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Abstract .  The problem of estimating the marginal density of a linear process 
by kernel methods is considered. Under general conditions, kernel density 
estimators are shown to be asymptotically normal. Their limiting covariance 
matrix is computed. We also find the optimal bandwidth in the sense that 
it asymptotically minimizes the mean square error of the estimators. The 
assumptions involved are easily verifiable. 
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1. Introduction 

The literature dealing with density estimation when the observations are in- 
dependent random variables (r.v.'s) is extensive. Density estimation for dependent 
r.v.'s has recently received increasing attention. This paper is concerned with den- 
sity estimation when the observations come from a linear process. Many important 
time series models such as the autogressive processes and the mixed autoregressive 
moving average time series models are linear processes. Long memory fractional 
processes also belong to that  class. Since parameter estimation in time series 
analysis is generally carried out under the Gaussian assumption or, at least, from 
Gaussian likelihood methods, it may be useful to check whether or not the den- 
sity of a time series is Gaussian or not. Recently, density estimation for time 
series has been employed in the problem of testing serial dependence (see Chart 
and Tran (1991)). For further motivation and background material, the reader 
is referred to Chanda (1983), Robinson (1983), (1986), (1987), Yakowitz (1985), 
(1987), Masry (1986, 1987), Masry and GySrfi (1987), Ioannides and Roussas 
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(1987), Roussas (1988), Gyorfi et al. (1989), and Tran (1989, 1992). Chanda 
(1983) has investigated the asymptotic normality and consistency of kernel esti- 
mators of the marginal density for linear processes. Recently, Tran (1992) has 
shown that such estimators can achieve sharp rates of convergence of L ~  norm on 
compact sets. 

The general setting is the following: X1, • . . ,  X~ are n consecutive observations 
CX~ 

of a linear process Xt  = # + ~r=o  arZt-r ,  where # is a constant and {Zt}  is an 
innovation process consisting of independent and identically distributed r.v.'s with 
mean zero and finite variance. Assume that  X1 has a probability density f ,  which 
we wish to estimate. As an estimator of f ,  we will consider the nonparametric 
kernel estimate (see Rosenblatt (1956) and Parzen (1962)) given by 

n 

f,.(x) = (nbn) -]  E K ( ( x  - X i ) /bn) ,  
i = 1  

where K is a kernel function and {bn} is a sequence of bandwidths with bn tending 
to zero as n tends to infinity. 

In Section 2, we provide some preliminaries which are crucial for the proofs of 
our results in Sections 3, 4, and 5. Section 3 studies the asymptotic distribution 
of ( f n ( x l ) , . . . ,  f~ (xk) ) '  for distinct Points Xl , . . .  ,xk  of R. For linear processes 
with [ar[ -- O(r -(4+~)) for some ~ > 0, Theorem 3.1 gives general conditions 
under which the limiting distribution of (nbn) l /2( f~(x l )  - E f n ( X l ) , . . . ,  fn (xk)  - 
E fn(Xk) )  ~ is normal. The conditions are stated in Assumptions 1-3. Assump- 
tion 1 involves some standard conditions imposed on the kernel K. Assumption 2 
concerns the linear process Xt.  Assumption 3 points out an important difference 
between density estimation for i .i .d.r.v. 's and for linear processes. There exists 
a delicate relationship between the rates at which the bandwidths and the coeffi- 
cients of the linear process tend to zero. As can be expected, the bandwidth has 
to tend to zero more slowly at small values of 3 than at large values of 5. When 

is large, the condition imposed on bn of Assumption 3 is marginally close to 
the usual condition that nbn ---+ oo nornlally seen in the independent case. In the 
case k = 1, Chanda (1983) has investigated the asymptotic normality of f~ un- 
der different regularity conditions than ours. Theorem 2.1 of Chanda (1983) shows 
that  n 1/2 ( f n ( x ) -  E f ~  (x)) is asymptotically normal under general conditions. The 
only condition imposed on the bandwidth is that nbn ---* cx~, which is identical to 
the usual condition imposed in the independent case. This result appears to be 
invalid. There are some gaps in his arguments. Condition (iii) of Lemma 2.3 in 
Chanda (1983) is inconsistent with Theorem 2.1 in the same paper. 

In Section 4, we consider the asymptotic normality of fn in the particular 
case when ar tends to zero at an exponential rate specified in Assumption 2 ~. 
We sense a practical need for this case since Assumption 2 ~ is satisfied by most 
causal-invertible autoregressive moving average time series models. Assumption 3 ~ 
imposes a very weak condition on the bandwidth for the asymptotic normality of 
(nb~) l /2( fn(x l )  - E In (X l )  . . . .  , fn(xk)  - E fn (xk ) ) ' .  

