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Abstract .  It is shown that bootstrap methods for estimating the distribu- 
tion of the Studentized mean produce consistent estimators in quite general 
contexts, demanding not a lot more than existence of finite mean. In particu- 
lar, neither the sample mean (suitably normalized) nor the Studentized mean 
need converge in distribution. It is unnecessary to assume that the sampling 
distribution is in the domain of attraction of any limit law. 

Key words and phrases: Bootstrap, central limit theorem, consistency, domain 
of attraction, domain of partial attraction, heavy tail, percentile-t method, self- 
normalization, Stable law, Studentization. 

1. Introduction 

Among bootstrap methods for conducting inference about a mean, techniques 
based on self-normalization occupy a central position. In classical settings, where 
the tails of the sampling distribution are relatively light, self-normalization or 
Studentization has been discussed extensively in the context of the percentile-t 
method, where pivotalness is the main issue. Self-normalization ensures second- 
order accuracy, and in the case of inference about a univariate mean it is ar- 
guably the simplest approach to accurate bootstrap inference. See for example 
Hall (1992). The self-normalized bootstrap has also been treated for relatively 
heavy-tailed distributions, where it has been shown to be appropriate when the 
sampling distribution comes from the domain of attraction of stable laws whose 
exponent exceeds 1. See in particular the work of Arcones and Gin6 (1989). 

The cases of light- and heavy-tailed distributions differ considerably in the 
complexity of their technical prescriptions. The former demands only moment as- 
sumptions, but the latter requires intricate conditions on the tails of the sampling 
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distribution. Not only must the tail probabilities be regularly varying of an ap- 
propriate order, they must be balanced, in the sense that their ratios must enjoy 
a well-defined limit. In the present paper we show that conditions of this type are 
unnecessary, and that the attractiveness of the percentile-t bootstrap extends to 
distributions that are not in the domain of attraction of any limit law. Indeed, 
bootstrap methods for the mean, based on self-normalization, are applicable under 
a condition that is not much stronger than existence of finite mean. 

The remarks above apply to methods that  are based on using a resample of 
smaller size than the sample, and which employ the bootstrap to approximate 
the distribution of the Studentized mean, Tm say, for this smaller size, m. If we 
wish to approximate the distribution of the Studentized mean constructed for the 
original sample size, say n, then the distribution of Tm must be close to that of 
Tn. This requires a more stringent assumption on the truncated second moment, 
but which is still substantially less than demanding that the sampling distribution 
be in a domain of attraction. Indeed, the distribution may be simultaneously in 
the domain of partial attraction of every Stable law (including that of the Normal 
law) whose exponent exceeds 1 + e for some e > 0. 

Related work includes that of Athreya (1987), Gin~ and Zinn (1989), Knight 
(1989), Hall (1990a) and Deheuvels et al. (1993), who analysed the influence that 
extreme summands have on bootstrap methods for the mean in the case of heavy- 
tailed distributions; Arcones and Gin~ (1991), who investigated similar issues, 
including consistency of both distribution and moment estimators based on the 
bootstrap; and Swanepoel (1986), Hall (1990b) and Wu (1990), who noted the 
importance of using resample sizes smaller than the sample size. Politis and Ro- 
mano (1994) showed that the subsample bootstrap produces consistency in a wide 
range of settings. However, the fact that the statistics there require limiting dis- 
tributions (see Politis and Romano's condition (A)) excludes much of the context 
studied in the present paper. 

Section 2 presents our main theorem, whose implications and regularity con- 
ditions are addressed in Section 3. Examples describing aspects of the theorem 
are discussed in Section 4. Section 5 gives a proof of the theorem. 

2. Main result 

Let X, X1 ,X2 , . . .  denote independent and identically distributed random 
variables with finite mean #. Put  ) f  -1 n ---- = n ~ j = I X j ,  the sample mean; S 2 

n - 1  E j n _ I ( X j  - 2 )  2, the sample variance; and Tn = n l / 2 ( f (  - # ) I S ,  the centred, 
Studentized mean. The bootstrap version of Tn may be introduced as follows. 
Conditional on X = {X1, . . .  ,Xn}, let X ~ , . . . ,  X* denote independent and iden- 
tically distributed random variables drawn randomly, with replacement, from X; 
let m < n; and put -* m_l  m , r a  - -  X m  = ~-~j=l X~, S ~  = m -1 ~-~j_I(X] - )~m) 2 and 

T ~  = m l / 2 ( f (  * - X ) / S * .  We claim that under very mild regularity conditions, 
including the assertion that m = m ( n )  --* cc  and m / n  ---* 0, the conditional dis- 
tribution of T*, given the data ?d, approximates the unconditional distribution 
of Tin; and that under slightly more stringent assumptions, the distributions of 
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Tm and Tn are close, so that  the conditional dis tr ibut ion of Tin* approximates  the 
uncondit ional  distr ibution of Tn. 

Our assumptions concerning the distr ibution of X are expressed solely in 
terms of the  sum and difference of the t runcated  covariance function, 

~-+(x) = E { X 2 I ( 0  < X < x)} :k E { X ~ I ( 0  < - X  ___ x)}. 

Pu t  p±(x ,  A) = r±(Ax) / r+(x )  if T+(X) > 0, 1 otherwise. We shall suppose that  for 
some e, C > 0, 

(2.1) lim lim sup p+ (x, A) = 1, sup A~-lp+ (x, A) < c¢; 
A,[.1 a:---+ c~ X > l , x > C  

and on occasion that  for all 0 < ( < 1, 

(2.2) sup [p±(x, A) - p±(y,  A)[ ~ 0 
Cx<_y<_x 

for each A > 0, as x ~ oc. 

