful notation and preliminary results. In Sec- 
tion 3, we formulate the minimax estimation procedures of in and ]n, compute 
their asymptotic minimax risks, and derive the corresponding minimax kernels and 
bandwidths. In Section 4, we present some examples and compare the relative ef- 
ficiency of different kernels. Finally, the proofs of the main results of Section 3 are 
deferred to Section 5. 
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2. Preliminary results 

Throughout we make the following assumptions on w(.): 

ASSUMPTION A. The weight functions w(.) are strictly positive and uni- 
formly bounded away from 0 and oo on [a, b], i.e. for each [a, b], there exist universal 
constants 0 < re(a, b) < M(a, b) < oo such that 

m(a,b) < inf w(t) <_ sup w(t) <_M(a,b). 
tei~,b] tela,b] 

ASSUMPTION B. For each w(.), there exists a neighborhood ( x -  6, x + 6) of 
x such that w(t), t E (x - & x  + 6), has right and left limits w(x+) and w(x_) at 
x, i.e. 

l imw(t) = w(x+) and limw(t) = w(x_). t~x tTx 

Suppose that u = f w -1 (t)g(t)dt is known. Then the natural analogues of fn 
and fn are given by, respectively, 

(2.1) 

and 

( 2 . 2 )  

]~(x)-- nhnl u ~ w - I ( X ' ) K (  x - X '  ) . :  -h(~ 

(?) w-l(x)  K z = " 

The main effort of this section is to show that  in and ]~ are asymptotically 
equivalent to ]~ and ]*, respectively. Thus it suffices only to study the asymptotic 
behaviors of R(]*, f(x)) and R(]*, f(x)). 

Let B(f,  f(x)) and v ( f ,  f(x)) be the bias and variance of any estimate f(x),  
respectively. By routine computation, u = #-1 and the change of variables, the 
risk of ]* (x) is given by 

(2.3) \dn~ V ^* R(f*, f(x)) = B2(~ * f(x)) + (f~, f(x)) 

where 

f B ] - -  _ _  (f~,f(x))= K(u)f(x hnu)du f(x), 
J 

V(f~, *̂ f(x)) = ~n# _-/w(x - hnu)-lK2(u)f(x hnu)du 
2 : 

Similarly, the risk of ]* (x) is given by 

(2.4) R(]*, f(x))  = B~(]~ *, f(x)) + V(L*, f(x)) 
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where 

[ 
B (fn, f(x))  w-~(x) K(u)w(x hr, u ) f (x  h n u ) d u - f ( x ) ,  

J 

V(],~, f (x))  - w-2(x)/~nhn f K (u)w(x- h n u ) f ( x -  hnu)du 

w-2(x) g (u)w(x  - hnu)f(x - hnu)du 
n 

The next theorem summarizes the necessary conditions on K and hn for 
the consistency of f~(x) and fn(x), and the asymptotically equivalence between 
£(x ) ,  f~(x) and their corresponding f*(x), f*(x). Its proof can be obtained by 
modifying the method in the proofs of Theorem 2.1 and Lemma 3.1 of Wu (1995), 
hence is omitted for brevity. The details of the proof can be found in Wu and Mao 
(1994) and Wu (1994). 

THEOREM 2.1. (A) Suppose that B(j~,f(x)) and V(f~,f(x)) exist for all 
n > 1, and 

(2.5) lim R(]n, f(x))  = 0 for all f E .~(C, ~; x, a, b), 
~ - - ~  0 0  

then the following hold: 
(a) lim,_~o~ h~ = 0 and lim~-~oo nh,~ = co, 
(b) K(-) is integrable on (-co, co) and f g(u)du = 1, 
(c) when n is sufficiently large, 

sup 
f 6.~ ( C,c~;x,a,b ) 

R(fn, f(x))  -- 
^~ 

sup R(f~, f(x))  
f e.~( C,w;x,a,b) 

+o/ suo 
\fE.T'(C,a;x,a,b) 

Furthermore, if 

(2.6) lim sup n2a/(2~+l)R(] *, f(x)) = )~ for some 0 < A < co, 
n---+oo feT(C,v~;x,a,b) 

t hen  

(d) hn = O ( n  -1/(2(~+1)) f o r  sufficiently large n, 
(e) f Ig(u)llul~du < co and f g2(u)du < co. 