We compute the limiting covariance matrix of (f,~(Xl),. . . ,  fn (xk) ) '  in Sec- 
tion 5 for the general case. This result is then used to find the optimal bandwidth 
which asymptotically minimizes the mean square error. 
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Most of the results on density estimation for time series hold under some 
assumptions on the type of dependence of the relevant processes, for example, 
strong mixing and absolute regularity (see, for example, Roussas (1988) and Tran 
(1989)). The results of the present paper cannot be obtained by applying known 
theorems for mixing or absolutely regular r.v.'s. The discussion on this point is 
rather technical and will be given in Section 2. 

Our method of proof is based on two different truncations of Xt. The trun- 
cation in the definition of -~t in the beginning of Section 2 is somewhat standard. 
The point of truncation (q - 1) varies only with n. However, the truncation in 
the definition of X~+ v in Lemma 2.4 varies with the index of the variable and is 
rather unusual. 

Here and throughout the paper x denotes a fixed point of the real line (R). 
We use [a] at times to indicate the integer part of a number a. All limits are taken 
as n tends to infinity unless otherwise indicated. For sequences of numbers {an} 
and {b~}, we write an ~ bn to indicate that an~ha ---+ 1. 

2. Preliminaries 

It will be clear from the proofs of the paper that we can without loss of 
generality assume # = 0 and a0 # O. Define 

q-1 

f(t = E arZt-r, 
r=O 

where q = q(n) T c¢ is a sequence of positive integers to be specified later on in 
(2.13). Let 

~:~ = Xt + Pt, 

where the Ft 's are independent r.v.'s with 

(2.1) rt  ~ ~-] arZt-r.  
r =q  

We also require that {Zt} and {Ft} be independent sequences. Note that both the 
processes {Xt} and {-~t} are q-dependent. Consider the kernel estimator gn(x) 
defined by 

(2.2) 
n 

g,~(x) = (nb,~) -1 E K( (x  - f(i)/bn). 
i=1 

Define the average kernel K,~(x) by 

(2.3) Kn(x) = K(x/bn).  
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Then 

I ~ K~(x Xi) A ( x )  = n 
i----1 

and 
n 

1 E Ku(x - f~i). (2.4) gn(X)  -~ -~ 
i=1 

Define 

( 2 . 5 )  A ~ ( x )  = K ~ ( x  - X~)  - , n ,  h i ( x )  = g ~ ( x  - £ )  - f ~  

where 

(2.6) ~ n  = E K n ( z  - X j ,  ~ = E g ~ ( x  - ] ( i ) .  

Clearly, #~ -- t~,~ since Xi and )~i have the same distribution. 

ASSUMPTION ]. The kernel function K is a density function with an inte- 
grable radial majorant Q(x), that is, Q(x) - sup{Ig(y)l  : lYl -> Ixl} is integrable. 
Assume in addition that K satisfies the following Lipschitz condition 

IK(x) - K(Y)I <<- CI x -  Yl. 

ASSUMPTION 2. The coefficients of the linear process Xt tend to zero suffi- 
ciently fast that last = O(r -(4+~)) for some 5 > 0 as r -~ co. In addition, Z1 has 
mean zero and finite variance and an absolutely integrable characteristic function 
¢. 

ASSUMPTION 3. The bandwidth bn tends to zero sufficiently slow so that 

nb(~ 13+2~)/(3+2~) (log log n) -1 --* oc. 

A linear process is trong mixing or absolutely regular if it satisfies a variety 
of conditions (see Gorodetskii (1977) and Withers (1981)). One condition is that 

O O  ?- ~--~r=0 aTz is not equal to zero for Izl < 1 (no roots inside the unit circle). This 
condition is often impossible to check. 

There are numerous linear processes satisfying Assumption 2 without being 
strong mixing. If ar is the coefficient of the power series expansion of a(z) = (1-z)P 
where p > 5 is a noninteger, then the condition of "no roots in the unit circle" is 
violated. In this case larl = O(r  l-p) and Assumption 2 is satisfied since p > 5. 
Indeed, if Z/'s are normally distributed with mean zero and variance 1, then {Xi} 
has a spectral density equal to la(eie)12 (see Gorodetskii (1977)) and it follows 
from the Helson-Sarason theorem (see Ibragimov and Rozanov (1978), Helson and 
Sarason (1967) and Sarason (1972)) that Xt does not satisfy the strong mixing 
condition. 
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LEMMA 2.1. If Assumption 1 holds, then 

/ ~K, , ( x  - u)f(u)du ~ f(x), 

j: /: [K((x - u)/b~)12f(u)du --, I(x) [K(u)]2d~. 
o ~  OG 
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PROOF. Relation (2.7) follows from the Lebesgue Density Theorem (see 
Devroye and GySrfi (1985)). Relation (2.8) also follows from the same theorem by 
noting that f_~ [K(u)]2f(u)du < co. [] 

We will tacitly assume that Assumptions 1-2 hold throughout this section. 

