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A b s t r a c t .  In the non-regular case, the asymptotic loss of amount of infor- 
mation (extended to as R~nyi measure) associated with a statistic is discussed. 
It is shown that the second order asymptotic loss of information in reducing to 
a statistic consisting of extreme values and an asymptotically ancillary statistic 
vanishes. This result corresponds to the fact that the statistic is second order 
asymptotically sufficient in the sense of Akahira (1991, Metron, 49, 133 143). 
Some examples on truncated distributions are also given. 
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1. Introduction 

In the regular cases, the amounts of information like Fisher, Kullback-Leibler 
etc. play an important part in calculation of the loss of information associated 
with a statistic. However, in non-regular cases, they are not always useful in 
the calculation. So an amount of information is proposed and investigated by 
Akahira and Takeuchi (1991) from the viewpoint of non-regular estimation, and 
also by LeCam (1990) in relation to the concept of affinity introduced by Matusita 
(1955). The order of consistency of estimators in terms of the information is 
also discussed by Akahira (1995) in non-regular cases. Related results can be 
found in Papaioannou and Kempthorne (1971) and Akahira and Takeuehi (1995). 
In this paper, in a more general non-regular framework, we define the second 
order asymptotic loss of amount of information associated with a statistic using 
an amount of information extended to as R6nyi measure, and consider the loss for 
a statistic consisting of extreme values and an asymptotically ancillary statistic. 
The main result is that the second order asymptotic loss of information of the 
statistic vanishes. Further, some examples on truncated distributions are given. 
In a similar situation, it is shown in Akahira (1991b) that  the above statistic is 
second order asymptotically sufficient in some sense. The related results in the 
estimation problem on a location parameter of the double exponential distribution 
are obtained by Akahira and Takeuchi (1990). 
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2. The amount of information 

Suppose tha t  X 1 , . . . ,  Xn are independent and identically distr ibuted (i.i.d.) 
real random variables with a density function f (x ,  O) with respect to a or-finite 
measure It, where 0 belongs to a parameter  space O. Then, we consider the 
quant i ty  which was defined by Akahira and Takeuchi (1991) as an amount  of 
information on X1 between f( . ,  01) and f ( . ,  02) for any points 01 and 02 in O as 
follows. 

(2.1) IX:I (01,02) = --8 log f{f(x, ol)f(x, 02)}1/2d#(x). 

Here, the integral in the above is called affinity between f(-,  01) and f ( . ,  02) (see, 
e.g. Matus i ta  (1955) and also LeCam (1990)). This amount  (2.1) of information 
was introduced in consideration of an application to non-regular cases, such as 
t runcated  densities, and a connection with the amount  of Fisher information. The 
amount  (2.1) of information is also extended to as R~nyi measure: 

(2.2) I(x~)(01'02) - 1 - a 2 log f ( z ,  O1)(l-~)/2f(z, O2)O+~)/2d#(z ) 

for - 1  < a < 1. When c~ = 0, the amount  (2.2) of information coincides with 
(2.1). Let T1 = T I ( X )  and T2 = T2(X) be statistics based on a sample X = 
( X ~ , . . . ,  X~) of size n. Let fo(tl, t2) be a joint density of T1 and 2"2 with respect 
to a direct product  measure ItT~ ® ItT~, fo(tl I t2) be a conditional density of 
T1, given T2, with respect to the measure Itr~, and go(t2) be a marginal density 
with respect to the measure ItT2. Then, we define an amount  Irllr~(01,02) of 
information on T1, given T2, between fol(tl I t2) and fo~(tllt2) for any disjoint 
points 01 and 02 in O as follows. 

(2.3) 

- 1 - a  2 log fo~(tl I t2)°-~l/2fo~(tt I t2)(l+~l/2dItT~(q). 

LEMMA 2.1. For any 01, 02 in 0 and -1  < o~ < 1, 

(2.4) Z(~!T2(01'02)- 1 --8-a2 log exp ~ TalT2 

• 901 (t2)(1-c~)/2g02 (t2)(X+a)/~d#T2 (t2) 

-- 1 ---a 2 l o g E  exp -8 ~rlIr2(Ol'02) 

where the ezpectation E[ ] is taken under the density 

go,(tz)(1-~)/290~(t2)(1+~)/2 ,//901(t2)O-~)/2go2(t2)(l+~)/2d#T2(t2)" 
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PROOF. 