Assume (2.1), and that m = re(n) ---+ oo and m / n  --+ O. THEOREM 2.1. 
Then 

(2.3) 

in probability, 

(2.4) 

and 

(2.5) 

sup IP(Tm ~ x) - P(T~ ~ x l x ) l  ~ 0 
- - o o < x < o o  

lim liminfP(e ~ IT~I ~ ~) = 1 
e--*0,A---+oo n ---* oo 

lim lim sup sup P ( x  < T~ < x + e) = O. 
e---*0 n---*oo - - o o < x < o o  

I f  in addition m n  -1 logn  ~ 0 then the convergence in (2.3) is with probability 
one. I f  both (2.1) and (2.2) hold then there exists a sequence of positive constants 
5,~ decreasing to zero, such that 

(2.6) sup IP(Tn < x) - P(Tm <_ x)l ---* 0 
- - o ¢ < x < o c  

whenever 5n < m / n  ---* O. 
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3. Discussion 

Remark 3.1. Simpler, sufficient condition for (2.1). A condition that is 
simpler than (2.1) and which implies that constraint is the following: for some 
e > 0 a n d e a c h A 0 > l ,  

(3.1) < 

for all A >_ A0 and all sufficiently large x. It is straightforward to check that 
conditions (2.2) and (3.1) both hold if the distribution of X is in the domain of 
attraction of the Normal law, or of a Stable law whose exponent a exceeds 1. 
(The assumption a > 1 ensures that E(IX[) < co. In this case the quantity e in 
condition (3.1) may be taken to be any positive number less than a - 1.) In such 
contexts 6~ may be any sequence such that ~n + (n(~n) - 1  ---* 0. 

Remark 3.2. Finiteness of moments. Assumption (2.1) implies that 
E(IXI 1+~) < oo for all 0 < 5 < e, and in particular that E(IXI) < co. To 
appreciate why, note that by (2.1) there exists a constant C > 0 such that 

fl ° x - E{IXl ÷ I(IXI > x)} ua-2r+(ux)du 

// < Cr+(x) ue-l-~du < ~ .  

The requirement that X enjoy a property stronger than the existence of finite mean 
is not unexpected, since the conclusions of Theorem 2.1 fail if the sole assumption 
is that X be in the domain of attraction of a Stable law with finite mean. Indeed, 
if X has those properties and satisfies P(X > C) = 1 for a finite constant C then 
it may be shown that P(Tn > A) ~ 1 as n ~ oo, for each A > 0, and so (2.4) fails. 
This indicates that in such a context Tn is inappropriate as a basis for inference 
about the mean. 

Remark 3.3. Distributions that are not in any domain of attraction. Ex- 
ample 4.2 will discuss a distribution that satisfies (2.1) and (2.2), but is not in 
any domain of attraction. Moreover, it is in the domain of partial attraction 
of many stable laws. In such cases the distribution of T~ gets arbitrarily close, 
along subsequences, to each of the limiting distributions of self-normalized sums 
whose sampling distributions come from the various domains of attraction, but  
the distribution of Tn does not converge to anything along the full sequence of n's. 

In view of this curious and quite non-standard behaviour, it is important to 
know whether the distribution of T~ is in some sense asymptotically bounded away 
from zero and infinity, and asymptotically continuous, despite the fact that  it does 
not converge. Results (2.4) and (2.5) guarantee those properties. In particular, 
(2.5) ensures that in an asymptotic sense, the range of quantiles of the distribution 
of Tn may be approximated arbitrarily closely by the continuum, and so bootstrap 
procedures are not confounded by the presence of large spikes of probability mass; 
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and (2.4) shows that no part of the distribution of T~ "escapes to zero or infinity", 
ensuring that the bootstrap approximation described by (2.3) is not vacuous. 

Remark 3.4. Application to confidence procedures. Together, (2.3) and (2.6) 
imply that 

(3.2) sup IP(T,~ < x) - P ( T ~  < x [ X)I  --* O, 
- ~ < x < ~  

which provides a bootstrap approximation to the distribution of T.. Results (2.4), 
(2.5) and (3.2) ensure the consistency of the following bootstrap procedure for 
constructing a confidence interval with coverage probability ~r E (0, 1). Put  

~= = sup{x:  P(IT* I <_ x I 26) < 7r}, 

and let 27. = (.~ - n - 1 / 2 ~ S ,  f (  + n-1/22cTrS). Then 27~ is a nominal 7r-level 
confidence interval for #, and P ( #  E :Y,~) ~ 7r as n ~ oc. Of course, asymptotically 
valid inference may be conducted under (2.1) alone, without the need for (2.2), 
provided we base the confidence interval on Tm rather than T~. Indeed, let us 
define 2-~ to be that version of 2:. in which n -1/2 is replaced by m -1/2, and where 
)(  and S are replaced by their counterparts based on the first m elements of the 
sample X. (The quantity ~ is left unaltered.) Then by (2.3)-(2.5), and provided 
m is chosen so that m -1 + m n  -1 ~ O, we have P ( #  E IL)  ~ ~r. 