LEMMA 2.2. Let fR~,2k be the joint density of (Xj, Xk). Then 

sup sup If25,2k (x, y) - f ( x ) f ( y ) l  <_ C 
j # k  (x ,y)ERxR 

for some constant C independent of n. 

~ ~ 

PROOF. The characteristic function ¢2~,2k of (X#, Xk) is given by 

¢2j,2~ (u, v) = E exp(iuf;j + ivXk). 

Without loss of generality, assume j < k. We need to consider two cases. 
Case (i): j > - q  + k + 1. We decompose Xk and X# as follows: 

q - l - k + j  k - j - 1  

ffk = E ak-#+~Zj_~ + E arZk_~ + Fk. 
r=O r=O 

q - l - k + j  q-1 

25= ~ a~Zj_~ + ~ a~Zj_~ + rj. 
r = 0  r=q--kWj 

Thus 

iuX# + ivffk = i u r j  + ivFk 
q--1 

+ iu E 
r=q--k+j 

k- - j -1  

+iv E a~Zk-r. 
r ~ 0  

q - l - k ÷ j  

r=O 
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The three summands on the right hand side are measurable with, respectively, 
the a-fields generated by Z - q + j + l , . . . ,  Z_q+k, Z - q + k + l , . . . ,  Zj ,  and Zj+I, . . . ,  Zk. 
The summands are thus independent r.v.'s. Therefore 

¢25,2k (u, v) = E exp ( iuX j  + ivXk)  

q--1 

= ,r ,  (~)¢~ (v) H 
r=q- -k+j  

q - l - k + j  

H 
r~-O 

¢(~ar) 

k - j + 1  

¢(ua~ + vak_j+~) H ¢(va~). 
r = O  

Using Fourier inversion formula, 

sup 
(x , y )ER×R F :  If2j,f~k (x, Y)I ~ 1¢2~,2k (u, v)ldudv 

<_ I¢(ua0 + vak-j l lO(vao)ldudv.  

Changing variables by setting 

= uao + Yak- j ,  fl ~ vao, 

sup If  2~,2~ (x,y)l  <_ ¢(a) l l¢( f l ) ldadZ <_ C. 
( x , y ) E R x R  oo cx~ 

Case (ii): j < - q  + k + 1. In this case )~k and )~j are independent and 
the proof follows immediately since -Xk and )(j have density f. The joint density 
f ( x ) f ( y )  is then also bounded. [] 

LEMMA 2.3. Let A i  be as defined above. Then 

sup sup I C°v{/~i(x),/~j(Y)}I -< C. 
i • j  ( x , y )ER×R 

PROOF. Using Assumption 1 and Lemma 2.2, 

I Cov{K~(x - Xi), K,~(y - X])}I 

/?/? ~ Kn(X - u)K~(y - v)lff;,,~:, (u, v) - f(u)f(v)}dudv 
oo (Do 

= g ( ~ ) K ( v ) l i x . : ~ j  ( x  - bn~,  y - b : )  

- f ( x  - bnu) f ( y  - b,~v)ldudv 

< K u v udv = C. [] 
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LEMMA 2.4. For all l < v < n - 1  and all x and y in R, 

O 0  

I Co~{51(~),/~l+v(Y)}l ~ Cbn3 E I~1. 

PROOF. The proof of this lemma is similar to the proof of Lemma 2.2 in 
Tran (1992). For v _> 1, define 

and 

Rv --= -'Yl+v -- X~+v 
q-1 

v-1 
X~+v : E arZl+v-r' 

r=O 

v-1 q--1 

= ~ arZi+~-r + rl+~ - ~ arZl+v-r = ~ arZ~+v_r + rl+v. 
r ~ 0  r ~ 0  r ~ v  

Thus 

I COV{/~I (Z) , /~ l - t -v (Y)} l  = IE[Kn(y - R ,  - X ~ + ~ ) { g ~ ( x  - f Q )  - #~}]l. 

Clearly, 

Cov{£1(~), £1+~(y)} 
= E [ { K ~ ( x  - f Q )  - #n}{gn(y - Rv - X;+v)  - g ~ ( y  - X;+v)}] 

+ E [ { K ~ ( x  - 21) - # n } g n ( y  - Xf+,)]. 

The last term equals zero by the independence of )(1 and X* Using (2.3), the l+v" 
Lipschitz condition satisfied by K and the boundedness of K, 

I Cov{/~l(x),/~I+,(Y)}I -< Cb~IE]Kn(Y  - R ,  - X~+,)  - K n ( y  - X~+v) I 
oo  

< Cbn3EiRvl  <_ C b n 3 E l a r  I. 

LEMMA 2.5. 