(S) I f  in and/* in (2.5) and (2.6) were replaced by £ and ]*, then (a), (c), 
(d) and (e) still hold, but (b) is replaced by 

(b') limn-~oo f(x-a)/h. K(u)w(x - hnu)du = w(x). J(x--b)/h,~ 

Remark 2.1. It is well-known that n -2a/(2cx÷l) is the optimal convergence 
rate for kernel density estimates with i.i.d, direct samples (cf. Stone (1980), Donoho 
and Liu (1991a)). We will see later in Theorem 3.1 that n - 2 a / ( 2 a + l )  is also the 
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best attainable convergence rate for kernel density estimates with biased samples. 
A clear implication of Theorem 2.1 is that,  for the selection of optimal kernels and 
bandwidths, it suffices to eliminate any K(.) and hn which do not satisfy (a), (b) 
(or (b')), (d) and (e) of Theorem 2.1. 

Remark 2,2. Contrary to the usual condition of f ~  K(u)du = 1 in kernel 
density estimation, Theorem 2.1(B) shows that,  in certain cases where w(.) is 
discontinuous at x, the consistency of j~(x) may require that  f _ ~  K(u)du ~ 1. 
For example, suppose that  w(x) = 2 and w(t) = 1 if t ~ x, then Theorem 2.1(a) 
and (b ~) imply that  

f ( x - a ) / h ~  : _ ~  
lira ] K(u)du = K(u)du = 2. 

n--*oe J (x-b) /h~ c~ 

3. Minimax risks 

This section is devoted to deriving the minimax risks of ]n and ]~. From 
Remark 2.1, it suffices to consider (K, hn) which satisfies (a), (b) (or (b')), (d) 
and (e) of Theorem 2.1. Here, we first compute the asymptotic form of the least 
favorable risk supfcT(C,a;x,a,b ) R(]*, f(x)),  and then derive the minimax kernels 

and bandwidths for f~. The asymptotic minimax risk of fn is shown to be a lower 
bound of the minimax risk infK,h~ sUPfe~=(C,~;x,a,b ) R(f*, f(x)).  

LEMMA 3.1. (A) If (2.5) and (2.6) are satisfied, then there exist constants 
Po and Po such that 

0 < P0#o  = s u p  f(x)p < oc 
f E.T'( C,a;x,a,b ) 

and, for sufficiently large n, 

(3.1) sup R(]*, f(x)) 
f c.T'( C,e~;x,a,b ) 

= h,~ C IK(u)ll~l~d~ + o(h~ ~) + o(~-ehX ~) 

Po#o K 2 K 2 + ~ w- l (x+)  ( u ) d u + w - l ( x - )  (u)du . 
O O  

(B) If (2.5) and (2-6) are satisfied with fn and ]~ replaced by in and fn, 
then, for sufficiently large n, 

(3.2) sup (f~, f (x))  > r(h~, K) + o(h~ ~) + o(n-lh~l), 
f E JF ( C,c~;x,a,b ) 
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where 

.-n -- [ w(x) ~ ]K(u)llul~du + w(x----~ Ig(u)llul~du 

P0#0 [w(x+) 0 w(x_) K2(u)d u . 
+ nn L 2(x) 

Remark 3.1. For some special cases, the value of Po#o can be computed 
explicitly. However, when there are more complicated weight functions involved, 
explicit solutions of po#0 may be difficult to obtain. Thus we have to compute 
/)otto numerically. A special density sequence which may be used to compute the 
value of P0#o is given in (5.1) of Section 5. 

It is now clear from Theorem 2.1 and Lemma 3.1 that the asymptotically 
minimax risks of ]n can be derived by finding a sequence of bandwidths and kernels 
which minimize the dominating terms of the right hand side of (3.1). Similarly, 
minimizing the leading term F(hn, K) at the right hand side of (3.2) with respect 
to some (h~, g ) ,  we can obtain a lower bound of the minimax risks of ],~(x). 