Remark 3.5. Implications for  empirical likelihood. The technique of empir- 
ical likelihood (see Owen (1988, 1990)) is sometimes considered a competitor of 
the bootstrap. The "classical" form of empirical likelihood ratio methodology, in 
which the distribution of the log likelihood ratio statistic is compared with that  of 
a chi-squared distribution, is not necessarily valid for heavy-tailed sampling dis- 
tributions, since there the ratio is not asymptotically distributed as chi-squared. 
However, an alternative approach in which the distribution of the ratio is cali- 
brated using the bootstrap is valid in the context of the sample mean computed 
from a heavy-tailed parent, provided that (2.1) holds and an appropriately smaller 
resample size is employed. Indeed, it may be shown that the log likelihood ratio 
evaluated at the true parameter value, #, is first-order equivalent to Tn 2, and that 
its bootstrap counterpart for a resample of size rn is first-order equivalent to Tm 2. 
Therefore the results described in the previous paragraph justify using bootstrap- 
calibrated empirical likelihood (with a resample of size rn) in cases where (2.1) 
holds, if the calibration is employed to adjust the distribution of the ratio com- 
puted for a sample of size rn rather than n; and justify its use under (2.1) and 
(2.2) if the calibration is applied to the ratio computed for a sample of size n. 
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4. Examples 

Example 4.1. Distribution in domain of attraction of stable law. Let X have 
density f ,  defined by 

{ poLx -c~-1 if x > 1 

f (x )  = (1-p) t~ lx l  -~ -1  if x < - 1  

0 if Ixl < 1, 

where 1 < (~ < 2 a n d 0  < p < 1. T h e n X  is in the domain of a t t rac t ion of a 
stable law with exponent a and tail  balance ratio p/(1 - p ) .  Conditions (2.1) and 
(2.2) hold, and (n 1-(1/a) ( ) f -  #), n1-(2/~)$2) converges in distribution to (Y1, Y2), 
say, where Y1 has a stable distribution with exponent a and Y~ has a positive 
stable distribution with exponent a /2 .  Therefore, Tn converges in distribution to 

Z = Y1/Y~/2. The boots t rap approximation to the distribution of Tn may be 
expressed as follows: if m = re(n) ~ oo and m / n  ~ 0 then 

P ( T  m <_ x IX)  - ,  P ( Z  < x) 

in probability, uniformly in x. 

Example 4.2. Distribution in domain of partial attraction of many stable 
laws. This example is of a distr ibution in the domain of partial a t t ract ion of all 
symmetric stable laws with exponent a E (1 + e, 2 - ~) for any e E (0, 1/2). A 
more elaborate version of the same construction will produce a distribution in the 
domain of partial a t t ract ion of all stable laws with exponent a E (1, 2] and tail 
balance ratio p/(1 - p) E [0, oc]. 

Given e, 5 c (0,1/2) let 1 = xl  < x2 < . . .  be defined by x~ = [Ii<_j<_iJ, 
and let (~1, ( ~ , . . .  be a dense subset of (1 + e, 2 - e) with the property tha t  for 
i > 2, I~  - (~+11 ~ ~/{i(logi)log log(i + 1)}. (Selection of a dense sequence with 
this property is possible because ~~{i(logi)loglog(i + 1)} -1 = co.) Note tha t  
log x~ ~ i log i, and put  

- - x i ÷ l  )}. Ci : {(Xi - a '  + X i  -c~'+1) ~,=i+1 + X i + I  )}/{4(xi - ~  

By choosing 5 sufficiently small we may ensure tha t  each ci > 0 and ci --~ 1 as 
i ~ oc. (To derive the latter result, note tha t  lai - a i+l l  logxi --* 0 and 

X,Tax(ai,a~+l) / min(ai,ai+l,ai+2) /Xi+l 
(xi/xi+l)  ̀ ~ exp[O{lai - a i+l l  logxi 

+ (]ai -- a i+l l  + ]ai+l - ai+21)log Xi+l}] 

~ (xi/x +l) 0.) 

Define 
0 if Ixl _~ Xl 

f (x )  = cioqjxj_~_ 1 if xi < IxJ ~ xi+l, for i ~_ 1. 
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The definition of c~ ensures that f f = 1 and f > 0. Let X have density f .  We 
shall prove that this distribution satisfies conditions (2.1) and (2.2). Similarly it 
may be shown that X is in the domain of partial attraction of every symmetric 
stable law with exponent between 1 + e and 2 - e. Clearly, from the tail properties 
of the distribution of X, it is not in any domain of attraction. 

Define a(x) = ai if ai < x < Xi+l. As m ~ c¢, 

(4.1) flxl<~,~+l 

m 

x2f (x)dx  = 2 E c~o~i(2 -ai,~-l(x2-~'~ i+l _ xi2-~,,) 
i--=1 

r-~ C [ m (  2 - -  ~ "~--lq,2--am 
~ r n /  ~ m + l  " 

Hence, there exist constants C1, C2 > 0 such that 

(4.2) Clx  2-~(x) <_ E{X2I([X[  < x)} _< C2x 2-~(~) 

uniformly in x > x2. Result (4.1), and the properties of ai, imply that  for each 
0 < ( < l a n d 0 < A a  < A 2 < o o ,  

sup  Ip+(y,  A) - 0 
Cx <y<_x,X1 <_A <X2 

as x ~ c¢. This is enough to give the first part of condition (2.1), and also 
(2.2) in the case of the + sign. Condition (2.2) in the case of the - sign is trivial, 
because X has a symmetric distribution. Since Ic~(Ax)-a(x)l logx --* 0 as x ~ oc, 
uniformly in 1 < A < x C for each fixed C > 0, then by (4.2), for all x _> x2 and 
1 < A < x 2/~, 

(4.3) p+(z, A) < 
< C3A2-~(~) < C3A 1-~. 

If A > x 2/~ then x < A ~/~, and so 

(4.4) p+(x, A) <_ CCIc2(AI+(~/2) )  2-~(~) 

<_ CllC2(A1+(~/2)) 1-~ <_ C~1C2~1-(~/~). 

Results (4.3) and (4.4) imply the second part of (2.1). 