[] 

Let gn be the kernel density est imator defined in (2.2). Then 

/? lim nbn Var[gn(x)] = f ( x )  K2(y )dy .  
n -"* ~ (X)  

PROOF. 

(2.9) 

Using (2.7) and (2.8) and noting that b~ ~ 0, 

/71 b~ Var[&(~)l = ~ V~ [K((x - y)/b~)]2l(y)dy 

- bn [ ] ~  ~-~ K ( ( x -  y) /b ,~) f (y)dy]  2 

-~ f ( x  K2(y )dy ,  
o o  
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where £~(x) is defined in (2.5). By (2.4), (2.5) and (2.6), 

n 

1 ~ 1 E / ~ i ( x ) .  g,~(x) - Egn(x )  = g,~(x) - #n = n E [ K n ( x  - 2~) - # h i - -  n 
i = 1  i=l 

Thus 

nbn Var[g,~(x)] = b~Var[/~l(x)] + 2(b,~/n) E C o v { £ i ( x ) , £ j ( x ) } .  
l~i<j<n 

By (2.9), to complete the proof of the lemma, it is sufficient to show that  the 
second term tends to zero. Choose an arbitrary number 0 with 5/(2 + 5) < 0 < 1. 
Clearly, 

(2.10) 

Define 

(2.11) 

(1-0)(2+5)>2. 

m = = 

Note that  m ~ oo since bn ~ 0. Using Lemmas 2.3-2.4, (2.11), (2.10) and 
Assumption 2, 

(2.12) I(b /n) Cov(&(x),hj(x))l 

m - - 1  

< bn L CoV{hl(X),&+v(x)}l 

O C  

q-bn E I C ° v { £ l ( X ) ' £ l + v ( X ) } l  
v ~ q 2  

< Cb° + Cbn b-ga ~ la~l < o(1) + Cb~2 ~-~ v -(a+e) 
v=m r---v v=m 

< 0(1) + Cbn2m -(2+~) <_ 0(1) + Cbn 2+(1-°)(2+~), 

which tends to zero since bn ~ 0. [] 

The following lemma due to Masry (1986) is needed in the sequel. 

LEMMA 2.6. For distinct points x and y, 

F 1 K ( ( x  - u ) / b n ) K ( ( y  - u ) / b ~ ) f ( u ) d u  ---* O. 
qln ~ bn oo 
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LEMMA 2.7. Let Ai be as defined in (2.5). Then 

q2n bo E 
n 

l < i # j < n  

I Cov{h~(z), £~(y)}l -~ 0. 

Then 

PROOF. Let $1 and $2 be defined by 

S1 : {(i,j) l i, j E {1,. . .  ,n}, 1 < j - i _< m}, 

$2 : {(i,j)  I i , j  e { 1 , . . . , n } , m +  1 < j - i < n -  1}. 

I Cov{hi(x),hj(y)}l 
l~_i<j~_n 

= ~ I Cov{hi(x), £j(y)}l + ~ I Cov{h~(x), hi(y) }1. 
$1 $2 

Using the value of m in (2.11), 

n-lb~ E [ Cov{/~{(x),/~j(y)}l _< Cn-lbnnb~ -1 < Cb°n -~ O. 
$1 

Next, by Lemma 2.4 

n--1 

n-lbn E I Coy{/~{(x),/~j (y) }1 ~ Cn-lbn n E IC°v{£1 (x), hl+v(y) }1 
$2 v : m  

oo 

< cb, ~ I Cov{hl(x), £1+v(y)}l 

which converges to zero as shown in (2.12). [] 

LEMMA 2.8. Let x and y be distinct points of R. Then 

lim nb, Cov{gn(x),g,(y)} = 0. 

PROOF. By (2.4) and (2.3), 

nb~ Cov{g~(5), g . (y )}  

-- b. C o v { g . ( ( ~  - )~l)/bn),  Kn((y  - )~l)/b~)} + q2. 

= q l n  - -  b n E g n ( ( X  - f ( 1 ) / b n ) E K n ( ( y  - f ( 1 ) / b n )  + q2n- 

The lemma then follows by (2.7), Lemma 2.6 and Lemma 2.7. [] 



438 MARC HALLIN AND LANH TAT TRAN 

We will show that under certain assumptions, f~ and g~ have the same asymp- 
totic distribution. 

LEMMA 2.9. For any e > 0, 

P[(nbn)l/21fn(x ) - gn(X)t > ~] --* O. 

PROOF. Using the Lipschitz property of K stated in Assumption 1, we have 

( n b ~ ) l / 2 l f ~ ( x )  - gn(x )  l 

- -  X i  ~- (nbn) l /2 (nbn) - l~=~g(X-~n  ) - K (  x bn ki) 
< C(nbn)-l/2 ~ IXi - -  f(il 
- 

i = 1  

~ Cn-1/2bn 3/2 ~ aTZi-~ -- Fi 
i = 1  r=q 

Choose 

(2.13) q = [(tog log n) (3+2~)/(2s+s~) (n2b~3)l/(7+2~)]. 

