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Abst rac t .  The exact density of the difference of two linear combinations of 
independent noncentral chi-square variables is obtained in terms of Whittaker's 
function and expressed in closed forms. Two distinct representations are re- 
quired in order to cover all the possible cases. The corresponding expressions 
for the exact distribution function are also given. 
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i. Introduction 

The distribution of linear combinations of chi-square variables or equivalently 
that of quadratic forms in normal vectors has been studied by several authors 
over the last four decades. Various representations of the distribution function of 
quadratic forms have been derived, and several procedures have been proposed for 
computing percentage points and preparing tables. Box (1954) considered a lin- 
ear combination of chi-square variables having even degrees of freedom. Gurland 
(1948, 1953, 1956), Pachares (1955), Ruben (1960, 1962), Shah and Khatri (1961), 
and Kotz et al. (1967a, 1967b) among others, have given representations of the dis- 
tribution function of quadratic forms in terms of the distribution functions of chi- 
square variables, MacLaurin series and Laguerre polynomials. Gurland (1956) and 
Shah (1963) considered respectively central and noncentral indefinite quadratic 
forms but as pointed by Shah (1963), the expansions obtained are not practi- 
cal. Numerical methods have been suggested by Imhof (1961), Davis (1973) and 
Rice (1980) for the evaluation of the distribution function of indefinite quadratic 
forms. Some representations of the density function of linear combinations of 
chi-square variables are available in Mathai and Saxena (1978) and Mathai and 

Provost (1992). 
Linear combinations of noneentral chi-square random variables are involved 

in the asymptotic distribution of quadratic forms in order statistics from a uniform 
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distribution, see for example Guttorp and Lockhart (1988). Furthermore if we let 
Q1 and Q2 denote two quadratic forms in normal variables, then in view of the 
relationship Prob(Q1/Q2 _< t) = Prob(Q1 - tQ2 _< 0), it can be seen that the 
distribution of ratios of quadratic forms is available from that of the differences 
of linear combinations of chi-square variables. Such ratios arise for example in 
regression and analysis of variance problems associated with linear models. The 
sample serial correlation coeËficient as defined in Anderson (1990) and discussed 
in Provost and Rudiuk (1995) also has this structure. 

Series representations for the exact density function of an indefinite quadratic 
form in noncentral normal vectors are given in Section 2. Closed form expressions 
for the corresponding distribution functions are derived in Section 3. 

2. The exact density function 

First it is shown that an indefinite quadratic form in normal vectors can be 
expressed as a linear combination of independent noncentral chi-square variables 
involving positive and negative coeffÉcients. Representations of the density func- 
tion of such a structure are then obtained in terms of Whittaker 's function and 
expressed in closed forms. 

Let Z = Y ' A  Y be an indefinite quadratic form in noncentral normal variables 
where A = A', A' denoting the transpose of the matrix A, Y ~ Nr(tt, E) and 
E > 0. If we let E = LL', Y = L S  so that S = L - 1  Y, and h l , . . . ,  "~r denote 
the eigenvalues of UAL,  (or equivalently those of EA), then Z = S ' L ' A L S  = 
S'Pdiag(hl,...,h~)P'S = Y ' (L-1) 'Pdiag(A1, . . . ,A~)P 'L  -~  Y = W'diag(hl, 
• . . ,  At) W where W = P'L -1 Y and P is an orthogonal matrix of the eigenvectors 
of L'AL. It follows that W = Nr(P'L- l t t ,  I) which shows that the components 
of W are independently distributed. Let W = X + d where X ~ N~(0, I), X = 
( X 1 , . . .  , X r ) '  , and d = (51, . . . ,  5r)' = P'L- I# ,  and let h~ > 0 for i = 1 , . . . ,  p, 
h i < 0 f o r i = p + l , . . . , p + ~ , a n d h i - - 0 f o r i = p + ~ + l , . . . , r .  T h e n Z c a n b e  
expressed as follows: 