(2.5) z(~71~. ~(ol 

Since 

Let a be any fixed in ( -1 ,  1). We have 

,02) 

8 ff'fo~(tl,t2)(~_~)/2fo~(t~,t2)(l+~)/2 1 - - a  2 log 

• dlgT1 (tl)d#T2 (t2) 
// - 1 - - a  2 log {fol(tl [t2)gol(t2)}O-~)/2 

• {f02 (tl I t2)g02 (t2)} (l+c~)/2d~T 1 (tl)d/tT2 (t2) 
8 

1 - a 2 

"log f { /  fo~(tl J t2)(1-~)/2fo2(t~ , t2)(l+~)/2dttT~(h)} 

• go~ (t2)(~-")/~go~ (t~)(l+~)/2d~,r~ (t~) 
8 / f  { 1-a2r(") (a 02)}] - 1 - - a  21°g exp -8 ~T~lT2tv1, 

• 90~ (t2)(l-~)/2g02 (t2)O+~)/2dttT2 (t2). 

/ [ /  fol(tlIt2)(1-~)/2fo~(tl [ t2)(l+~)/2d#yl(tl)] 

• gO1 (t2)O-a)/2902 (t2)(t+a)/2d#T~ (t2) 

= f [ f  fol(t[ l t2)(1-~)/afo2(tl l t2)(t+~)/2d~Tl(tx)l 
9Ol (t2)(l-~l/2go~(t2) (1+~)/2 

f go1 (t2)(1--°~)/2g02 (t2)(l+a)/idlzT2 (t2) 

[ j  gol (t2)(1-~)/2 go:(t2)(l+")/2d#y2(t2)? d#T2(t2), 

it follows from (2.5) tha t  

I (~) 71,T2 (01,02) 

/[/ ] - 1--~2 log fol(tl I t2)(1-~l/2fo2(tl l t2)(l+a)/2d#T~(tl) 

go~ (t2)(1-~)/29o~ (t2) (1+~)/2 
f got (t2)O-a)/2go2 (t2)(l~-°)/2d#T2 (t2) d#T2 (t2) 

1 --c~ 2 log go~(t2)(~-~)/2go2(t2)O+~)/2d#T2(t2) 

-- 1 _-a2 l o g E  fo,(tl I t2)O-~)/2fo~(t~ I t2)(~+~)/2dttrl(tl) 
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+ 

- 1--c~ 21°gE exp 1 - a h r (  ~ ) 8  ~TIIT2 ~'t~l'(t} 02)} ] _~_ I(T:)(01, 02). 

Hence (2.4) follows as required. 

Since X : , . . . ,  Xn are i.i.d., it follows that the amount of information (extended 
to as Rdnyi measure) on X between f(.,  01) and f(-, 02) for any disjoint points 0: 
and 05 is given by 

(2.6) I(xa)(01,02) = nX(x~)(O1,05) 

for - 1  < a < 1. It can be also shown that 

(2.7) ,T2 k,C'l ' -- ' 

for - 1  < a < 1 (see Akahira and Takeuchi (1991) for (~ = 0). Further, for each 
c~ with - 1  < a < 1 we can consider the loss of information of any statistic Tn = 
Tn (X) as I(~)(01, 02) T(a) r~ 02), and, in the next section, discuss the asymptotic --'~Tn I,~l~ 
loss up to the second order, i.e. the order o(n -1) when 101 - 021 = O(n-1). 