Using the Chebyshev's inequality, independence, Assumption 2 and (2.1), 

(2.14) P[(nbn)l/2lf ,(x ) - gn(x)[ > e] 

] < P - > C-lenl/2b3/2 
i~-I r=q 

~_ P arZi--r -- > c - l  en-1/2b 3/2 
i = 1  L l r = q  

2 = 2C2e-2n2bX3EZ 2 ~ ar 
r=q 

= O(n2b~3q -(~+2~)) = O((log log n) -(3+2~)/4) = o(1). [] 
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3. Asymptotic normality: the polynomial case 

We will first establish asymptotic normality of 

( r t b n ) l / 2 ( g n ( X l )  - -  E g n ( x l ) , . . . ,  gn(xk)  - Egn (xk ) ) ' ,  

for arbitrary k and arbitrary fixed points x l , . . . , x k  in R. This result is stated 
in Lemma 3.3. It will be clear that  it is sufficient to consider k = 2. To avoid 
using subscripts, we refer to xl and x2 as x and y. By the Cram~r-Wold device, it 
suffices to prove asymptotic normality for c~n (x) + d~n (y) for arbitrary constants 
c and d, where 

(3.1) ~n(X) = ( n b , ) l / 2 ( g , ( x )  - Eg,~(x)),  ~n(Y) = (nbn)l /2(g~(Y)  - Egn(y ) ) .  

By Lemmas 2.5 and 2.8, 

(3.2) Var(c~(x)  + d~n(y))  ~ (c2 f (x )  + d2 f ( y ) )  K 2 ( u ) d u  =- T 2. 
0(3 

We now proceed to prove 

(3.3) C~n(X) + d~n(y) d N(0, T2). 

Let 
z~(x) = bl/2hi(x), zi(y) = b~/2h~(y). 

From (3.1), (2.4) and (2.5) 

n 

-~/2 ~ / 2 ~ ( c £ , ( x )  + (y)). c~n(x) + d~n(y) = n b n dA i  
i = l  

Choose 

(3.4) p = p(n)  = [(log log n)-(3+2e)/(2s+s6)(nbn)W2]. 

Using the value of q in (2.13), 

P- ~ ((log log n)-lnb(13+26)/(3+26))(3+26)/(14+46). 
q 

By Assumption 3, 

(3.5) 

From (3.4), 

(3.6) 

P 
q 

_P< (log log n)-(3+26)/(2s+s6)b~/2 ---*0. 

n - n l /2  
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We now set the r.v.'s cZi (x) + dZi (y) into alternate large blocks of size p and small 
blocks of size q. Denote 

(3.7) 

? : [n/(p + q)], 
"ym +p--1 

urn= 

u £  = 

i='y(p+q) + l 

~Tm +p--1 

(cZ~(x) + dZ~(y)) = b~/~ ~ (e&(x) + d&(y)), 

/~+q--1 f .m+q--1 

(~Z~(x) + dZ~(y)) = b~/~ ~ (~&(~) + d&(y)), 
i=~m i=~m 

rb n 

(cZ~(x) + dZ~(y)) : b ~J2 Z (c&(x) + d&(y)), 
i : y ( p + q ) + l  

where ~/,~ = (m - 1 ) (p+  q) + 1, [,~ = ( m -  1)(p + q) + p +  1 and m = 1 , . . . , ? .  
Also, set 

T~ 

(3, s) s~ -- ~ / ~ [ ~ ( x )  + d~(y)] = b~/~ ~ ( ~ & ( ~ )  + d&(y)), 
i=1 

Y 

(3.9) Sin = ~ U,~, S~ : ~ U ; ,  S~' = V;. 
m = l  m = l  

[] 

Clearly, 

(3.1o) s .  s" + s ~ + _ . .  

Here S~ is the sum of r.v.'s in large blocks of size p, S~ is the sum in small blocks 
of size q and S m is the sum of left-over r.v.'s. - - n  

LEMMA 3.1. Let S~ and -n  '~'' be as defined above. Then 

![E(S") 2 + E(S"') 2] -~ 0. 

PROOF. We will show that n - I E ( S ~ )  2 tends to zero. The 
n - I E ( S ~ )  2 ~ 0 is similar and is omitted. By Minkowski's inequality, 

<_ ~ b~n/2~'~(x) 
m = l  i : t  m 

proof that 
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It is sufficient to show that the first term on the right hand side of (3.11) tends 
to zero; the proof that the second term tends to zero is similar. Since 

i=~., b~ Ai(x), m = 1 , . . . , %  are independent, 

(3.12) 

( era+q-1 \ 2  1 -  r (e 1 ) 
1-E k Z bln/27Xi(x))=n~l Var "~-b~127Xi(x)  " 
/~ m--1 i=gm = \ i=gm 

By Lemma 2.1, 

(3.13) Var(b~/~&(x))  = Var(b~/~a~(z)) 

= b n E [ I ~ n ( X  - -  Xi)] 2 

= [K((x - u)/bn)]2f(u)du 

--+ f(x [K(u)]2du. 

