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Abstract. The maximum likelihood estimators are uniquely obtained in a
multivariate normal distribution with AR(1) covariance structure for monotone
data. The maximum likelihood estimator of mean is unbiased.
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1. Introduction

There are many studies about statistical inference based on missing data.
Monotone data is a special type of missing data. It is expressed as the i x 1
observation vector x;; for ¢ = 1,...,k and j = 1,...,n;, especially for the case
k=3as
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situations.

Assume that monotone data are independently distributed as Ny(p,X), in
other words, @;;’s are mutually independent and @;; is distributed as N;(u;, ¥;)
where p, is the first ¢ components of g and %; is the first ¢ x ¢ matrix of . The
maximum likelihood estimators of g and ¥ were investigated by Anderson (1957),
Bhargava (1975), Jinadasa and Tracy (1992) and Fujisawa (1995).

It is sometimes postulated that ¥ has a structure given by ¥ = o2(pl*=7l),
which is called AR(1) covariance structure. An example is the case when data is
longitudinal. In this paper the maximum likelihood estimators of the parameters
i, o2 and p are obtained uniquely. The maximum likelihood estimator of g is
unbiased.

is the I-th component of z;;. This type of data appears in various
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The case k = 2 was considered by Dahiya and Korwar (1980). They proved
that the likelihood equation for p has a unique root which always provides the
maximum likelihood estimator of p. We extend this result to a general monotone
data. The case k = 2 for general missing data was considered by Konishi and
Shimizu (1994). They obtained the asymptotic normality of the maximum likeli-
hood estimators and pointed out, based on a simulation study, that the likelihood
equations had no unique solutions.

2. Maximum likelihood estimators

First we prepare some notations. For each [, let the subvectors of a vector =
with the first [ components and I-th component be denoted by

@) = (z1---m), [z ==,

and let the first [ x [ submatrix of a matrix A as [A];, and partion a | x [ matrix
A be denoted by

_ (Al A i —1) x ({ — 1) matrix
A_([A]21 [A];), [A]11 is the (I — 1) x (I — 1) matrix.

Let the (m,n) component of a matrix A be denoted by [A](m ). Then [X]; = %,
[Zii1 = Sy and [Bilas = [S]y. Let Ny = 35,

:—ZZ[-’BLJ Q= NLZZ (223510 — ) ([25]0 — ).

i=l 7=1 i=l j=1
Note that m; and @, are natural estimators of g; and ¥;. Let Aj; =%, A_q =
St B2, Au = [Zia2 — (221 (2157 [Zi]12, and let a symmetric positive definite
matrix A defined by
Ay Ap
Ago
A= Ass

A
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It may be noted that the correspondence between A and ¥ is one-to-one and onto.
Then we have for [ =2,... .k,

(21) AH =0'2, All —_—02(1—-[)2), Al—l,l = (0,...,0,p)l.

Let f(-) be a probability function and f(- | -) be a conditional probability
function. Noting that [z;;]; = ([@i;]]_;[i;]!) for I = 2,...,%, we can write the
likelihood function of x;;’s as

k n; k ny
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The conditional distribution of [xij]l given [x;;];—1 is normal with mean v;; =
' + A7y ([@i5li-1 — [#li-1) and variance Aj. Thus we can obtain the log-
likelihood I(, 02, p), given by

N N.
l:const——2110g02—7210g(1— )——— 13— 21— 77 Zle
_ 1IN L (5" + 025 — 2pS12)
20_2 1_p2 P P12 )

where Ny = El 1V N, = El G NI, 1 = my — pa, = [ml]l _ [”]l _
Al—l,l [my]i—1 — [pli-1) for L =2,... k, and

k k k
= ZNz[Qz](u), S = ZNl[Ql](z—u—l), Si1g = ZNl[Ql](l—l,l)-
=2

=2 =2

Since the likelihood ! approaches 0 when some parameters approach the
boundary of the regions, the maximum likelihood estimators fi, 62 and p are ob-
tained as extremum values of the likelihood I. Simplifying the likelihood equations,
it follows that the maximum likelihood estimators satisfy

(2.2) ' =my, (@) =[] + (A" - (],
(2.3) p = S12/{N16* — N1Q1 + S},
(2.4) 62 = { : _1ﬁ2 (S* + 528 — 2,3512)} /N

Eliminating 62 from (2.3) and (2.4), we get a cubic equation in p, given by

(2.5) 7(p) = Na(N1Qy — 8)p° + (N2 — Ny)S1ap°
+ {N1(8* + 8) — No(N1Q1 — 8)}p— N1S12 = 0.

Dahiya and Korwar (1980) considered the case k = 2 and proved the uniqueness of
the root of the equation 7(p) = 0 on (—1,1). It may be noted that Ny@; —S >0
and N3 —N; < 0 for the case k = 2. However, in this case the sign of the coefficients
of the equation 7(p) = 0 are unknown. We obtain the following theorem.