Example 4.3. Smooth functions of vectors of means. Here we consider the 
case of a statistic 0 which can be expressed as a smooth function of a vector of 

sample means. Assume that the r-vectors Xj = (X (U,.  .. ,..jx'(~)~j, 1 _< j _< n, are 

independent and identically distributed with mean # = (#(1), . . . ,  #(~)). Put  

n 

j = l  

n 

j = l  
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and S = (S(81'~2)), an r x r matrix. Let H be a real-valued function of r vari- 
ables, having a continuous derivative in a neighbourhood of #, and put  Hk (x) = 
(O/Ox(k) )H(x) , / / (2 )  = ( H i ( J ? ) , . . . ,  H~(2 ) )  and ~2 = / / ( X ) S [ _ I ( R ) T ,  where the 

superscript T denotes transpose. Now, 0 = H ( X )  is an estimator of 0 = H(#) ,  and 

is an estimator of the scale of 0. We consider approximations to the distr ibution 
of (0 - 0)/#,  which is an analogue of ( 2  - # ) / S  (in the notat ion of Theorem 2.1). 

Define X~ = ~-~kXJk)Hk(~), f(o = n - 1 E j  X~ and #o = E(XC]), and let 

X (k) and X ° have the distributions of )(3(. k) and X] ,  respectively. Pu t  T (k) (x) = 

E{X(k)~I(IX(k)I < x)} and 7-°(x) = E{X°2I( IX°I  < x)}. We assume tha t  the 
distributions of X (1) . . . .  , X (r) and X ° each satisfy conditions (2.1) and (2.2). 

Then there exist positive constants b(n k) and b ° such tha t  nh(k)-2"-(k)[h(k)'l,,,~'n . ~,~ j ---, 1 
and o-2 o o nbn T (b,~) 1. (See Proposit ion 5.1 for more detail  of the properties of 

such sequences b~.) It may be proved tha t  b ° = O(maxl<k<~ b(nk)). We shall 
assume in addition tha t  

(4 .5)  m a x  b (k) = O(b°), 
k 

which is in effect equivalent to asking tha t  132 ° -  #° I be the same size as 
maxk(I)? (k) - # ( k ) l )  in probability. Under these conditions, we claim tha t  the 

conclusions of Theorem 2.1 apply to T~ = nl/2(0 - 0)/&, and to its boots t rap 
version ~r m. 

Derivation of this result may proceed as follows. By Taylor expansion, 

and ~2 = S °s + o p ( ~  k 13~(k) _ #(k)12), where S °2 is the sample variance of 

{ X ~ , . . . ,  X°}.  Condition (4.5) implies tha t  ( 0 -  0) /~  = (;¢o _ #o)/so + On(n-i~2). 
Since we have assumed tha t  (2.1) and (2.2) hold for X °, then the results of Theo- 

rem 2.1 apply to Tn = nl /2( f (  ° - #°) /S° ,  and hence also to T~ = n-1/2(0 - 0)/5. 
Similarly they  apply to the boots trap versions of these statistics. 

5. Proof of Theorem 2.1 

We begin by stat ing a proposition tha t  holds under conditions a little more 
general than  those of the theorem, but  whose implications are not quite so trans- 
parent. For each positive x put  T(x) = ~-+(x) = E{X2I( IX]  < x)}, and for 
integers r > 2 and values of x such tha t  T(x) > 0, define )( = n - l Y ~ X j ,  
S 2 .= n -1 ~-~(Xj - )~)2, Tn = nl /232/S  and 

pr(x, a) = x2-r (x)- E{XrX(IXL _< ax)}. 

Let m = m(n) denote a sequence of positive integers diverging to infinity. If the 
mean of X is finite then condition (5.3) below implies tha t  the mean is zero, which 
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explains why in our definition of Tn we have not needed to centre the sample 
mean, )(. However, the conditions of the proposition do not demand finite mean; 
for example, they hold for any symmetric distribution in the domain of attraction 
of any stable law, without regard for the size of its exponent. 

PROPOSITION 5.1. Assume that there exists a sequence of positive constants 
bn, diverging to infinity, such that the following conditions hold: 

(5.1) nb~2T(Ab~) = O(1) for all A > O, 

(5.2) nb~:T(b~) ~ 1, 

(5.3) lim l imsupnb~ l lE{XI ( [X[  < Abn)}[ = 0. 
~ -'-~ OO n ----> O~3 

Suppose too that for  some 6 > 0, 

(5.4) lim l imsupx2T(X) - lP( lXI  > Ax) = O, 
~, -"+ OO X - - ~  OO 

(5.5) lime 6-1 lim inf T(ex)~-(x)-i = 0 0 .  
E-"+O 2 : - - -*0~  

Then 

(5.6) 

(5.7) 

lim lim inf P(e <_ IT~I ~ ~) = 1, 
~--~0~)~ ' -"+ ~ Tt ----~ OO 

lim lim sup sup P(x  < Tn <_ x + e) = O. 
~ - - + 0  n - - - - + o o  - - o o < x < o o  

I f  in addition to (5.1)-(5.5), 

(5.8) Ip~(b,~, A) - p~(bm, ,X)l - - ,  o 

for all sufficiently large A > 0 and each integer r >_ 2, then 

(5.9) sup  IP(T~ <_ x) - P(T.~ <_ x)l  ~ 0 

a s  n --+ (:x). 