(2.1) Z = ~ h i ( X / +  5i) 2 = U - V 
i=1 

where 

p p+¢ 

(2.2) u = Z h (Xi + e,) 2, V = + 
i=1 i=p+l 

and 

(2.3) (Xi + 5i)2 i~dx2(Si2), i ---- 1 , . . . , p + ~ ,  

where X21(5i 2) denotes a chi-square distribution with one degree of freedom and 
noncentrality parameter 5~. Clearly Z is distributed as the difference of two linear 
combinations of independent chi-square variables. 
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Ruben (1962) obtained the following representation of the density function of 
U (see also Zotz et al. (1967b) and Johnson and Kotz (1970)): 

oo 

(2.4) gv(u) = ~ aku~+k-le-"/2~/(r(c~ + k)(2t~)~+k), u > O, 
k=O 

where 

ao = e -6/2 1-I 
j = l  

k - 1  

ak ---- (2k) -1 E b k - r a r '  k >_ 1, 
;r-~ 0 

P P 
2 k - 1  b --kgF.( j/ j)cj + Zc , 

j = l  3=1 

k > l ,  

where 5 p 2 = E j = I  (~j' O~ ---- p / 2 ,  Cj = 1 - -  ]~/)Xj  and ~ is such that 

(2.5) Icj[ = l1 - 3 / A j [  < 1, j = 1 , . . .  ,p. 

The parameter/3 is chosen so as to accelerate the convergence of the series; 
can be taken as some average of the ha's , j = 1 , . . . ,  p such as the geometric mean 
or the harmonic mean as suggested by Ruben (1962). 

Consider the positive linear combination U. Note that some of the 1i's in U 
may be equal; in this case, some of the chi-square variables in the linear combina- 
tion will have more than one degree of freedom. Let l j, j = 1 , . . . ,  t, denote the t 
distinct positive eigenvalues among the Ai's and let aj  denote the multiplicity of 
lj (that is, the number of £i's in U which are equal to lj). Then 

t c~j t 

u =   2tj Z(xj  + = Zl jT5 
j = l  i=1 j = l  

is distributed as a linear combination of independent chi-square variables Tj each 
having a j  degrees of freedom and noncentrality parameter 

c~j 

d j  ~ V "  ~2 
.7. -~ 

i = l  

j = l , . . . , t .  

Similarly, one has 

V = 
t + w  ~ j  t-t-w 

j = t + l  i = l  j = t + l  
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where lj denotes the w distinct values of -Ai ,  i = p + 1 , . . . ,  p + ~, aj denotes the 
multiplicity of lj and the Tj's are independent chi-square variables each having c~j 
degrees of freedom and noneentrality parameter 

c~j 

e, = E ej , 
i=1 

j = t + l , . . . , t + w .  

We now derive the density function of the difference of two linear combinations 
of independent noncentral chi-square random variables. Let 

Z = U - V  

where 

t 

(2.6)  U = E IjTj, V= 
j = l  

andl j  > O, j = 1 , . . . , t  + w. 
respectively 

where 

(2.7) 

t+w 

Z ljTj, Tj~ 
j= t+ l  

The probability density functions of U and V are 

o o  

k=0 
u > 0  

Ok = ak/(2~) ~+k, ao = e -d /2  E /3 

j= l  

(2.8) 

where 

(2.9) 01u I /(ONt~a'+u t = e -7 /2  
aupt -r .  : , a o 

L,-1 

a '  v = ( 2 u ) - 1  g bl_raPr, 
r ~ 0  

t+w t+w 

II 
j= t+ l  

bt, I:/3' E (dj/lj)ctY -1+ E :" ---- O~jC j ,  

j= t+ l  j= t+ l  
v - - - 1 , 2 , . . . ,  

k -1  

ak = (2k)-1  E bk- rar ,  
r--O 

t t 

bk=  Z(ej/lj)¢-l k= l,2,..., 
j = l  j = l  

t t 
with d = E j = I  dj, a = E j _ - I  a j / 2 ,  cj = 1 - - /3/ l j ,  and fl such that I1 - # / l j l  < 1, 
j = 1 , . . . , t ,  and 

O0 
! t t ! gv(V) = E O•va + u - l e - v / 2 f ~ / r ( .  + . ) ,  v > 0 

v = O  
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, fl, V "t+w a'  v't+~v a j / 2 ,  ' = 1 -  f l / l j ,  and such that  [ 1 -  with 3' = A-~j=t+l dj, = A - ~ i = t + l  Cj 
f l ' / l j l  < 1, j = t + 1 , . . . ,  t + w. The recursive relationships follow directly from 
that  given in (2.4). 