THEOREM 2.1. Let fi, 62, p be the mazimum likelihood estimators of the
parameters p, o2, p. Then p is (i) the unique root of 7(p) = 0 on (0,1) when
S12 > 0, (ii) zero when Si2 = 0, (iii) the unique root of 7(p) = 0 on (—1,0) when
S12 < 0, and

[f‘]l =my, L‘A‘]l = [mu] + B[ = [my]' ),
{N1Q1 + -7 (S* +p°S — 2P512)}/N1
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PROOF. If we prove that p is unique, then the proof is complete because of
the formulas (2.2) and (2.4). When S12 = 0 we have g = 0 from (2.3). The case
S12 > 0 is now considered. The case Si2 < 0 can be discussed in a similar way.
The proof consists of three steps.

First we prove that there exists p on (0,1). The root of the equation 7(p) = 0
is non-zero because 7(0) = —N1S512 # 0. So, p is non-zero. For a fixed p, the
maximum likelihood estimators ji(p) and 62(p) of g and o? are obtained from
(2.2) and (2.4). Let

v(p) = U(@lp), 6% (p), )

N.
= const —72 log(1 — p?)

1
—p?

N
——El—log{NlQl_S"‘r‘ 1 (S*+S—2p512)}

Then we can easily show that v(p) > v(—p) for p > 0. So, there exists p on (0,1).
Now we show that the equation 7(p) = 0 has the unique root on (0,1). We
have

7(—1) = =N1(S + S* +2512) <0,
7'(0) = _NISIZ < 0,
T(l) ES N](S+ S* - 2512) > 0.

Hence, the equation 7(p) = 0 has at least one root on (0,1). Let p1, p2, p3 be the
non-zero roots of 7(p) = 0. Then we have

prtpatps _ (Na — N1)S12 _ No— Ny

FU = = = < 1.
P1P2P3 N1S19 Ny + Ny

Now let 0 < p; < 1 for i =1, 2, 3. Then we can obtain
3(p1peps)t/? < p1 + o + p3 < p1p2ps-

So, we have 3 < (p1pap3)?/3 < 1. This is a contradiction. Now let 0 < p; < 1
for i = 1, 2 without loss of generality. Then we have N1@; — S > 0 and 0 <
p3 < 1 because 7(0) < 0, 7(1) > 0 and the equation 7(p) = 0 is cubic. This is a
contradiction. The result is proved.

Finally, we show that p is the unique root of the equation 7(p) = 0 on (0, 1).
From the first step there exists p, which is a root of the equation 7(p) = 0, on
(0,1). From the second step the equation 7(p) = 0 has the unique root on (0,1).
Therefore p is the unique root of 7(p) = 0 on (0,1). O

The unbiasedness of the maximum likelihood estimator f is obtained in the
following theorem.

THEOREM 2.2. The maximum likelihood estimator fi of p is unbiased.
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Proor. From Thecrem 2.1 we have
(2.6) p= Z fidi

where fi = Tk"'Ti, Tk = Ik, TJ = (I] A]’,j+1)/, Aj,j+1 = (00 [))’ fOI'j =
L...,k—1, dy = my and d; = m; — [my1]; for ¢ = 1,...,k — 1. Because
E(fxdr) = E(my) = p, the proof is enough to show that E(Ei.:ll fid;) = 0. Note
that g is a function of Q;’s, and so is f; for i = 1,...,k — 1. Without loss of
generality, let g = 0 on the following discussions.

Let ml* = Zm:1 m'ij/niv Q: = Evél(m’ij - mz*)(ml] - m;)l/ni‘ We have
J J

k
1 *
my = N an[ml Iis

1=l

k k
Q= Ni; Z"i[Qf]z + Nii ;ni([mﬂz —my)([m}] — my)".

i=l
Note that Q; is a function of Q}’s and [m}]![m}]"’s because of

[mi 1 m ] = [mi) fmg 1 [mi ) [m) 2 /([m]")?.

So is f; because p is a function of @Q;’s. We have

k—1 k-1
E (Z fid,) =E (E {Z fidi | Qs and [m;]l[m;]l’s})
i=1

i=1

=E (i fiE{d; | Q}’s and [mf]l[mi*]l,s})
k-1
=E (Z fE{d; | [mfll[m:r’s}) :
Let v = ([m{][m3])'[m;]°[m3]" - - [m{]*) = (v vk(es1)/2)'. Then v is

normally distributed with mean zero. The set V = {v |viv; =t;,i =1,..., k(k +
1)/2} is symmetric. In other words, if v € V, then —v € V. Therefore we have

E{’U | Vv = t,1 = 1,,k(k+1)/2}:0

So,
E{d; | [m}]'[m}]"s} = 0.

The proof is complete. O
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