The relationship between the amount I (~) of information and that of Fisher X1 
information is stated as follows. Under suitable regularity conditions on f(x, 0), 
we have for any fixed a and sufficiently small A0 

I(~: ) (o, o + Ao) 
8 / 

- 1 - a2 log f(x, O)(1-~)/2f(x, 0 + AO)(:+~)/2dp(x) 

 /{1o 
-- 1 - c~  21°g exp T l o g f ( x ,  0) 

+ 1 I (x ,0  + 

8 f { (1 + a )A00 logf (x ,O)  
- 1 - - ~  log exp logf(x,O) + 2 O0 

-~ (1 + ~)(A0)2402 log002f(x' O) + 0((A0)2)} d#(x) 

8 L [ (1 + a)(A0) 2 / O210gf(x,O) 
- 1--c~ 21°g 1 +  4 002 f(x,O)d#(x) 

+ (l+a)2(Ao)2 f {Ologf(x,o)} 2 
8 O0 f(x, O)dp(x) 

+ o((~x0)5)] 
8 [ (1 + a)(A0) 2 

- -  1 - - - c ~  2 1 ° g [ 1 -  4 Ix1 (0) 
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(i + (~)2(A0)2 ] 
lie (8) -J~ o((A0)2)/ 

4 8 

[ ] - l _ - a 2 t o g  1 -  8 I x l ( O ) + ° ( ( A O ) 2 )  

= IX1 (0)(/k0) 2 ~- O((/k0)2), 

where Ix1 (0) = E o [ { ( O / O 0 ) l o g f ( X 1 , 8 ) }  2] which is called the amount of Fisher 
information. Hence, in the regular case, the investigation on the loss of information 
associated with statistics is reduced to the works by Fisher (1925), Rao (1961), 
Ghosh and Subramanyam (1974) and others. 

3. The loss of information 

Suppose that X 1 , . . . ,  X n  are i.i.d, real random variables with the density 
f ( x ,  8) with respect to the Lebesgue measure and consider the location parameter 
family f ( x ,  0), 0 C R 1, defined by f ( x ,  8) = f o ( x  - 8) for x E R 1. We assume the 
following conditions: 

f o ( x )  > 0 
(A.1) f o ( x )  = 0 

where both a and b are finite. 
(A.2) 

for a < x < b, 

for x < a, x >_ b, 

f o ( x )  is twice continuously differentiable in the open interval (a, b) and 

x ma+o fO(x) =  2m_o fO(x) = c, 

lim f [ ~ ( x ) = -  lim f ~ ( x ) = h ,  
x--~b-O x-+a+O 

where c is a positive constant and h is a constant. 

b{f;( 0 < Zo = x ) } 2 / f o ( x ) d x  < co. (A.3) 

Putting 

(3.1) 

we have from (A.1) to (A.3) 

(3.2) 

Indeed, since 

L b d 2 log f o ( x ) ,  ix~d x 
I = -  ~ Jot J , 

I - Io = - 2 h .  

L b d 2 log f 0 ( x ) ,  ix~d z 
I = -  ~ jo~ j 

f~  i b { f ~ ( x ) } 2 d x  -_ _ ,b f~'(x)dx + f o ( x )  

= f ; ( a  + O) - f ; ( b  - O) + Io 

= - 2 h  + Io, 
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we get (3.2). We also obtain, from (A.2) and (A.3), 0 < I < ~ .  In the situation, it 
is known that the order of consistency is equal to n. Then, we have the following. 

THEOREM 3.1. Assume that the conditions (A.1) to (A.3) hold. Then, for 
- 1 <  ~ < 1 and a smali A 

1 [8clA I + {4c 2 - 2h + I -  a2(2h + I)}A 2] + o(A 2) I(x~)(O,O + A) - i _ a s  

and 

1 [8cn[A I + {4c 2 - 2h + I -  a2(2h + I )}nA 2] I (~) (0, 0 + A) -- 1 - oe 2 

+ o(nAZ). 

PROOF. Without loss of generality, we assume 0 = 0. First, we consider the 
case when A > 0. Put l(x) = log f0(x) and let a be any fixed in (-1,  1). Since 

it follows that 

(3.3) 

fo(X)(1-cO/2fo(X -- A)( l+a ) /2  

1 - a  l + a  } 
= exp ~ logfo(x) + ~ log fo(x - A) 

-- exp {log fo(x) l + a A l ' ( x ) + ~ - ~  A21"(x)+°(A2) } 2  

= f 0 ( x ) { 1  l + ° e A l ' ( x ) + ~ - ~  

~~(1 + ~)2 ~x2{l,(x)} ~ + o(ZX2) } 

~a b fo(X)(1-a)/2fo(X -- A)(l+a)/2dx 
+A 

fab 1 +O~/k lab = fo(x)dx ~ l'(x)fo(x)dx 
+A +A 

1 + a A2 fb  
+ ~ Ja+a l"(x)fo(x)dx 

(1 + a) 2 A2 {l,(x)}2fo(x)d x + o(A2). 