Since U and V are independently distr ibuted,  the joint density of Y = U and 
Z = U - V is given by 

(2.10) 
E ~ o~o:yo+~ *e ~/'(y - ~)~'+~ *e ~ ~ /"  
k = 0 ~ = 0  

r(~+k)r(~,+.) 

f o r z > 0 a n d y > z o r f o r z < 0 a n d y > 0 .  
The marginal density of Z is therefore 

(2.11) 
ec OkO~eZ/2 f fl.zOC 

k=O ~,=0 

for z > 0 and 

~ GO, eZ/2Z' /o ~ (2.12) ~ Z r(~ + k)r(~, + ~) 
k=0 ~=0 

for z _< 0 where b = ( f l - i  + ( f l , ) - l ) /2 .  

y~+~- i  (y _ z ) d + . - i  e-bYdy 

ya+k-1 (y _ z )~ '+, , - le-bYdy 

Using eq. 4, p. 319 of Gradshteyn and Ryzhik (1980) and noting that  a ' + u  > 0 
and bz > 0 in (2.11), one can express the integral in (2.11) as follows 

P P / 

b-(~+k+~ +~,)/2z(~+k+~ +--2)/2F( a + L,)e -b~/2 
x W(~+k-~,-~)/2,(1 ~-k-~,,-~)/2(bz) 

for z > 0 where W(.)  denotes Whi t taker ' s  function defined in (2.13). 
Now letting p = y + ~ where ~ = - z ,  the integral in (2.12) becomes 

~ (p _ ~)a+k- lpa '+~- le -b(p- f )dp  

/7 = eb( (p _ ~)a+k-lpC~'+~ le-bPd # 

= e-b~b-(~+k+~'+')/2(_z)(~+k+~'+~'-2)/2F(a + k)e bz/2 

x W( -~-k+~,+ , ) /2 , (1 -~-k -~ , -~ ) /2 ( -bz )  

for z < 0. 
When  z = 0, the integral in (2.12) is equal to 

b-(~+k+~'+~-l)r(c~ + k + c~ t + u - 1). 
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Making use of some identities from Sections 9.220 and 9.210.1 of Gradshteyn 
and Ryzhik (1980), one can express Whittaker 's  function as follows: 

1 2# + 1;z)  (2.13) Wl,,(z)  = r ( - 2 # )  z'+(1/2)e-Z/21F1 # -  1 + 2' 

(2,) 

( 1 - 2 # + l ; z )  X 1F1 - - /A- l - [ -~ ,  

+ 

whenever the various quantities are defined, where for example 

(d) iz i 
z )  = 

~=o (~)~i! 

and (a)i = r ( a  + i ) /r(a) .  
The exact density of Z is given in terms of Whittaker 's  function in the fol- 

lowing theorem. 

t THEOREM 2.1. Let Z = U -  V = ~--~j=l ljTj -z--,j=t+l~'~t+w l jTj where the l j 's  are 
positive real numbers and the Tj 's  are independent noncentral chi-square variables 
with ai degrees of freedom and noncentrality parameter dj, j = 1 , . . .  , t  + w. Let 
a = (al + . . .  + at)~2, a' = (at+l + ' . .  + at+~)/2, and b = (/3 -1 + (j3')-1)/2, 
where/~ and Z' are such that I1 - Z/lj] < 1, j = 1 , . . . , t ,  and ]1 - z ' / i j]  < 1, 
j = t + 1 , . . . ,  t + w. Then, provided a and a ~ are not both nonnegative integers 
plus 1/2, the density of Z is given by 

f ( z )  = 

• ~-~ OkO~ b-(a+k+a'+v)/2z(a+k+a'+v-2)/2 
k=o.=o F(a + k) 

×ez(Z'-l-Z-1)/4W(~+k_~, ,)/2,(l_~,_v_~_k)/2(bz) 
co oo ! 