n PROOF. Define U,~ = b~ 1 ~-]y=l X j ,  V,~ = b~ 2 Ej=I X2. We shall prove that 
(5.1) (5.5) imply that 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

lim limsupP(IUn] > A) = O, 
)~--~ O0 n - - - +  O 0  

lira l iminfP(e  _< Vn _< A) = 1, 
~ ---> 0 ~ )~ ----+ O o  n ----~ o¢:) 

lim limsup sup P(x  < Us _< x + e) = O, 
e- - -~0  n - - - * o o  - - o o < x < o o  

lim limsup sup P(x  < Vn _< x + e) -- 0, 
e - - -*0  n - - - * o o  - - o ~ < x < ( x )  

and that if in addition (5.8) holds then 

(5.14) sup IP(Un <_ s, Vn < t) - P(U,~ <_ s, Vm <_ t)l ~ O. 
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Together these results imply the proposition in the case # = 0. To appreciate 
why, observe first that with 

1/2 

we have Tn = Sn(1 - n-lSn2) -1/2, and so it suffices to use (5.10)-(5.14) to estab- 
lish that version of Proposition 5.1 in which S~ replaces T~ throughout. Let us 
interpret (5.6), (5.7) and (5.9) in that context. Then (5.6) and (5.7) follow directly 
from (5.10)-(5.12), and (5.9) from (5.10)-(5.12) and (5.14). (We shall use both 
(5.12) and (5.13) during the proof of (5.14).) For example, to derive (5.9), first 
use (5.10) and (5.11) to show that it is sufficient to prove that for each e > 0 and 
x0 > 0, and each integer p _> 1, 

(5.15) sup IP(S~ <_x,e<Vn <_pe)-P(Sm <_X,e<Vm <_pe)l--+O. 
--Xo<X<Xo 

To derive (5.15), suppose we have already proved (5.7), and let 5 > 0 (different 
from the ~ in (5.5)) denote a divisor of e, so that j0 = 1 + (e/~) is an integer. Put  
5P = 2xo/jo, which quantity tends to zero as 5 decreases to zero. Then if x > 0, 

P(S~ _<., ~ < Vn <_ pe) 
p(jo-1) 

= ~ P{U~/V,~ <_ x, Vn e ((j  -- 1)$,j~]} 
j=jo  

p(jo--1) 

< ~_, P{Un<_j~x, Vne(( j - -1)~, j~]}  
j =Jo 

p(jo--1) 

= E P{Um < jSx, Vm e ((j - t)6, j5]} + o(1) 
J =Jo 

p(jo--1) 

<- E P{Um/Vm < _ j ( j - 1 ) - t x ,  Vm E ( ( j -1)~, jS]}+o(1)  
j =jo 

p(jo--1) 

< E P{Um/Vm < x, Vm • ( ( j -  1)~,jS]} 
j=jo 

+ sup P{x < U,~/Vm <_ j ( j  - 1)- ix}  + o(1) 
jo <_j <_p(jo--1) 

< P(S~ < x,e < Vm < Be) + sup P(x < Sm < x + 5') + o(1), 
-e~<x<ec  

where the remainder term is of the stated order uniformly in 0 < x < xo, for each 
fixed 5 > 0. (The third relation is a consequence of (5.14), and the others follow 
by elementary arguments.) In view of (5.7) the last-written supremum may be 
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made arbitrarily small by choosing ~ sufficiently small, and the case x > 0 may be 
treated similarly. Arguing in this way we may show that  

limsup sup { P ( S ,  < x,e < Vn <_ pc) - P(Sm <_ X,E < Vm <_ pc)} ---- O. 

The counterpart of this result, in which "limsup" and "sup" are replaced by 
"liminf" and "inf" respectively, may be proved similarly. Together they imply 
(5.15). 

We now proceed to derive (5.10)-(5.13). Observe that if~ > 0 is given then by 
(5.4) we may choose A so large that P(IX] > Abn) < ~bn2~-(bn) for all sufficiently 
large n. It follows that 

P(IUn[ > A) < uP(IX[ > Ab.) ~ b2T(bn)-lp(lxI > Ab . )  < ~, 

the second relation following from (5.2). This proves (5.10). Similarly, 

P(Vn > A) < uP(IX ] > Abn) <_ ~ + o(1), 

whence (5.11) will follow if we prove that 

(5 .16)  lim l imsupP(Vn < e2) = 0. 
e---*0 n---* oc  

To this end, put Yj = zyI(Ixjl  <_ ~bn) - -  T(£bn) and Xn = nT-(ebn) _ bn e22, and 
note that  by (5.5), Xn > 0 for all sufficiently large n, provided ~ < 1 is chosen 
sufficiently small. Now, 

P(Vn <_ e 2)<_P Yj <_ - x n  <_ nx~2E(Y  2) 
\ j=l  

_< nxn2b2n~2T(bn ) ~ Xn-2-40n e2 ~,, e2{T(bn)-l.r(ebn) _ e2}-2. 

Assumption (5.5) implies that for each 77 > 0, e2{T(bn)-lT(ebn) - e2} -2 may be 
made less than 7/for all large n by choosing e sufficiently small. This proves (5.16). 

Next we establish (5.12). For that  purpose we employ a bound for the con- 
centration function: 

f 
l / (  

(5.17) sup P(x  < gn <_ x + ~) < 2(96/95)2e ]Eexp(iub~lX)lndu. 
- -oo<x<oo dO 

See Petrov ((1975), p. 38). Put  X ~ = X1 - X2 (the symmetrized version of X). 
Since 1 - cosx _> (1/4)x 2 for any real x satisfying [x] < 1 then for any real t, and 
with v = (2t) -1, 

]E exp(itX)]2 : 1 - E ( 1  - c o s ( t X S ) }  

< 1 - ( 1 / 4 ) E { ( t X S ) 2 I ( ] t X  ~] << 1 ) }  

<_ 1 - ( 1 / 2 ) t 2 [ E { X 2 I ( [ X [  <_ v ) } P ( ] X ]  <_ v) 

- ( E X I ( I X I  ~ v)}2]. 
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]E exp(itX)I n <_ exp( - (1 /4 )n t2T(v )  

+ nt2[T(v)P(IXI > v) + {EXI ( IX  I <_ v)}2]). 