From (A.2) we have 

(3.4) ~a b I a + A 
fo(x)dx--- 1 - fo(x)dx 

+A ,~ a 

= 1 - ZXfo(a + o) + --5-f;(a + 0) + o(zX ~) 

_hZX~ 
= 1 - c A + 2  +°(A2)" 
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From (A.2), (A.3) and (3.1) we obta in  

fab fab fa+A (3.5) l ' ( x ) f o ( x ) d x  = l ' ( x ) f o ( x ) d x  - l ' ( x ) f o ( x ) d x  
+A ~,a 

f a+zx  f ; (  = - x ) d z  
, ] a  

= hA + O(A2),  

(3.6) l " ( x ) f o ( x ) d x  = l " ( x ) f o ( x ) d x  - l " ( J , ) f o ( x ) d x  +A Ja 
= -~r + o(/',), 

(3.7) { l ' ( x ) } 2 f o ( x ) d x  = Io + O(A).  
+A 

Subst i tu t ing  (3.4), (3.5), (3.6) and (3.7) into (3.3), we have 

~ b fo(2F)(1--a)/2fO(X __ A) (l+a)/2dx 
• + A  

= 1 - c A -  2 h A  2 1 + (1 + a) 2 C~IA2 + ~ I0 A2 + o(A 2) 

C~hA.~ 1 + (1 + c~) ~ = l - c A - -  . " a l A 2 + - - ( I + 2 h ) A  2 + o ( A  2) 
2 4 8 ' 

hence, from (A.1) 

8 fb I(2 ) (0, A) -- 1 -- ct 2 log f o ( x ) b - ~ ) / 2 f o ( x  - A ) U + ~ ) / 2 d x  
J a + A  

-- 1----ct 2 1 cA hA 2 l + 4 c t i A 2  

(1 + a)2 (I  + 2h)A 2 + o (A2) )  

1 
1-8c~2cA + ~ l - ~  -{4c2 - 2h + I -  a2(2h + I ) } A  2 + o(A2). 

In a similar way to the case A > 0, we have for A < 0 

1 
1(8~) ( 0 ' X 1  /~)  : - -  1-8c~2 cA + ~ {4c2 - 2h + I - c~2(2h + I ) } A  2 + o(A2). 

It is easily seen tha t  the  asymptot ic  value of I x ( O ,  A) follows from (2.6). This  
completes  the  proof. 

We define the ext reme statist ics 0 and _0 by 0 = min l< i<n  X i  - a and _0 = 
maxl< i<n  X i  - b, and pu t  

1 £ f~(x, - o) 
Zl(O)- v ~  ~.fo(X, o) for 0 < 0 < ~ .  
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Let 00 be a t rue parameter  and put  0* = (0 + _0)/2. Then it is seen that  0* is a 
consistent es t imator  of 0o. Pu t t ing  g = n(0 - 0o) and V = n(0_ - 0o), we see that  
the second order asymptot ic  joint density gn(U, v) of U and V is given by 

(3.8) gn(~ ,v)  = 

c2e-C(~-V) [l + l { - l  + 2c(u- v) 

+ h((u  + v) ~ + (u - v) ~) 

v,)}+ (1) 
7 (u - v) 2 - 7 ( ~  - o 

for v < 0 < u ,  

otherwise, 

(see Akahira (1991a, 1993))• It is seen from (3•8) tha t  U and V are asymptot ical ly  
independent  but  not so up to the second order• 

LEMMA 3.1. Assume that the conditions (A.1) to (A.3) hold. Then, for 
- l  < a < l and any A E R 1 

i _~  f ~ gn(u - 00, v - Oo)(1-(~)/2 gn(u - Oo - A, v - Oo - A )(l+cd/2dudv 
O(D O 0  

{ 1 ( 1 ) }  
= e  -clAI l + ~ n n ( h - c 2 ) A  2 + o  

and 

i ( • )  /a A) 8 4 
~t<,o, Oo + - clAI + n~,nv 1 - a 2 (1 - a2)n 

PROOF• Wi thou t  loss of generality, we assume that  00 = 0. Let a be any 
fixed in ( - 1 ,  1). Prom (3.8) we have for any A > 0 