E E p ( ~ - ~ t j )  h_(a+k+a,+,)/2(~_~j~h(a+k+a,+v_2)/2 
k=0 v=0 

x e z(~'-l-~-~)/4W(~,+._~_k)/2,(l_~_k_ ~,_.)/2 ( -bz)  

for z > O, 

for z ~ O, 

where Wl,,(.) denotes Whittaker's function defined in (2.13), and Ok and O~ are 
given in (2.7) and (2.9). 

When a and a ~ are both nonnegative integers plus 1/2, then # - l + 1/2 is a 
negative integer plus 1/2, 2# + 1 is a negative integer, and the above expressions 
for f ( z )  both diverge since in that  case the hypergeometric function 1F1(# - l + 
1/2, 2# + 1; z) in the representation (2.13) of Whittaker 's  function diverges as 
(# - l + 1/2)i / (2# + 1)i is then infinite for any i > -2# .  
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Theorem 2.1 also applies to linear combinations of central chi-square variables. 
In that case, the noncentrality parameters dj = 0, j = 1 , . . . ,  t + w, 

(2.14) 

and 

( 2 . 1 5 )  

j = l  

k -1  t 

ak = (2k) - 1 E b k - r a ~ ,  bk = E a j c ) ,  
r=0 j = l  

a ~ l \ _  r. i ~ a 0 

j = t + l  

k =  iv2 , . . . ,  

aj/2 

v - - 1  t + w  

t (2/])--1 E t t E tu b ,_~ar, b~. u = 1, 2, a, = = o z j c  j ~  . . . .  

r=0 j = t + l  

When a and c~ ~ are both nonnegative integers plus 1/2, the following repre- 
sentation of Whittaker's function may be used: 

(_l)2~z,+l/2e-~/2 
(2.16) Wz,,(z) = 

× E  ~ )  ~_ ~-~v ~ ( k +  1) + ¢ ( 2 # +  k + 1) 
k=O 

- ~ p ( p + k - l + ~ ) - l n ( z ) ] z  k 

+ (-z) -2" Z k! 
k=0 

where the psi function can be evaluated by means of the following identity 

(2.17) ~ p ( x ) - - l n ( x ) - ~ I  1 l n ( l +  1 ) ]  - ' 

~=0 

see Gradshteyn and Ryzhik ((1980), p. 943 and p. 1063). 
On substituting the representation (2.16) of Whittaker's function in the den- 

sity of Z given in Theorem 2.1, one obtains the series representation given in the 
next theorem. 

THEOREM 2.2. When ~ and ( f  are both nonnegative integers plus 1/2, the 
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density function of Z as defined in Theorem 2.1 is given by 
oo oo 9k9~ (--1)2tie z/2~' 

zz ,o,+v, (1 ; ) 
k=0 ,=0 F - # - l 

b i ¢(i + 1) + ~b(-2# + i + 1) 
x i ! ( -2#  + i)! i=O 

, ,)( -g ,  - #  + i - l + - ln(b - z )  -21*+i 

--j~ln~O n.q~(j 7n))'(--1)n-i (_Z)-2pq-iq-n] 

- 2 , - 1 F ( - 2 p - i ) F ( i + # + l + ~ )  } 
+ E i! b2U+i(--1)2"+i(--z)k 

i=O 

forz<_O 
f (z)  = ~o 

9kO~ (--1)2t~ e z /2~ 

k=o ,=0 P - # - 12 

F ( - # + i - 1 2 +  ~ ) [ (  
b i ¢(i  + 1) + ¢ ( - 2 #  + i  + 1) x i ! ( -2#  + i)! i=O 

- ~  - # + i - g 2 +  - In(b)  z -2"+i 

" (--1"~ n-1 1 
' z -2 , ,+ i+n,  

j= l n=O n lTj = ~) ! J 
P ( - 2 #  - i)P ( i  + # + 12 ~ 2 ~ 1  

+ ~ \i! i=0 

+ ~) b2~+i(-1)2~+~z k } 
for z > O 

where ~b(.) denotes Euler's psi function, Ok and O" are respectively given in (2.7) 
and (2.9) for the noncentral case and in (2.14) and (2.15) for the central case, 
l = - ( a + k - a ' - , ) / 2 , # - - ( 1 - a - k - a ' - , ) / 2  and l2 = (a + k - a' - , ) /2 .  