For the minimax risks of in(X), we define a kernel Kopt and bandwidth hopt 
such that 

{ 2w(x+) [ [ 2a "~ a ] a + l  
w ( x + ) + w ( x _ )  [ 1 - \ a + l ]  lull] i f - - - < u < 0 , 2 a  - 

(3.3) Kopt(u) = 2w(x_) ( 2a ~ ~ a + l 
1 - \~--~-~] lul ~ if 0 < u < -- '2(~ w(x+ ) + W(X_) 

0 otherwise, 

and 

(3.4) [ 2 1 hopt = n-1/(2a+l)(po#o)1/(2~+l)C-2/(2a+l) w(x+) + w(x_) 

x (c~ + 1)-2~/(2a+1)(2c~)2a/(2a+l)(2c~ + 1) 1/(2a+]). 

1/(2a+l) 

For the lower bound of the minimax risks of in(x), we consider the same 
bandwidth hopt as defined in (3.4) and a new kernel Kopt. such that 

(3.5) Kopt,(u) =- w(x_)+w(x+) 1-  lul i f J u l < - -  
- 2 a  ' 

0 otherwise. 

Since gop t and Kopt. have the same support on a compact interval, it is easy to 
verify that they satisfy the necessary conditions of Theorem 2.1. The conclusions 
of Lemma 3.1 lead to the following main results of this section. 
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THEOREM 3.1. The kernel Kopt and the bandwidth hopt as defined in (3.3) 
and (3.4) are asymptotically minimax for in(x).  Furthermore, the asymptotic 
minimax risks of in(X) and £ ( x )  satisfy 

(3.6) lim n2~/(2~+l)pn(]; x) 
n - - - * o ~  

>_ lirn n2~/(2a+l)F(hopt, gopt.) 

= lira n2~/(2c~+l)pn(f;x) 
n ---~ O O  

= lim n 2a/(2~+1) sup R(]gopt,hopt,f(x)) 
n---*oo f e ff: ( C,a ;x,a,b ) 

= C2/(2a+l)(Po#o)2~/(2~+l)[(2a)-2a/(2a+l) + (2a) 1/(2a+1)] 

2 12~/(2~+1) 
× w(x+)+w(x_)] 
x (2a + 1)-1-0/(2~+1))(~ + 1) 2a/(2a+l). 

Remark 3.2. The minimax kernels and bandwidths of in(x) are not unique. 
In fact, the asymptotic least favorable risk 

lim n 2a/(2a+l) sup R(fn, f(x)) 
n.---*~ .f c F ( C,a;x,a,b ) 

attains the right hand side of (3.6) if and only if for any constant r > 0 the kernel 

and bandwidth of fn(x) are given by 

and 

c~+l  < u < 0 ,  
w(x+)(r - r.lul ~) if ar(w(x+) + w(x_)) - 

c ~ + l  
K~(u) = w(x_)(~ - ~,lul ~) if o <_ u < ar(w(x+) + w(x_) ) '  

0 otherwise, 

h(-c) = n -1/(2~+1) ( porto ~ ~/(2~+~) 

" w - l ( x + )  f ° o o K 2 ( u ) d ~ t q - w  -1 ( x _ )  f i°° gr(tt)du2 - 1 / ( 2 a + l )  

× ( f  K. (u) lul~du)  2 

where ~-. = ~-~+l[a(w(x+) + w(x - ) ) ] a ( a  + 1) -a .  In particular, (KT, h(T)) reduces 
to (Kopt, hopt) if T = 2[w(x+) + w(x_)] -1. The above minimax kernels and band- 
widths depend on the weight function w(.). For most of the interesting cases where 
w(x) is continuous at x, these minimax kernels are symmetric about zero. How- 
ever, contrary to the frequently used kernels in the i.i.d, direct sample case, when 
w(x) is discontinuous at x, the minimax kernels depend on the values of w(x+) 
and w(x_)  and should be asymmetric about zero. 
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Remark 3.3. A direct consequence of Theorem 3.1 is that  in(x) is generally 
a better local estimate than in(x) under the minimax MSE criterion. It is also 
straightforward to conclude that  the best possible convergence rate for ],~(x) is 
n -2~/(2~+1), and this rate is at tained by (Kovt, hopt). However, Theorem 3.1 only 
gives a pointwise result in the sense that  the risk is taken to be the MSE. For global 
properties, further study is needed to investigate the global minimax risks of ]~ 
and in such as the minimax integrated mean squared errors, minimax Ll-norms 
or minimax L~c-norms. 