. i •  i_  ~ gn(u, v)(1-a)/2gn(U - A, v - A)(l+a)/2dudv 

i_ i ]  [ 1_o{ o c2e -c(u-v) 1 + ~  - l + 2 c ( u  v) 
o o  

+ ~ ( ( u  + v) 2 + (u - v) 2) 

c 2 h 

l + a ~ "  1 
• I 1 + ~ 1 . -  + 2 c ( u  v) 

+ h ( ( u  + v - 2A)2 + (~ _ v/~) 
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2 (u - v) 2 h - c ( u -  v) +o dudv 

= / '  / ?  [ 1 {  - 2 + 4 c ( u - v )  0 c2e -c(u-v) 1 -4- 
c ~  

h 
+ ~ ( ( ~  + v) 2 + 2(u - v)2 + (u + v - 2z~?)  

}1 + ~nn ((u + v - 2A) 2 - (u + v) 2) dudv 

f /? h o h (u + v) 2 + - v) 2 = ~ c2e -~(~- ' )  1 +  - 1 + 2 e ( ~ - ~ ) + ~  ~ ( u  

2 ( u - v )  2 ~ ( ~ _ ~ ) _ h  - ~-(,u + v)A + A 2 

ah + A 2) ] dudv + o ( 1 )  + ~( - z~ (u  + v) 

{ 1 ( 1 ) }  
= e  - ~  l + ~ n ( h - c 2 ) A  2 + o  

Then we have 

I (~) (o A) ~,n2~ , 

FF - -  1 - - a  2 log gn(u, v)(l-c~)/2gn(u - A, v - A)(l+c~)/2dudv 

- 1 8-0~ 2 log [e-c/"{l+~--~(h- c:~)A 2-+- o ( 1 ) } ]  

l_ol~ ( l_~2)n  (C2-h) A2 +°  . 

Similarly we have, for any A < 0, the integral value and 

8 4 (c2 h ) A 2 + o ( 1 ) .  I(~-I~- e(0 'A) - 1 - a  ~ c A  + ( 1 - a 2 ) n  

Thus we complete the proof. 

Put  Z~ = ZI(t}*). Then it is noted that  Z~" is an asymptotically ancillary 
statistic. 

LEMMA 3.2. Assume that the conditions (A.1) to (A.3) hold and A = 
O(1/n ). Then the conditional information of Z~ / ( Iox/~) given 0 and O_ is obtained 
by 

~/(iov~)l~,_e~vo, 0o + A) = nfoA 2 + o 
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for l < a < l .  

PROOF. Without  loss of generality we assume that  Oo = O. Put  Z ° = Z I ( O ) .  

Then the asymptotic conditional cumulants of Z ° given U -- u and V = v ,  under 
Oo = O, are obtained by 

Eo[ZO,u,v]_ h(u+v)~+Ov ( 1 ) ~ ' 

1 { - 2 1 0 +  (CIo h~Ze ) (u -v ) }  +Op ( -~)  , v0(z° I ~,~) = I0 + - 
n 

, 

~4(Z° lu'v) H ( + )  = - -  " F O p  
n 

where 

and 
fa 

b 

K = - {l'(x)pfo(~)dx 

P b 

H = Ja {l'(x)}4f°(x)dx - 312°" 

Hence the Edgeworth expansion of the conditional distribution of Z°/v~o given 
U = u and V = v is obtained by 

F(z  I u,v) = P{Z°/Cio <_ z I U = u, V = v} 
= (b(z) + h(u + v) ¢(z) K 

6vY~iao/2 (z z - 1)¢(z) 

24--Hnlo2-(z 3 - 3z)¢(z) 

1 { ( h 2 )  h2(u+v)2}z¢(z)+o(1 ) 
+~ 2 -  c - ~ 0  ( ~ - v )  /0 

which yields the asymptotic conditional density of Z°/v/-]o given U = u and V = v 
as follows. 

fzo/vTo(Z l u, v) ¢(z) h(u+v K = n v / ~  ) z¢(z) 6v~i3/2 (z 3 - 3z)¢(z) 