Replacing t by u/bn and noting (5.1) (5.3) we deduce that  

IEexp(iub~lX)l ~ <_ exp{-(1/4)u2T(bn)-lT(bn/2u) + o(1)}, 

where the o(1) term is of tha t  order uniformly in ul _< u _< u2, for any 0 < Ul < 
u2 < co. Therefore, in view of (5.5), 

fU2 /U 2 
l imsup IEexp(iub~lX)l~du <_ C1 + exp(-C2ul+6)du <_ C3 

?'b--CO0 J "~£1 d U l 

uniformly in 0 < Ul < u2 < oc, where C1, C2 and C3 are positive constants  not 
depending on ul or u2, and ~ > 0 is as in (5.5). (We have applied (5.5) with x = bn 
and e = (2u)-1.)  Hence, the lim sup as n --* cc of the integral of IEexp(iub;iX)V ~ 
over u in any interval (u l ,u2)  with 0 < ul < u2 < ec, is bounded  uniformly in ux 
and u2. Result  (5.12) now follows from (5.17), and (5.13) may  be proved similarly. 

As a prelude to deriving (5.14) we establish an approximation to the joint 
characteristic function of (U,,  Vn), 

¢~(u, v) = E{exp(iuU~ + ivV~)} = ~((u, v) ~, 

where X(u, v) = E{exp(iub~lX + ivb~2X2)} and i denotes the square root of - 1 .  
Given an integer k > 1 and any A > 0, put  

k ( -1 ) J  ~ ,  , -1  ~- + vbn2X2)23i(iXl <_ .kbn)} ~nk(~ t 'V)  : E ~ l ~ u O n  ~ 
j = l  

+ i E k  (2j(-1)J+ 1)! E{(ub~lX ÷ vbn2X2)2j+11(IXl - < Abe)}. 
j=0 

We shall prove that  for each u0, v0, q > 0 there exist A, k > 0, chosen sufficiently 
large, such that  for all n, nb;IIE{XI(IXI < Abn)}l _< ~/uo and 

(5.18) sup I~n(U, v) - exp{nSnk(U, V)} I < 7/. 
I~l_<~o,lvl_<~0 

The first step is to note that,  in view of (5.2)-(5.4), for any { > 0 we may choose 
so large that  riP(IX I > Abe) _< ~/2 and n b ~ l e { X I ( l X l  <_ Ab~)}l _< ~/uo for all 

n, Fix this A, and let A be an upper  bound  to 

nE{(ub~lX + vbn2X2)2I(IXl <_ Abn)} 

uniformly in lu[ < u0 and tvl ~ v0. Tha t  there exists such a A, not depending 
on n, follows from (5.1) and (5.2). Let ~ denote the event that  IXI < Ab,~, 
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with g being the complementary event. Pu t  Z~ = iubnlX + ivb~2X 2. Then 
[E{exp(Z~)I(g)} I <_ ~/(2n), and on g, [Z~ I _< ~ - uoA + VoA 2, uniformly in 
[u[ _< Uo and Ivl _< vo. It follows that  

I 2k+j~01 
exp(Z~) - (j!)-lz~ _< {(2k + 2)!}-xc2%¢lZ l= 

on g. Choose k so large that  {(2k + 2)!}-lff2keCA < ~/2. Then 

E e x p ( Z ~ ) -  (j!)-IZ~ I(g) _< ~/(2n). 

Therefore, 

(5.19) e x p ( Z n ) -  E (J!)-IzJI(~) 
j=o 

<_ £/n. 

A similar argument may be employed to show that  for a constant C > 0, depending 
on u0, v0, A and k, 

(5.20) E { 2~=ll(j!)-l zJ I(g) } <_ C/n. 

Together the bounds (5.19) and (5.20) may be used to prove that  for all sufficiently 
large n, and for each u0, v0 > 0, 

sup 
I~l~o,lvl~vo 

{Eexp(Zn)} n - {n 2k+1 ] Eexp j~=l (j')-XzJI(~) l < ~7, 

provided ~ is chosen sufficiently small. This is equivalent to (5.18). 
Consider a term-by-term expansion of n6nk(u, v), producing a polynomial in 

(u, v) with coefficients given by constant multiples of quantities of the form 

un~ = nb~rE{X'I(lX[ <_ Ab,)} = {1 + o(1)}pr(bn, A), 

where 1 < r < 2(2k + 1). If r > 2 then [pr(bn, A)[ < Ar-2T(Abn)/T(bn) = O(1), 
by (5.1) and (5.2), and so by (5.8), u,~r-Umr ~ O. W h e n r  = 1 we have, by 
choice of A, that  lu~l - u,~ll _< Iv~ll + [umlI _< 2rt. Therefore, given r/ > 0, 
[exp{nh,,k(U, v)} --exp{mhmk(U, v)} I may be made less than ~/uniformly in [u[ < 
u0 and Ivl < v0, by choosing ~ sufficiently small and then n sufficiently large. 
Hence, (5.18) implies that  

(5.21) sup [¢,,(u, v) - era(u, v)[ ~ 0 
lul<uo,lvl<_vo 
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a s  n---+ cxD. 