Remark 3.4. It is interesting to know whether the lower bound of (3.6) 
can be always attained by some proper choices of kernels and bandwidths for 
in(x). For the special case of length biased model with family 5~(C, 1; x, a, b), Wu 
(1995) showed that  the lower bound is at tained by using a triangular kernel of the 
form K(u) = (1 - and a bandwidth sequence hn = n - 1 / 3 x - 1 / 3 C  - 2 / 3 .  

(3p0#0) 1/3. However, such kind of attainability does not hold in general. In some 
cases, in(x) is strictly superior than •(x) .  To see this, consider the problem of es- 
t imating f0(0) where f0 is a uniform density on [ -1/2 ,  1/2]. Let w(t) = max{0, 1 -  
Itl a/2} be the weight function. Then, by Theorem 3.1, we know that  the asymp- 
totic lower bound of (3.6) can only be attained by kernels which are non-negative 
and have compact supports. Now for any compactly supported non-negative kernel 
K satisfying (2.5), direct computat ion based on (2.4) shows that ,  when n is suf- 

~.l/2hn g(u)du = 1 and infh~ R(]~, fo(X)) = O(n-a/(l+~)). Thus ficiently large, J-1/2hn 

the asymptotic minimax risk of in(x) must be strictly larger than that  of in(x). 

4. Comparison of kernels 

It is well-known in the i.i.d, direct sample case that  most commonly used 
kernels such as the uniform kernel, the Gaussian kernel and the Epanechnikov 
kernel are nearly optimal for kernel density estimates (cf. Silverman (1986)). Thus 
it is natural to ask that  whether this phenomenon still holds in the biased sampling 
case. The numerical results of this section show that  these popular kernels are 
asymptotically suboptimal when w(.) is discontinuous at x. Because of Remark 
3.3, the discussion here is limited to .fn only. 

Let ]g,h~(X) be the kernel estimate ],~(x) with any particular choice of 
( K, hn ). Define 

(4.1) e( K,h,~ ),( Kopt,hopt ) ~- 
l imn- .~  sUPle~-(C,~;~,~,b ) R(/Ko~,ho~, f(x)) 

limn-.oo suP le.r(c,.;z,a,b ) R(]K,h.., f (x) ) 

to be the the asymptotic relative efficiency of .fg,hn (x) with respect to the minimax 
estimate ]go~,hop~ (x). If the pair (g ,  hn) does not satisfy (a), (b), (d) and (e) of 
Theorem 2.1, then by Theorem 2.1(c) and Theorem 3.1, it automatically follows 
that  

e(K,hn) ,(Kopt ,hopt)  = O. 
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If (K, hn) satisfies (a), (b), (d) and (e) of Theorem 2.1, then the optimal bandwidth  
hopt as defined in (3.4) should be used. Subst i tut ing hopt back to the dominating 
term at the right hand side of (3.1), we have 

(4.2) 
[q(Kopt) ] 2/(2a+1) 

e ,Kop, = [ q ( K )  

where eK,Ko,~ = e ( K , h o p t ( K ) ) , ( K o p t , h o p t )  and 

(4.3) q(K) = 

Let (~ = 1, fl = w(x_)/w(x+) and K1 t h r o u g h / ( 3  be the following kernels: 
1. Uniform: g l ( u ) =  (1/2)1[_1<u_<1], 

2. Epanechnikov: K2(u)= ( 3 / 4 V ~ ) ( 1 -  u2/5)l[M<v~],  

3. Gaussian: K3(u) = (2r:)-l/2 exp{-u2/2}. 
The relative efficiency eK,Kopt for various fl values are computed  in Table 1 which 
shows that  all three kernels considered here have very high eg,Kopt values when fl 
is close to one, but  low eK,Kop~ values when fl is away from one. 