Employing (3.13), the right hand side of (3.12) equals 

(3.14) 

,y 
~ q v a r ( b l / 2 ~ l ( X ) ) _ ~ _  2 ~ Z 1/2- 1/2~ _ - Cov{b~ ~ , ( x ) , b ~  ~ j ( x ) )  
n n m=l tm<_i<j<gm+q--1  

b~ <_cq~/n+- ~ ICov{&(x),&(x)}l. 
n 

l<_i<j<_n 

Using (3.5), 
q'Y _ qP7 < q --+ 0. 
n pn p 

The last term of (3.14) tends to zero by (2.12). It is now easy to deduce from 
(3.11) to (3.14) that n-IE(Sg) 2 tends to zero. [] 

LEMMA 3.2. Let 

2 T 2" Then sn 

2 Sn = Z Var(n-ll2um)" 
rn= l 

PROOF. From equation (3.9), 

(3.15) ~ Var(n-1/2Um)= E(Sln) 2 
m = l  

because U1, . . . ,  U7 are independent r.v.'s. It is easily seen that, 

E(S') 2 ES~ E(S~ +,~"')2 2E[&(S" + S ' ) ]  
(3.16) - -  - - -  + - 

n n n n 
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Lemma 3.1 implies 

(3.17) 
[E(S~+S[')2] 1/2 [E( ] + [ ~ ] ~ 0 .  n _< _~)___....~2 ~/2 E( ,)2 1/2 

By (3.2) and (3.8), 

(3.18) ES~ ~ r2" 
n 

The lemma follows from (3.15), (3.16), (3.17) and (3.18). [] 

LEMMA 3.3. Let gn be as defined in (2.2). Then 

(nbn)l/2(gn(xl) - Egn(xl),. . . ,  gn(Xk) - -  E g n ( X k ) )  / d~ N(0, C), 

where C is a diagonal matrix with diagonal elements Ci~ = f(xi) f~_~ K2(u)du, 
i = l , . . . , k .  

2 in Lemma 3.2, PROOF. By the definition of s~ 

7 (n_l/2Um I E Var 
m = l  \ 8n 

=1.  

The r.v.'s {U,~ : 1 < m < 7} are independent since the process {/~i} is q- 
dependent. By the Lindeberg Central Limit Theorem, 

7 

(3.19) E n-l~2 U.~ ~ N(O, 1) 
m = l  Sn 

if for every ~ > 0 

7 

/320  x2d  o 
= Ixl_>~) 

where Fm is the distribution function of n-1/2U,~/sn. 
From (3.7) 

IUm[ < Cpbn 1/2 a.s., 

since K is bounded. Therefore 

n-1/2[Uml < Cp C [,p2"~ 
s~ -snnv/-n~ sn \ ] -~n  

1/2 
a.S. 

A simple computation using the definition of p in (3.4) and Lemma 3.2 shows that 

> = o 
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for sufficiently large n. The left hand side of (3.20) is thus zero for large n and 
(3.19) follows. By (3.9) and (3.10), 

S~ - (S~ + S~') d g (0 ,  1). 
(3.21) S n v ~  

Employing Lemmas 3.1 and 3.2 together with the definition of ~- in (3.2), 

(3.22) S;~ + S'~" p 0. 
Snv/-~ 

The proof of (3.3) is completed by (3.21), (3.22), (3.8) and Lemma 3.2. [] 

THEOREM 3.1. Suppose Assumpt ions  1-3 hold and x l ,  .. . , xk  are k distinct 
points of R. Then 

(nbn) l /2 ( fn (Xl )  - E f n ( X l ) , . . . ,  fn(Xk)  -- E f n ( X k ) )  t d N(O, C) .  

PROOF. Define 

?Tn(X) : (nbn) l /2( fn(X)  - E fn (X) ) ,  

Then 

Crln(X) + &?~(y) : ~ n ( X )  + d~n(y) + c(nb,~)l /2(fn(x)  - gn(x))  

+ d(nbn) l /2(gn(y)  - g,~(y)). 

By Lemma 2.9, 

c (nbn) l /2 ( fn (x )  - gn(X)) £ O, c(nb~) l /2 ( f~(y )  - g~(y))  P O. 

Employing (3.3), 

Crln(X) + drln(y) d g ( 0 ,  r2). 

The theorem follows by the Cram~r-Wold device. [] 

ASSUMPTION 4. For some C > 0 and any x ,y  E R, 

I f (x )  - f (Y) l  < C I x -  Yl. 