+ 2-~n/o2 (z - 6z 2 + 3)¢(z) + ~nW(1 - z2)¢(z) + o , 

h 2 where (~(z) ---- f z  ¢(u)du with ¢(u) -- ~--u~/2  and W = 2 -  ( c -  ~o) (U-V)  - x / ~  v 

h2('~+v)2 Let a be any fixed in ( -1 ,  1). Since Z~" = Z ° + Op(1), it follows that  Io " 

f z ; / , ~ o ( Z  l U, v ) ( 1 - ~ l / 2 f z ; / , ~ o ( Z -  ~v/~oZXl~,~)(l+~)/2 
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-- { 1 -  ( 1 - ~ > ( ~ + , ) z  ( 1 - ~ ) A -  

(1 - c O H ( . 4  (1  - a ) W ( 1  - z 2) 
+ - 4 8 - ~  ~ - 6z2 + 3 ) +  4n 

+ (~2 _ 1)h2(~ + ~)~ ( ~  - 1)Kh(,. + ~) 
8nIo z2 + 24nI~ (z4 - 3z~) 

+ ( ct2 - 1 )K 2 
288nlo a (za-3z)2#°p(1)} 

• { 1 -  (l+a)h(u+v) 
2~e~o (z - ~vC~T°°/\) 

(1 + ~)h" 
12V/_~i~/2 (z a - 3z - 3(z 2 - 1 )v /n loA)  

(1 + c 0 H  (z 4 3) (1 + a ) W  (1 - z 2) + 48ni2o - 6z 2 q- Jr- 4n 

+ (a  2 - 1)ha(u + v) 2 z2 (a  2 - 1 )Kh(u  + v) 
8nlo + 24nI~ (Z4 - -  3z2) 

(og - 1)K 2 
+ 288nla (za-3z)2+%(1)} 

{ l+c~x/~ooAz+~nIoA2(z2 1) • 1 + ~ - -  

+ 8 nI°A2z2 + °  ¢(z) 

= {1 h(u + v) K H (z 4 ~ z  6v~:g/2(za-az)+ 24nio 2 - 6 z 2 + 3 )  

l+ah(u (l+a)KA(z2_l)+op(1)} + (1 - z 2) + - - 2 -  " + v)A + 4/o 

l + ¢ x  ~ - A  l + a  ~--2~ 2 • l + ~ x / n l o  z+---f--nlo~ [z -1)  

C~2--1 ( 1 ) }  
+ ~ n l o A 2 z  2 + o ¢(z) 

a 2 - - 1  2 2 l + c t  ~ ~ h(u+v) = l + ~ n l o A  z +~-v 'n IoA~-  ~ z 

+ - T -  Too - 2h(~ + ~) A(~ ~ - 1) + ~ - - , ~ S o A  (~ - l) 

(1 + ~)I</x~(~ - 3~) + o~ ( ~ )  }¢(z). 12Io 
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Hence the conditional information of Z{/(x/~Io) given 0 and _0 is given by 

i(") (n v ~ o ~ )  

1 - a 2 log 
( x )  

fz;/~o(Z l U, v) 0-~)/2 

&~/~o(Z - v~oA I u, v)(l+")/2dz 

8 I / j {  a 2 - i n l o A 2 z 2 1 + a  
1 _7 a2 log 1 + 8 + 

o o  

h(u + v) 
~ 0  - z 6~/~g/2 (z3 - 3z) 

H W z2 ) 
+ 2--~n/02 (z 4 - 6z 2 + 3) + ~n(1 - 

l +a  ( K  - 2h(u + v)) A(z2 -1 )  
+ - - ~ Y o  

+ ~4ff-nIoA2(z 2 - 1) 

(l ~oio)K Az(z3 - 3z) }¢(z)dz + 

8 ( a 2 - 1  2 ( l n ) )  - 1 - - a  21°g l + - - ~ - - n I o A  + o  

This completes the proof. 

From Lemmas 3.1 and 3.2 we have the following. 