Table 1. Relative efficiency eK,Kopt when c~ = 1. 

fl 0.1 0.5 1.0 5.0 
Kopt 1.000 1.000 1.000 1.000 
K1 0.442 0.855 0.925 0.625 
K2 0.474 0.917 0.992 0.670 
/(3 0.474 0.917 0.991 0.670 

5, Proofs 

This section gives the proofs of Lemma 3.1.(A) and Theorem 3.1. Since the 
^ 

proofs for ]n can be obtained by modifying the calculation for fn, the  details for 
in can be found in Wu (1994), and are omit ted  here for brevity. 

First, we give a technical lemma which is useful for the proofs of Lemma 3.1 
and Theorem 3.1. Define a density fp E ~-(C, a; x, a, b) such that  

(5.1) 
max{O,p - CIx - tl ~ } 

f , , ( t )  = p + CIx - tl 

0 

if t E A1 [W(p)] U A01 [W(p), T(p)], 

if t e A2[W(p)] t2 Ao2[W(p), T(p)], 

otherwise, 
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where 

AI[W(p)] = { t :  w(t) < W(p), t  E [a,b]}, 

A2[W(p)] = { t :  w(t) > W(p), t  E [a,b]}, 

do[W(p)] = { t :  w(t) = W(p),  t E [a, b]}, 

Aol[W(p),T(p)] = { t :  t E Ao[W(p)] and 

Ao2[W(p),T(p)] = { t :  t E Ao[W(p)] and 

t _< T(p)}, 

t > T(p)}, 

and (p,W(p),T(p)) satisfies the technical conditions 0 <_ p, a <_ T(p) <_ b, 
m(a,b) ~_ W(p) ~_ M(a, b), f :  fp(t)dt = 1. To ensure tha t  fp is a density, p 
has to  be bounded  above by a constant .  Let  

0 if CIx - t]~dt >_ 1, 

Pl ~ b 
p,  if C[x - t[~dt < 1, 

where p,  = max{O, ( b -  a ) - l ( 1  --  Jab C [ t -  xl~dt)}, and P2 be the unique solution 
of 

abmax{O,p -- Clt - xl~}dt = 1. 

It  is easy to  see tha t  the constraint  of fp E 5r(C, c~; x, a, b) implies Pl _~ P _< P2. 
For any fp(t), define #p = f w(t)fp(t)dt. 

LEMMA 5.1. If  W(.) satisfies Assumptions A and B, then 
(a) lip is a continuous function of p, 
(b) there exist a constant c > 0 and a point po such that 

(5.2) max~l,c] < Po <_ P2 and Polio = sup p#p = sup f(x)#,  
Pl ~_P~_P2 f E.~ ( C,a;x,a,b ) 

where #o = f w(t)fpo (t)dt. 

PROOF. (a) For any P0 E (Pl,P2) and e > 0, we may assume tha t  wi thout  
loss of generali ty p -- P0 + e. The  analysis for p = P0 - e is similar. It suffices to  
show tha t ,  for any 5 > 0, we can select e sufficiently small such tha t  I#v - #vo I ~ 5. 

Since p _> P0, the technical condit ion of f fp(t)dt = f fpo (t)dt = 1 implies 
tha t  W(p) > W(po). Let 

.AI(p) = AI[W(p)] U Aol[W(p),T(p)] and 

A2 (p) = A2 [W(p)] U Ao2 [W (p), T(p)]. 

Consequently,  we have tha t  

(5.3) ¢41(Po) C_ .AI(p) and A2(p) _ A2(Po). 
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If t 6 .,41(P0), then by (5.1) and (5.3) 

0 <_ f p ( t )  - f p o ( t )  - -  m a x { 0 , p  - C I x  - t[ ~ } - m a x { 0 , p 0  - CIx - tl n } _< e; 

and if t E A2(p), then 0 < fp(t)  - fpo(t) = p - P o  = e. Thus, it follows tha t  

(5.4) 0 <_ fp(t)  - fpo(t) <_ ~ if t E A 

where JI = .Al(P0) U .A2(p). 
If t e [a,b] \ ,4 and fp(t)  - fpo(t) > 0, then (5.1) implies tha t  fpo(t) = 

Po + CIx - t[ ~ and fp(t)  = max{0 ,p  - CIx - tl~}, hence, 

(5 .5 )  I f v ( t )  - f p o ( t ) l  <_ ~. 