ASSUMPTION 5. The bandwidth b~ tends to zero slowly enough that  

nb 3 ---* co. 

THEOREM 3.2. I f  Assumpt ions  1-5 hold and in addition, 

/_ ~ l x l K ( x ) d x  < oc, 
( X )  

 n(y) = ( n b n ) l / 2 ( f n ( Y )  - E f n ( y ) ) .  
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then for  any k and any distinct points Xl , . . . ,  xk, 

(nbn)l/2(fn(Xl) - f ( X l ) , . . . ,  fn (xk)  -- I ( xk ) ) '  d N(0, C). 

PROOF. Again, assume k = 2. We have 

(3.23) c ( n b n ) l / 2 ( f n ( X  ) - f ( y ) )  q- d ( n b n ) l / 2 ( f n ( y )  - f ( y ) )  

- [ c ( n b n ) l / 2 ( f n ( X )  - S i n ( x ) )  + d ( n b n ) l / 2 ( f n ( y  ) - Eft(y))] 
= ( n b ~ ) ~ / 2 [ c ( S % ( x )  - f ( x ) )  + d ( E f n ( y )  - f(y))]. 

By a simple computation, 

f?  i,l, xl.z (3.24) IEfn(X) - f (x)]  = K ( z ) f ( x  - bnz)dz - 
O C  

/? <_ Cbn N K ( z ) d z  <_ Cbn. 
O 0  

Similarly, 

(3.25) )Ef~(y)  - f (Y)l  <- Cbn. 

By Theorem 3.1, 

(3.26) c(nb~)l/2(fn(X) - E f~ (x ) )  + d(nbn) l /2( f~(y)  - EA(y ) )  ~ N(0, T~). 

Employing Assumption 5, we easily obtain from (3.23), (3.24) and (3.25), 

c(nbn)l /2(fn(X) - f ( x ) )  + d(nbn) l /2( fn(y)  - f ( y ) )  d N(0, T2), 

since nb 3 ~ O. The theorem follows by the Cram6r-Wold device. [] 

Remark  3.1. If 5 > 1 and Assumption 5 is satisfied, then b~ > n -1/3 for 
large n. Then 

nb(13+25)/(3+2~) = nb~b(4-4~)/(3+2~) > Cnb~nO/3)(4~-4)/(3+2~) 

log log n log log n - log log n 

Thus Assumption 5 implies Assumption 3 when 6 > 1. 
If 5 < 1 and Assumption 3 is satisfied, then 

nb3n = ~['nb(13+26)/(3+26)) ( ~ o g ~ o g n  ~,b(n 4~25)lOglOgn ) --. co. 

Thus Assumption 3 implies Assumption 5 when 5 < 1. 

---~ OO. 
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4. Asymptotic normality: the exponential case 

ASSUMPTION 2'. Suppose that  the coefficients of the linear process Xt tend 
to zero sufficiently fast tha t  ]arl = O(e - s t )  for some r > 0 as r --* co. In addition, 
Z1 has mean zero and finite variance and an absolutely integrable characteristic 
function ¢. 

ASSUMPTION 3'. Suppose bn '-+ 0 in such a manner  tha t  

nb,~ 
log log n(log n) 2 

---+CO. 

Note tha t  Assumpt ion 5 implies Assumption 3' when 6 < 1. 

THEOREM 4.1. If Assumptions 1, 2', 3' hold, then 

(nb,)l/2(f~(xz) - Era(x1) , . . . ,  f~(Xk) - Ef~(xk)) '  d N(O, C) 

for any k and any distinct points X l , . . .  ,x  k of  R .  

PROOF. We will obtain the  theorem by making certain modifications to the 
proof  of Theorem 3.2 where Assumptions 2 and 3 are employed. 

Choose 

(4.1) q = 2a  log n - 3a  log bn = log(n2'~bn 3a) 

for some a > 1/(2s).  Turning now to (2.14), we have with the help of Assump- 
tion 2' 

(4.2) P[(nbn) l /2] fn (x )  - gn(X)] > e] 
o o  

2 < Cn2bn3e-2Sq < Cn2b~3 Z ar 
r=q 

<<_ Cn2b~ 3 e x p ( - 2 s a  log(n2b~3)) 

< C(n2b~3) -2~+1 = o(1), 

p = (log log n) - 1/2 (nbn)l/2. 