~ A z  

o( )1 

THEOREM 3.2. Assume that the conditions (A.1) to (A.3) hold and A = 
O(1/n). Then the information of the statistic (Z~/(v/-nlo),-O,~_) is given by 

- ( e o , e o + ~ ) -  -s ~-cnl~l I~) , ,  
A~ /tx/nIo),O,~ 1 - 

+ { 1 - - ~ ( c 2 - h )  + lo}nA2 +o(n A2) 

f o r - l  < a < l. 

PROOF. Without loss of generality we assume that 00 = 0. Let a be any 
fixed in ( -1 ,  1). From Lemma 3.1 we have 

f j  f j  gn(U,V)(1-")/2gn(U- h A , v -  nA)(l+")/2dudv 
o o  o o  

= e-2C<a]{1 + (h - c2)nA 2 + o(nA2)} 

= C(nA) (say), 
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and 

(3.9) ~") (0, zx) = i(~_ ) (0, ~zx) ,0_ nO,nO 

8 cnlAl + 4 -- 1 - ~2 1 _~f - -~(  c2 - h)nA2 + °(nA2)" 

From Lemma 3.2 we obtain 

I (") _ (a h )  -= I (~) (a nx/~oA) = I o n A  2 + o(nA~), 
Z; /(v~Io)lO,O_'-' Z; /vqol~,v ~' '  

hence, by Lemma 2.1, 

(3.10) i (") _ (a A) 
z I/(v~Io),O,O ~ '  

1 - ct 2 log E 

1 2 ~2 log E 

1 - ~2i(~) _ (0, A)~  1 
"8 Z 1/(V~Io)]O,O_ ) J 

+ i_(~)(o, zx) 0,0 

}1 ~ - -  Ion/X 2 + o(n/x 2) 

+ I_(~)(0, zX). 0,_0 

Since, by Lemma 2.1, 

F F [  { 1_o  )}] = exp 8 I ° n A 2  + ° ( n A 2  1 

• 9,~('u + hA, v + n A ) O - ~ ) / 2 g n ( u  - hA, v - nA) ( l+ '~ ) /2dudv  

= e-(1--2)IonZ~2/8{1 + o(nA2)},  

it follows from (3.9) and (3.10) tha t  

A 

i (~) (0 ~) = ~ o ~  ~ + 1 _ - 5 ~ , ~ ,  + ~ _ ~  ~(c~- ~ ) ~  + o ( ~ )  z;/(CaSo),~,0 ~ ' {4 } s c,~lzxt + (c 2 - h) + Io ~zx 2 + o (~A2) .  
l - - a 2  

This completes the proof. 

Next we define the second order asymptot ic  loss of information (extended to 
as R~nyi measure) of any statistic Tn = T n ( X )  as 

L(~) (Tn)  = ~ 1  s g ~ ) ( 0 , 0  + A) - [(~)(0,0 + A)} + o(1), h A 2  t ~ x  Tn 
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for - 1  < a < 1, where A = O(1/n). Then we have the following. 

THEOREM 3.3. Assume that the conditions (A.1) to (A.3) hold and A = 
O(1/n). Then the second order asymptotic loss of information of the statistic 
T* = (Z~/(x/~Io),-O,-0) vanishes, that is, 

L(n~)(T *) --o(1) 

f o r - l  < ~ < l .  

The proof is straightforward from Theorems 3.1 and 3.2 and (3.2), since 

1 
n/k 2 

1 
- -  1 -- ~2  { - 2 h  + I - ~ 2 ( 2 h  + I )  + 4 h }  - I0 + o (1 )  

= I -  I0 + 2h + o(1) 

= o(1) 

for-l<(~<l.  

Remark 3.1. Note that the above result does not depend on c~, that is, 
(~) . 

the second order asymptotic loss Ln (Tn) is independent of a up to the order 
o(1). This shows that the result becomes invariable for such types of amount 
of information. The result of Theorem 3.3 also corresponds to the fact that the 
statistic T* is second order asymptotically sufficient in Akahira (1991b), and is also 
closely related to the fact that, for any fixed t E R 1, the maximum probability 

^ 

es t ima to r  8~/p constructed from T* has the second order two-sided asymptotic 
efficiency in some class of estimators for the case h = 0 in Akahira (1991a). It 
means that, in T*, the statistic Z~/(v/-~Io) has the asymptotic full information on 
the inside of the interval (a + 8, b + 8), i.e. the support of the density fo(x - 8) 
and the remainders _0 and ~ have the one on the end points a + 8 and b + 8, up to 
the second order. 