Thus, there exists some constant  Cl > 0, such that  

(5.6) ~ (fp(t) - fpo(t))l[s,(t>_f,o(t)>o]dt <_ Cl~. 
,b] \.~ 

Similarly, by (5.4), (5.6) and the technical condition of f fp( t )dt  = f fpo(t)dt = 1, 
we can verify tha t  

(5.7) fia [fp(t) - fpo(t)ll[s~(t)-S~o(t)<oldt <_ c2~ for some c2 > O. 
,b]\~ 

Combining (5.4) through (5.7), we have 

I~-~,ol = . /  ~o(t)(fAt) - fpo(t))dt <_ M(a,b)c3e 

for some c3 > 0. Thus, (a) holds. 
(b) By the definition of pl  a n d p 2 ,  we have pl <_ f ( x )  <_ P2 for all f 6 

~'(C, a;  x, a, b). Thus, it suffices to only consider those densities with Pl <_ f ( x )  <_ 

P2. 
Now, for all f E 3~(C,a;x ,a ,b )  such that  f ( x )  = p E ~01,P2], the problem 

of maximizing f ( x ) #  is equivalent to maximizing # subject  to f ( x )  = p and f E 
~'(C, a; x, a, b). We first show that  #p = sUPfeY(C,~;x,a,b)j(x)= p #. Let f ly( t )  = 
max{0 ,p  - CIx - tl ~} and f2p(t) = p + CIx - tl ~. Then, (5.1) shows tha t  fp(t)  = 
flp(t)l[teAl(p)] + f2p(t)l[teA2(v)]. Since l ip( t )  <_ f ( t )  < f2p(t) holds for all f E 
.T(C,a ;  x ,a ,b) ,  it can be seen from direct integration tha t  #p > # for all f 6 
~ ( C ,  a; x, a, b) with f ( x )  = p. 

Next,  for each Pl _< P <_ P2, (a) implies tha t  fp(X)t@ = plzv is a continuous 
function of p. Furthermore,  it is obvious that  supp 1 <_p<_p2 P#P > 0. Thus  Po must  
be bounded  below from 0, tha t  is, Po _> c for some c > 0. Now, since p#p is a 
continuous function in p on the closed interval [max~v~, c], P2], there exists a point 
P0 such tha t  P0#0 = SUppe[m~[vl,c],p2] P#B" This completes the proof. [] 
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PROOF OF LEMMA 3.1(A). The first assertion is proved in Lemma 5.1, so 
it is only necessary to prove (3.1). We first establish that  the right hand side of 
(3.1) is an upper bound. By Assumptions A and B, and Theorem 2.1, we have the 
following inequalities 

sup f g(u)f(x - h,~u)du - / ( z )  < Chg f Ig(u)llul'~du, (5.8) 
fE.T(C, ot;x,a,b) J J 

and, for any s > 0, 

(5.9) sup # f w-l(x- hnu)K2(u)f(x h,~u)du 
fe~'(C,a;x,a,b) rthn 

+ w-X(x - h,~u)K2(u)f(x - h,~u)du 

[ ? < sup # w-l(x+)f(x) K2(u)du 
-- fE.~(C,ot;x,a,b) nhn s 

+ w - l ( x - ) f ( x )  ~ s  g 2 ( u )  du 

+o(1)  +m-l(a,b) sup {f(t)} 
te[~,b] 

× ( ~  K2(u)du + fs°°K2(u)du) ] . 