Then 
P- = o~ -1 (nbn (log log n) -1 ( log(nbn3))-2)l /2.  
q 

Since bn --* 0, we have log(nb~ 3) > logn  for large n. Therefore Assumpt ion  3' 
warrants  tha t  

(4.3) P --+ co. 
q 

since n2b~ 3 ~ co and - 2 s a  + 1 < O. 
Choose 
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The proof of Theorem 4.1 can be obtained from the proof of Theorem 3.1 using 
(4.2) and (4.3) to make adequate changes. [] 

THEOREM 4.2. 

then 

If  Assumptions 1, 2 ~, 4, 5 hold and in addition, 

f ~ lxlK(x)dx < ~ ,  

(nbn)l/2(fn(Xl) - f ( x l ) , . . . ,  fn(Xk) -- f (xk)) '  d N(O, C) 

for any k and any distinct points x l , . . .  ,xk of R. 

PROOF. The theorem follows easily by employing Theorem 4.1 and the proof 
of Theorem 3.2. Note, however that Assumption 3' is not needed since it is implied 
by Assumption 5. To see this, let us suppose that Assumption 5 holds. Then 
bn > n -1/3 for large n and Assumption 3' holds because n 2/3 goes to infinity at a 
faster rate than log log n(log n) 2. [] 

5. Limiting covariance, MSE of fn and optimal bandwidth 

Under general assumptions, we next compute the limiting covariance matrix 
of ( fn (Xl ) , . . . ,  fn(Xk))' for distinct points x l , . . . ,  xk. This result is then employed 
to obtain the optimal bandwidth in the sense that it asymptotically minimizes the 
mean square error of fn. 

LEMMA 5.1. Let fx j ,xk  be the joint density of (X j ,Xk ) .  Then 

sup sup Ifx¢,xk (x, y) - f ( x ) f ( y ) l  <_ C 
j¢k (x,y)CRxR 

for some constant C independent of n. 

PROOF. 

Then 

Decompose Xk as follows: 

~ .  k- j -1  

Xk : ak_j+<Zj-~ + E a~Zk-r. 
r : O  r~O 

k-j-1  
iuXj  + ivXk = i E ( u a ~  + vak-j+~)Zj-r  + iv E a~Zk-~. 

r=0 r=0 

Using independence and the Fourier inversion formula, the proof of the lemma can 
be completed by the same argument as that of Lemma 2.2. [] 

LEMMA 5.2. For all l < v < n - 1  and all x and y in R, 

l Cov{Al(x), _< cbx 3 
r : ~  
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PROOF. For v _> 1, define 

= X l + .  - 

oo 

-~ E a r Z l + v - r "  
r~v  

Then 

I Cov{AI(x), Al+v(y)}l ---- IE[K~(y - R. - X~+v){K~(x - X1) - #n}]l. 

The proof of the lemma can now be completed using the same line of argument in 
Lemma 2.4. [] 

THEOREM 5.1. Suppose Assumptions 1, 2 hold or Assumptions 1, 2 ~ hold. 
Let Cn be the covariance matrix of the random vector ( f n ( x l ) , . . . ,  f,~(xk))', where 
x l , . . . ,  xk are k arbitrary points in R. Then lim,~__,~ nb,~ Cn = C. 

PROOF. We will consider the polynomial case where ar tends to zero at the 
rate r -(4+6). The proof of the exponential case under Assumptions 1, 2 ~ is similar. 
Without loss of generality, we assume k = 2. To complete the proof of the theorem, 
it is sufficient to show that 

(i) limn--+~ nb~ Var[f~(x)] = f ~  g2(y)dy,  
(ii) lim~__.~ nbn Cov{f~(x), f~(y)} -- 0. 
The proof of (i) can be obtained by a slight variation of the proof of Lemma 

2.5. Replace/Xi, gn, -~i by Ai, fn, and Xi respectively and use Lemma 5.1 and 
Lemma 5.2 to make necessary changes. 

The proof of (ii) follows by making some slight changes in the proof of Lemma 
2.8 with the help of Lemma 5.1 and Lemma 5.2. [] 

Assume that K satisfies 

F F (5.1) yK(y)dy  = O, y2]K(y)]dy < oc 
OG O0 

and f " (x)  exists. Following the same line of arguments as Parzen (1962), 

i? b2 n -~ - f " (x)  ~ y2K(y)dy. 

Consequently, 

F [5 ] E[fn(x) - f(x)] 2 ~ f ( x )  K2(y)dy + b 4 2 nb~ ~ -~ y2g(y)dy  f"(x) .  

The value of bn which asymptotically minimizes the mean square error is 

f ( x )  f-~c K2(y)dy 
bn = 

In(f  "(x) f_o¢ y2K(y)dy)2]U 5. 
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Then, the mean square error tends to zero as n -4/5, as in the independent case. 
Summarizing, we have 

THEOREM 5.2. Suppose K satisfies (5.1) and Assumptions 1, 2 or 1, 2' hold. 
Then the bandwidth given in (5.2) asymptotically minimizes the mean square error. 

A natural  method in bandwidth  selection arising from (5.2) is to choose bn 
with respect to some s tandard family of densities. For more details see Section 
3.4.2 of Silverman (1986). 
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