To complete the proof of (5.14), let e > 0 and write M and N for independent 
Normal N(0, e) random variables, independent also of Un and V,~. Put  U~ = 
U. + M and V~ = V, + N, and note that the characteristic function of (U~, V~ t) 
is given by Ct~(u,v) = ¢,~(u,v)exp{-(1/2)e(u ~ + v~)}. In view of (5.21) and the 
fact that I¢,~l -< 1, 

sup [V~(u ,v ) -¢~(u ,v ) [  ---+0 
lul<~o,l~l<vo 

as n --+ oc. It now follows by Fourier inversion of the characteristic functions ~p~ 
and ~ that for each fixed e, 

(5.22) sup IP{(U ~, V~) E C} - P{(U~, V~) E C}l + 0, 
C 

where the supremum is taken over all convex sets C C •2. 
We claim that 

(5.23) lim limsup sup IP(Un <_ s, Vn <_ t) - P(U*~ <_ s, V~ <_ t)l = O. 
e---+O n---+oo - -¢x )<s , t<oo  

Together, (5.22) and (5.23) imply (5.14). To prove (5.23) observe that  for any 
5 > 0 and all - o c  < s, t < oc, 

P(U~ <_ s, V~ <_ t) < P(Un <_ s + 5, V~ <_ t + 5) + 2P(]NI > 5) 

< P(U~ <_ s, Vn <_ t) + 2P([N[ > 5) 

+ sup { P ( x < U n < _ x + 5 ) + P ( x < V n < _ x + 5 ) } .  
- - ~ < x < o c  

Given ~ > 0, choose 5 so small that for all sufficiently large n, the supremum on 
the right-hand side does not exceed 7/3. (For this purpose, (5.12) and (5.13) are 
required.) Next select e0 so small that for all e < e0, P(INI > 5) < 7/3. It follows 
that if e < e0 then for all sufficiently large n, 

sup {P(U~ < s, Vt~ <_ t) - P(U~ < s, Vn <_ t)} _< 7- 
- - ~ < s , t < o c  

The counterpart of this formula, in which "sup" is replaced by "inf' and the 
relation "<_ ~" is replaced by "> -~" ,  may be derived by a similar argument. 
Result (5.23) is an immediate consequence. This concludes the proof of Proposition 
5.1. 

Our next result is in a sense an empirical version of Proposition 5.1. 

PROPOSITION 5.2. Assume the conditions of Proposition 5.1, except that we 
replace (5.8) by either 

(5.24) m n  - 1  + rrt - 1  --+ 0 
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(in the case of a weak law) or by the slightly more stringent assertion 

(5.25) r a n -  1 log n + m - 1 _+ 0 

(for a strong law). I f  (5.24) holds then 

(5.26) s u p  IP(Tm < x l X )  - P(Tm <_ x)l  -~  0 

in probability, and if  in addition (5.25) is true then (5.26) holds with probability 
o n e .  

m PROOF. Put U~ = bm I ~ = l ( X ]  - f ( ) ,  V m = b~ 2 ~ j = l ( X ]  - X)2 and 

~ n - - - -  * - -  * _  2 

1/2 

(To simplify matters we have dropped the extra subscript n from the ideal notation 
U* m and V*m.) Using a modified form of the argument outlined at the beginning 
of the proof of Proposition 5.1 wc may show that it suffices to establish that version 
of Proposition 5.2 in which T* is replaced by S*,  and that for this it is enough to 
prove that  

(5.27) sup [P(U* < s, V *  <_ t lX)  - P (Um < s, Vm <_ t)I ~ O , 
- - ~ < s , t < ~  

where the convergence is in probability under (5.24) and with probability one if 
(5.25) holds. Note that results (5.10)-(5.13) derived during the proof of Proposi- 
tion 5.1 remain valid under the assumptions of Proposition 5.2. 

Let ¢,~ denote the conditional characteristic function of (U*, Vr~ ). We shall 
prove that for each u0, v0 > 0, 

(5.28) fl~i<~o,N_<.o I~m(U, v) - ¢ (u ,  v) ldudv 

converges to zero as n --. oc, the mode of convergence being in probability if 
(5.24) holds and with probability one under (5.25). Result (5.27) follows from 
(5.28) on using a modified form of the smoothing argument employed in the last 
two paragraphs of the proof of Proposition 5.1, as follows. First, observe that 
in view of (5.17) and its analogues for U~, V~ and V~, the bootstrap versions of 
(5.12) and (5.13) follow from (5.28) via the argument in the paragraph containing 
(5.17). Therefore, 

(5.29) 

(5.30) 

lim lim sup sup P ( x  < U m <_ x + e[2d) = 0 
~---~0 n----+oo --O0<x<~O 

lim limsup sup P(x < V m < x + elX) --- O. 
E----+O n-*c~  --~<x<oo 
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Next, let M and N be as they were in the proof of Proposition 5.1, except that 
they must now be conditionally independent of the X~'s as well as independent 
of theX#'s .  P u t U ~ = U n + M , V ~ = V ~ + N , U ~ = U ~ + M a n d V ~ = V ~ + N .  
The analogue of (5.22), 

(5.31) sup IP{(U~, V~) E CIX } - P{(Utm, V t )  e C}I --+ 0, 
C 

follows from (5.28) by Fourier inversion. Formula (5.27) follows from (5.31), (5.23) 
and the bootstrap version of the latter, i.e. 

lim timsup sup IP(U * <_ s, V& <_ t l x )  - P(U~ < s, V~ < t lx ) ]  = 0. 
e--+0 n--+oo - o c < s , t < o c  

That result may be derived in the manner outlined in the last paragraph of the 
proof of Proposition 5.1, using (5.29) and (5.30) in place of (5.13) and (5.14). 

It remains only to prove (5.28). Let A', the characteristic function of 
(b~lX, b~2X2), be as in the proof of Proposition 5.1, and let 2 denote its bootstrap 
estimator, 

n 

2(u, v) = n - 1 E  exp(iubX xJ + ivbX x ). 
j = l  

Then %0m = X m and Cm = 2 "~, so that 

I~m - ~ l  = 1(2 - x)(2 m-1 + ;~m-2x + " "  + xm-1)l --< m i x  - xl. 