Since s > 0 can be selected arbitrarily large, (5.9), Theorem 2.1 and Lemma 5.1 
imply that  f--~ g2(u)du and ,[s ~ g2(u)du can be arbitrarily small. Thus, 

sup # / w - l ( x  - h,~u)K2(u)f(x - h,~u)du (5.10) 
fe~'(C,a;z,a,b) nhn 

[ ; /o ] < polo w_~(z+) g2(u)au+w_~(z_) g2(u) 
-- nhn 

+ o(n-lh~l). 

Then (5.8) and (5.10) imply that  the right hand side of (3.1) is an upper bound. 
To see that  the right hand side of (3.1) is also a lower bound, we need to show 

that  it is at tained asymptotically by a particular density sequence. By Lemma 5.1, 
there exists P0 > 0 such that  W(po) > 0, T(po) > 0, and fpo satisfies (5.1). Thus, 
for any s > 0 and sufficiently large n, we can define a density sequence {f.n} such 
that  ( / )1  
(5.11) f . ,(t) = On(t) rln(t)dt 
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where 

pn + CIx - tl ~ 

Pn - CIx - tl ~ 

Pn + CIx - tl ~ 

 n(t) = 

0 

i f t  c 

i f t  c 

i f t  E 

and t 

i f t  C 

Ix - hns, x + h~s] and K[(x  - t) /hn] :> 0, 

Ix - h~s, x + h~s] and K[(x  - t) /hn] < O, 

[a, b] \ Ix - has, x + hnx] 

e A2[W(po)] U Ao2[W(po), T(po)], 

[a,b] \ [x - hns, X + h~s] 

and t e AI[W(po)] U Aol[W(po),  T(p0)], 

otherwise, 

and 

(5.13) #f*'~ f w - l ( x  -- h n u ) K 2 ( u ) f , n ( X  - h~u)du 

7 ] #f.~ w - l ( x  - h n u ) K 2 ( u ) f , n ( x  - h~u)du  - e 

[ ? // ] > P0"0 W--I(x+) K 2 ( u ) d u  + w - l ( x _ )  K 2 ( u ) d u  _ 
-- nhn oc 

+ o ( n - l h ~ l ) .  

/ ~  w - l ( x  - h ~ u ) K 2 ( u ) f ( x  - h~u)du <_ ~. 
]>s 

Thus, when n is sufficiently large, (5.11) and the definition of ~n imply that 

(5.12) ./" K ( u ) f , ~ ( x  - h~u)du - f , ~ ( x )  

= . / K ( u ) ( f , ~ ( x  - hnu) - f , ,~(x))du 

> Ch~ ]K(u)llul~du - e 
8 

and 

7n(t)  = m a x { 2 C h ~ s a , p n  - CIx - tl ~} and p,~ = po + 2Ch~s% 

Comparing ~n(t) with fpo defined in (5.1), it is straightforward to verify that 
f ~n(t)dt  _> 1 for all sufficiently large n, and lim~_.~ f ~?n(t)dt = 1. Hence, f.~ 
is a density in 2"(C, a; x, a, b) when n is sufficiently large. Moreover, we can also 
verify that lim~_.~ f . n ( x )  = po and l imn_~  #f.n = P0. 

By Assumption A and Theorem 2.1, we can take s > 0 sufficiently large so 
that the following inequalities hold for any e > 0 and f E 2-(C, a; x, a, b), 

f lu K ( u ) ( f ( x  h~u) - f ( x ) ) d u  Ch ic ,  <_ 
]>s 
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Hence, by (5.12) and (5.13), the right hand side of (3.1) is also a lower bound. [] 

PROOF OF THEOREM 3.1. By Lemma 3.1, it suffices to find K and hn which 
satisfy (a), (b), (d) and (e) of Theorem 2.1, to minimize the following dominating 
term of the right hand side of (3.1) 

[/ 1' Q(K, hn) = h2'~C2 '~du . - ~  ~ I K ( u ) l l u l  

P°"° [w-l(x+)ffoo K2(u)du+w-l(x-)fo°°K2(u)du] 

Let K(.) be any kernel such that  f K(u)du = 1. There exists a set .A+ C (-oo,  oc) 
such that  K(u) & 0 i fu  • ,4+ and f.a+ K(u)du = 1. Let K+(u) = g(u)l[~eA+] to 

be a non-negative kernel. Then it is easy to see that K+(-) satisfies (a), (b), (d) 
and (e) of Theorem 2.1, and Q(K, hn) > Q(K+, h,~). Thus in order to minimize 
Q(K, hn) it is only necessary to consider non-negative kernels. For the rest of the 
proof, we assume that K is non-negative. 