3. The exact distribution function 

As explained in Section 2, indefinite quadratic forms in nonsingular normal 
vectors are distributed as the difference of two linear combinations of chi-square 
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variables. Again we let 

(3.1) 
t tq-w 

Z = U - V = E ljTj - E ljTj 
j = l  j = t + l  

where the lj's are positive real numbers and the Tj's are independent noncentral  
chi-square variables with ai  degrees of freedom and noncentrali ty parameter  dj, 

t a' V't+w aj/2. It is first assumed j = 1 , . . . , t  + w .  Let a = y~,j=laj/2 and = z--,j=t+l 
tha t  a and a '  are not both negative integers plus 1/2. For z < 0, the distribution 
function of Z denoted by F(z) can be evaluated by integrating the representation 
of the density of Z given in Theorem 2.1 for negative values of z from - c ~  to z. 
Considering only the terms involving z and letting 1 = - ( a  + k - a '  - z~)/2 and 
# = (1 - a t - ~ -  a -  k)/2, we have 

(_s)_t,_l/2e,/2Z, (_bs)t,+l/2 P ( - 2 # )  (p - l + 1/2), (-bs) ~ 
P ( 1 7 2 7 7  L l) ~=o ( 2 # +  1)~ i! 

r(2t~) 
+ (-bs)-t~+l/2 F(1/2 + p - l) 

× k ( - #  - l + 1/2)i (-bs) ~ 
i=o ( - 2 p  + 1)i i! ds 

i : 0  ~ (~ --I. t - l - - -  l) (2--~7-1)7i (~..) /-oz b#+l/2+igs/2j3'(-s,id8 

f • i • 
x b-U+l/2+~e */2~ (-s)-2U+~ds 

oo 

Now letting 

(3.2) 

where 

Il i  = P i + 1 , -  (2/3') (i+1) and 

h i  = F - 2 p  + i + 1, - (2/~') (-2t*+i+l), 

~oo o0 ( _ l ) n x a +  n 
r(a,  x) = e-tta-ldt = r(a)  - Z n!(a + n) ' 

r~=O 



390 SERGE B. PROVOST AND EDMUND M. RUDIUK 

the distribution function of Z can be represented as follows: 
0(3 O 0  CO i 

E E E  (3.3) F(z) = F(ol  t + v) bit-l~2 
k=0 u=0 i=0 

[ 1 
P ( ~ - p - / )  (2# + 1)i i, 

- - h i  

(-~-l-~)ib-t t+l/2+i .-  . r(2u) ] 
r ( ~ + # - l )  ( - 2 # + 1 ) i  i! I2 i  . 

For z > 0, the distribution function of Z denoted by F ( z )  can be evaluated 
by adding F(0) to the integral from 0 to z of the representation of the density 
of Z given in Theorem 2.1 for positive values of z. Considering only the terms 
involving z and letting 12 = (a + k - a '  - u)/2 and p = (1 - a '  - u - c~ - k ) / 2 ,  we 
have 

fO z (8)--tt--1/2 c--s/2~ [(58) "+1/2 V(-2#)  X-"~ (# - 12 + 1/2)i (bs)  i 

F(1 /2  - ~ - 12) ~ o  (2~ + 1)~ i! 
"~- (bs)_tt_t_l/2 F ( 2 ~ )  

r(1/2 +.  -/2) 
x ~ (-.- l~ + i/2)~ (~) ' ] 

i=0 ( - 2 #  + 1)i • d s  

r(2~) + 

( 1 )  ( ) I  z # -  12 + -~ i 1 b t~+l /2+ie_S /213( s ) id  8 
(2~ + 1)~ F. 