An alternative bound, 12 - Xt <- 2, is obvious. Therefore, writing 7~ for the 
rectangle in (u, v) space defined by lul _< u0 and Ivl _< v0, we have for each ~ > 0, 

1@,~- ~0m, <_ f m i n ( m , 2 -  Xl,2) 

+ 2 . / ,  I(f2 - XI > 2~?/m) <_ 8Vuovo 

+ 2 i = I { I N ( 2 -  X)I > 77/m} <_ 8~u0v0 

+ 

Therefore it suffices to prove that for each r] > 0, 

£ I { 1 ~ ( 2 -  X)L > V/m} -~ 0, 
(5.32) 

£ S{l~(2 - ~)t > ~ lm} --, o. 

We shall derive only (5.32). Indeed, with Aj -- ubnlXj + vbX2X 2 and ;~(u, v) = 
n n-1 ~ j= l  exp(iAj) we shall prove that 

[ 1{1~(2 - x)l > ~ t~ }  -+ o, (5.33) 
Jn 
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there being a similar proof that  

/ I{l~()~ - ~)1 > ~l/m} --* O. 

Put  Bj = 1 - cos Aj, and observe that  

- )c)l = n - 1    ( B j  - E B b ) .  

The variables Bj are independent and identically distributed with IBjl < 2, and 
for any A > 0, 

E(By) < E{A~I(IXjl < Abn)} + 4P(IXjl  > Abn). 

It follows from this inequality, (5.1), (5.2) and (5.4) that  if A > 0 is sufficiently 
large then E(B 2) <_ Cln -1, uniformly in lul < u0 and Iv I < v0, where Ck denotes 
a constant depending only on A, u0, v0 and, in the work below, ~/. Therefore, by 
Hoeffding's inequality (e.g. Pollard (1984), pp. 191-192), 

P[[~(2(u,  v) - x(u, v)}l > x/n] < 2 exp{-C2x2(1 + x) -1 } 

uniformly in [u I < Uo, Iv] _< Vo and x > 0. Hence, 

E [frcI{l~(~i- X)l > ~l/m}] <_ C3exp(-C4n/m). 

This implies (5.33). (Use the Borel-Cantelli lemma to obtain strong convergence 
in (5.33) when (5.25) holds.) The proof of Proposition 5.2 is complete. 

Combining Propositions 5.1 and 5.2 we see that  under conditions (5.1)-(5.5), 
results (2.4) and (2.5) hold; that  under (5.1)-(5.5) and either (5.24) or (5.25) (the 
latter if we require strong convergence), (2.3) is valid; and that  if we assume in 
addition (5.8) then (2.6) holds. Therefore, in order to establish Theorem 2.1 it 
suffices to prove that  the conditions in Theorem 2.1 imply those in Propositions 
5.1 and 5.2. 

PROPOSITION 5.3. Condition (2.1) implies (5.1)-(5.5), and (2.1) and (2.2) 
imply the existence of a sequence of positive constants 5n, decreasing to zero and 
such that (5.8) holds whenever ~ <_ m/n --, O. 

PROOF. Without  loss of generality, tt = E(X) = 0. Recall that  we write T 
for T+. To obtain (5.2), observe that  by the first part of (2.1), if ~/ > 0 is given 
then we may choose A > 1 so close to 1 that  for all sufficiently large x, 

r = , )  < _ < 
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Therefore, x2P(IX]  = x ) / ' r (x )  ~ 0 as x ~ oc. It follows that  there exists a 
sequence of constants b~ such that (5.2) holds. Result (5.1) follows from (2.1) and 
(5.2). 

To derive (5.3), observe that by the second part of (2.1) there exists a constant 
C1 > 0 such that 

xE(IXIZ(IXI > x)} = u-2"r(ux)du ~ C1T(X) u-l-edu. 

Now replace x by Ax, and again apply (2.1), to deduce that for another constant 
C2 > 0, not depending on ~ or x, we have for all large x, x E { I X I I ( I X  I > )~x)} ___ 
C2A-~7(x). Result (5.3) follows on substituting bn for x in this inequality, and 
noting (5.2). 

Result (5.5) is an immediate consequence of the second part of (2.1). To 
derive (5.4), observe that 

xUp(IXl > x) < 2 u-3T(ux)du < Cl~-(x) u-2-¢du. 

Replace x by )~x and apply (2.1) again, to obtain the result that ( £ x ) 2 p ( I x J  > 
Ax) <_ C2)~I-¢T(x), whence follows (5.4). 

Next, observe that 

f0 
1 

p~(bn, A) - pr(bm, ~) = (r - 2) u~-3{p+(bn, )~) - p±(b~, )~u) 

- p+(bm, )0 + p+(bm, )~u)}du, 

where the ± signs are chosen according to whether r is even or odd, respectively. 
Therefore, (5.8) is true if 

(5.34) p+ (bn, ~) - p+ (bin, ~) --* 0 

for each A > 0. In view of (2.2) we may choose ~ = ¢(x) such that  ~(x) --, 0 as 
x --~ oc, and (2.2) continues to hold (for each u) with this ~. Then (5.34) is valid 
if rn /n  ~ 0 and bm/bn >_ ~(bn). The existence of a sequence {hn} such that (a) 
nhn --~ oc and (b) m / n  >_ 5n and m / n  --~ 0 imply (5.8) may now be proved from 
(5.1) and (5.2), using an argument based on reduction to contradiction. 

This completes the proof of Proposition 5.3. Theorem 2.1 follows from Propo- 
sitions 5.1-5.3. 
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