Remark 3.2. In (A.2) we assume that fo(x) and f~(x) at each endpoint of 
the support have the two same limits, but the above may be similarly extended to 
the case when they have the two different limits. 

4. Examples 

In the previous framework, we now give some examples on truncated distri- 
butions. 

Example 4.1. (Truncated normal distribution) Let X 1 , . . . ,  Xn be i.i.d, ran- 
dom variables with a density function 

f o ( x - 8 ) =  ~ce-(x-e)2/2 for I x - 8  I <  1, 

L 0 otherwise, 
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where 8 is a real-valued unknown parameter  and c is some positive constant .  Then  
it is easily seen tha t  l imx~_l+o  fo(x) = l i m x ~ _ o  fo(x) = ce -1/2 and tha t  h = 

lim,--+l_0 f~(x) = - l im_l+0 f~(x) = - c e  -U2 since f~(x) = - c x e  -z2/2 for Ixl < 1. 
Since the conditions (A.1) to (A.3) are satisfied, it follows from Theorem 3.3 tha t  
the second order asymptot ic  loss of information of the statist ic (Z~/(v/-nIo),-0, _0) 

n 
vanishes, where Z{ = v ~ ( X  - 0"), X = ~ i = 1  X i / n ,  ~)* = (0 + 0) /2  with .0 = 
maxl<i<n Xi - 1 and 0 = m i n l < i < n  Xi + 1, and I0 = 1 - 2ce -1/2. 

Example 4.2. (Truncated Cauchy distribution) Let  X 1 , . . . ,  Xn be i.i.d, ran- 
dom variables with a density function 

f o ( x - 8 ) =  l + ( x - 8 )  2 for I x - 8  t <  1, 

0 otherwise, 

where 0 is a real-valued unknown parameter  and c is some positive constant.  
Then  it is easily seen tha t  limx-+_l+o fo(x) = l i m , ~ l _ o  fo(x) = c/2 and tha t  
h = limx-.1-0 f~(x) = - limx-~_l+O f~(x) -- - c / 2  since f~(x) -- - 2 c x / ( 1  + x2) 2 
for Ix] < 1. Since the conditions (A.1) to (n.3) are satisfied, it follows from 
Theorem 3.3 tha t  the second order asymptot ic  loss of information of the statist ic 

( Z~ / ( v~ Io  ),-0, O) vanishes, where 

. 1 ~ Xi - 0* 0* = ( 0 + _ 0 ) / 2  
Z1 -- V/n i= l + ( X i - 0 * )  2, 

with _0 = maxl<i<n Xi - 1 and 0 = m i n l < i < n  Xi + 1, and 

Example 4.3. 

fO X2X2)3 dx. Io = 8c (1 + 

Let  X 1 . . . .  , Xn be i.i.d, random variables with a density func- 

t ion 
f c e x p [ { 1 - ( x - 8 ) 2 }  p] for I x - 8  I < 1 ,  

f0(x 0) t 0 otherwise, 

where 0 is a real-valued unknown parameter  and p > 2 and c is some con- 
stant.  Then  it is seen tha t  l i m a - - + - l + O  fo(x) = l imx+l -0  fo(x) = c, and tha t  
h = limz-+-l+O f~(x) = - lima.-~l o f~(x) = 0, since f~(x) = -2cpx(1  - x2) p - 1 .  

e - ( 1 - x ~ ) p  for Ixl < 1. Since the conditions (A.1) to (A.3) are satisfied, it fol- 
lows from Theorem 3.3 tha t  the second order asymptot ic  loss of the statist ic 
(Z{/(v~Io) ,O, .0)  vanishes, where 

, 1 0*  _ Z1 -- v ~  E 2 p ( X i  - 0"){1 - (Xi - 0")2} p - l ,  = (0 + 8) /2  
i= 1 

with _0 = maxl<i<n Xi - 1 and 0 = minl<i<n Xi + 1, and 

~0 
1 

/TO = 8P 2 X2( 1 -- X2) 2p-2Ce(1-x2)pdx" 
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