( - 2 p  + 1)i 

jf 
z 

x b - t ~ + l / 2 + i e - S / 2 ~ ( s ) - 2 t ~ + i d s  

Now letting 

(3.4) 
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where the incomplete gamma function, 

(3.5) ~0 x (~ 7(a,x) = e - t t a - l d t =  E ( -1)nxa+n 
' ~ = 0  n ! ( a + n )  ' 

the distribution function of Z can be represented as follows: 

(3.6) F(z)  = F(O) ~- r(oz ~- ~) b~ 1/2 
k=O ~=0 i=0 

where 

(3.7) F ( O )  z P(o/ t  -Jr v) b"-1/2 
k=0 u=0 i=0  

--# -- l + b_t~+l/2+i r(2 ) 
+ 

F ( ~ + # - I )  ( - 2 #  + 1)~ i, 

× F ( - 2 #  + i + 1)(23') (-2"+i+1) 

THEOREM 3.1. Provided a and a' are not both nonnegative integers plus 
1/2, the distribution function of Z as defined in Theorem 2.1 is given by (3.3) 
when z < 0 and by (3.6) when z > O. 

In order to obtain the distribution function for the case where a and (~' are 
both nonnegative integers plus 1/2, we integrate the representations of the density 
function given in Theorem 2.2. The resulting expressions are given in the next 
theorem. 
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THEOREM 3.2. When a and a' are both nonnegative integers plus 1/2, the 
distribution function of Z as defined in Theorem 2.1 is given by 

~ OkO" (-1) 2• rz ,o,÷v, ) k=O.=O F - # - l F + # - l 

[( x i!(-2#+ i)! b i ¢(i + 1) + ¢ ( - 2 . + i  + 1) 
i=0 

- ¢ ( - # + i - l + ~ ) - l n ( b ) ) F ( - 2 # + i + l , - ~ ) ( 2 ~ ' )  (-2~+~+1) 

~ o  (-1)~-1 ( -~-~) ] - n-~(j-~)!r -2 .  + i + n + 1, z (2~,)(_2.+i+n+l) 

-2~-l r ( -2 .  - i)r (i + . + l + 1) 
+ E i! b2"+i(-1)2"+i 

i=0 

x1~( i+1 , - -~ ) (2~ ' )  (i+1)} f o r z ~ O  

F(z) = 
o o  o o  OkO" (-1) 2" 

k=Ou=O F --It--12 [~ + I t - 1 2  

i=o /;'-~L--2-t~ ~--i)] ¢(i + 1) + ¢(-2# + i + 1) 

- ~ b ( - # + i - 1 2 + ~ ) - l n ( b ) ) - y ( - 2 # + i + i , ~ ) ( 2 ~ ) ( - 2 ~  +~+1) 

j~n~O (-1)n-1 ( - 2 # + i ÷ n + l ,  z)(213)(-2~+i+n+1)] 
- n ! ( j  - n ) !  "Y 

-2.-l r ( - 2 ~ -  i)r (i + ~ +12 + ~) 
+ E i! b2"+i(-1)2~+i 

i=0 

( z )  } x '~ i + 1, ~-~ (2/3) (i+1) for z > O, 

and ~/(., .) respectively denote the psi function and the incomplete where ¢(.) 
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gamma function, 

F(O) = 

o o  o ~  E E  0k0; (_1)2. 

k=o ,=0 F - # + # - 1 

i!(-2. + i)! 

X [ (¢ ( i  + 1)+ ~ ( - 2 #  + i +  1) 

- g ~ ( - # + i - l + ~ ) -  ln(b)) F ( -2#  + i + 1)(2J) (-2"+i+1, 

cx) ~ (__l)n_ 1 F ( - 2 #  ~ - i @  n ~- 1)(2/3') (-2"+i+n+l)] 
j = l  n=0 

+ ~ i! 
i--0 

× r(i + 1)(2/~')(~+1) }, 

l = - ( a + k - a ' - u ) / 2 , 1 2 = ( a + k - a ' - u ) / 2  a n d # = ( 1 - a ' - u - a - k ) / 2 .  

The distribution function of Z for the central case is obtained by taking Ok 
and 0'~ as defined in (2.14) and (2.15) respectively. 
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