For any fixed K, the corresponding optimal bandwidth hopt(K) can be ob- 
tained through the solution of cgQ(K, hn)/Oh,~ = 0. Routine computation then 
shows that 

(5.14) hop t (K)  = n_l/(2a+l)  ( p0/.t0 ~ 1/(2a+1> 
\ 2--ff~ ] 

w-l(x+) f°o~ K2(u)du + w-l(x-) f o  K2(u) du" 
× (f  g(u)luladu) 2 

Substituting (5.14) back to Q(K, h~), we have that 

(5.15) 

1/(2c~+1) 

where 

Q(K, hopt(K)) = n-2~/(~'~+1)C2/(2~+1) (Po#o) 2~/(2~+1) 

× [(2a) -2~/(2~+1) + (2o01/(2'~+1)]q 2/(2'~+1) (K), 

q(K) = w-X(x+) K2(u)du + W--I(x_) K2(u)du 
o o  

. (/ ,.,-..) 
Let K~(u) = K(u) + 8¢(u), 5 > 0, be another non-negative kernel such that 

fKa(u)du -- 1. Thus f¢(u)du = 0 and ¢(u) > 0 when u is outside the support 
of K(u). The Lagrangian of q(K~) is given by 
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for some constant d. Since q(K~) is a convex function of 6, there is a minimizer K 
of q(K) such that it is a solution of 

(5.16) l i m $ - l ( L ( K ~ )  - L(K)) >_ 0 
650 

for all ¢(u) such that f ¢(u)du -= 0 and K~(.) is non-negative. 
Direct computation shows that 

where 

and 

lim $-I(L(K~) - L(K)) 

= [(2w-l(x+)A1A2)g(u) + A3tul ~ + d]¢(u)du 

C + [(2w-~(x_)A~)~2)K(u) + Aalul ~ + dl¢(u)du 

f /0 ] "~1 = OL W-- I (x+)  K2(u)du "b W - - I ( x - )  K2(u)du 
Oo 

A2 = / g(u)lul~'du 

a - 1  

A3 = w-l(x+ K2(u)du + w- l (x - )  g2(u)du . 
O 0  

Hence any solution K of (5.16) has the form 

g ( u )  ~- w(x+ )[al --[- a2lula]l[al+~l~l~>0,u<0] 

+ w(x - ) [a l  --[- a2lul~]l[~l+~lul~>0,~>0] 

where al = -d/(2A1A2) and a2 = -A3/(2A1A2). The constraint of f K(u)du -- 1 
then implies that 

2(w(x+) + w(x_)) f (al + a21utC')l[a,+a21ul,~>O,u<o]du 1 
J 

and 

a2 = ,~,+~ ~.("(~(x+-!) -+-~(=-))) ° . , + ~  

Let al  = T. It is easy to see that  any solution of (5.16) is given by K~ as defined 
in Remark 3.2 for some r. It is easy to verify that, for all T > 0, K~ satisfies (a), 
(b), (d) and (e) of Theorem 2.1. 

Finally, substituting K~ back to q(K), we get 

( f_ C w-l(x+) K2(u)du+w-l(x-)  K2r(u)du - ( 2 a +  1) a 
o o  
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and 

/ g ~ ( u )  l u l ~ d u  = 
(a + 1) ~ 

aa(w(x+) + w(x_))"Ta(2a + 1)" 

Substituting the above equations back to (5.15), we see that  

( )° 2 (a + 1)~(2a + 1) -~-1 
q(Kr) = w(x+) + w(x_) 

which is independent of T, and that  n2~/(2~+l)Q(Kopt, hopt) has the desired form 
given in the right hand side of (3.6). The proof for fn can be obtained by the same 
method. [] 
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