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Abstract. Critchlow (1992, J. Statist. Plann. Inference, 32, 325-346) pro-
posed a method of a unified construction of a class of rank tests. In this paper,
we introduce a convex sum distance and prove the limiting normality of the
test statistics for the two-sample problem derived by his method.
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1. Introduction

Let F and G be continuous distribution functions of the first population and
the second population. We consider rank tests for testing H : F{z) = G(z) against
K : F(z) > G(z), with strict inequality for some z. Critchlow (1992) proposed
a method of a unified construction of a class of rank tests. For the preceding
two-sample problem, his method is summarized as follows; let Z,,..., Z,, be the
observations from the first population and Z,,1,...,Zntn be the observations
from the second population, and let 7 () be the rank of Z; (i = 1,...,N, N =
m+mn) among Zi,...,Zn. Then 7 is a member of the permutation group denoted
by Sn. The two permutations 7 and ¢ are defined to be equivalent if and only
if {m(1),...,m(m)} = {o(1),...,0(m)}, then the equivalence class including = is
[7] = 7(Sm % Sp), where S, x S, = {0 € Sn;0(i) < m,¥i < m}, and where
7(Sy X Sy) is the left coset {moo;0 € Sy, x S, }. Now the class of permutations,
which are most in agreement with K, is S,, x S,,. Let d be a metric on Sy and
define a metric d* on Sy /(S X Sp) by

d*([=], =m max min d(a, 3), max min d{a, .
(o) = e { . min e 9), s s )}

Critchlow suggested using d*{[n], S, X Sy,) as a test statistic, where 7 is the
observed ranking.
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Now we introduce the convex sum distance on Sy. Take a strictly increasing,
convex, twice differentiable function f satisfying f(0) = 0. For any 7,0 in Sy, we

define
N

d(r, o) :;f(w)

The purpose of this paper is to study the asymptotic distribution of d*([],
Sm X Sp), induced by the convex sum distance.

2. Representation of the test statistic

Now we rewrite the m observations from the first population as X,..., X,
and the n observations from the second population as Yy,...,Y,.

DEFINITION 2.1. The metric d on Sy is called right-invariant, if and only if
d(a,B) =d(aoy,Box) for all @, 3,7 € Sn.

Note that if d is a right-invariant metric, then the formula given for d*([], [0])
simplifies to
d(a, B).

min
ag(n],f€(o]

DEFINITION 2.2. Let d be a metricon Sy. Let a, 3,y € Sy be permutations
such that o and (3 differ by a single transposition; that is, there exist integers

p,q € {1,...,N} such that a(p) = B(g), a(g) = B(p), a(i) = B(i), Vi # p,q.
Suppose further that a(p) < a(q) and v(p) < 7¥(g). If the preceding conditions
imply that d(«,~) < d(8,~), then the metric d is said to possess the transposition

property.

LEMMA 2.1. The conver sum distance is right-invariant, and possesses
transposition property.

This lemma is the generalization of Lemma 2 of Critchlow ((1985), pp. 52-53),
for the “case” d = R.

THEOREM 2.1. The test statistic for two-sample location problem d* induced
by the conver sum distance is represented by

me (5 e ()

j=1

where 7(1y < -+ < T() are the ordered Tanks of the X ’s in the pooled sample

X1, Xy Ya,..., Yo, and similarly sy < --- < s, are the ordered ranks of
the Y'’s.

PrOOF. Critchlow (1992) showed that if the metric on the permutation
group is right-invariant and possesses the transposition property, then the test
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statistic induced by it can be written in the form of Theorem 2.1 using 7(; and
5(;)- Thus by the lemma, we have the theorem.

Example. Spearman’s footrule:  F(m,0) = NZfil |1(1)—]_\7°—(1—)| and
Spearman’s rho: R(wm,0) = N(zi\;l("—(’)—;wy)lﬂ, where 7,0 € Sy, are con-
vex sum distances. Note that the test statistic induced by F is equivalent to
Wilcoxon test statistic, and that the test statistic induced by R is equivalent to
S i + Z;L:l(m + j)s). Fueda (1993) showed that this test statistic is
asymptotically normal and superior to Wilcoxon test statistic for a wide class of
asymmetric underlying distributions.

3. Limiting normality of the test statistic
The following theorem states the limiting normality of the test statistic in-
duced by a convex sum distance.

We use the following assumption.

(a) There exists Ag such that for all N, 0 < Ao < Ay < 1— Xy < 1, where
Ay =
(b} There exist K and & such that for all A\g < A < 1 - Xy, ¢ = 0,1 and
0<z<l, NfO\x) < K(z(l — z)) /245,

THEOREM 3.1. Under assumptions (a) and (b), (In — pry )/oTy converges
to the standard normal distribution.

We put hy(z) = f((1 — An)z) and ha(z) = f(An(1 — x)), then pr, and o,
are given as follows:

S m/ h(G(e)dF (@) + 1 [ ha(F(@))dG(a).

Ot = ( / / cocycon F(z)(1 = F(y))h1(G(2))h (G(y))dG(x)dG (y)
- // creyen F(z)(1 — F(y))ky(G(2))hh(F(y))dG(z)dG (y)
- mn / /_ w<y<x<m(1 — F(x))F(y)h; (G(x))hy(F(y))dG(z)dG (y)
it // reyen F(z)(1 —F(y))h'z(F(x))h’g(F(y))dG(a:)dG(y)>
( // ey n T COIM(C@)I (CW)AF ()AF ()
—mn//m@qm G(z)(1 — G(y)) K, (G(x))hy(F (y))dF (z)dF (y)
*m"// o A C@NGWI (G (F(y)AF (2)AF ()
vt ff G- Gumr (NP @F)).
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and these are the asymptotic expectation and variance of Ty .

PRrOOF. The statistics r(;) and s(;) may be represented as follows;

roy = #{k Xk < X} + #{LY1 < X}
=i+ #{; Y < X3},
sy =+ #{k; X <Y(5}

Then we have

f (%) _ (#{Z;Yz; X(z’)}) _ (%GH(X@)),

; (|m+j—8(j)|> _ (m—#{k;Xk < Ym}) = £ (%0 - Ful¥)).

N N

where F,, and G,, are the empirical distribution functions of Xi,...,X,, and
Y1,..., Yy, respectively.
Let hi(z) = f((1 — An)z), ho(z) = f(AN(1 — 7)), then

1 1 m n
\/—]—V-TN = UN (; h(Gn(Xi)) + JZ_‘; hz(Fm(Yj)))
S~ / b (Go(2))dFn () + (1 = AW WN / ha(Fon(4))dGin ().

Similar to Chernoff-Savage, we may expand T as follows:

Ty = Zzl,u,iN +Z4;BiN +iCm,
where
Jin = AVN / b (G(e))dF (z),
Biy = WV [ m(G@)d(Pn(z) - F(z))
Bay = WV [(Galz) ~ G@)H; (G(2))dF (z),
Cin = MV [ (Gale) - G (G@)d(Fn(o) — F(a))
Con = WV [ (1n(Gn(2) = n(G()) ~ (Galz) ~ G, (G())dFn(z),
pa = (L= MW [ ha(F(@))dG(o),
Bax = (1= M)VE [ ha(F(@)d(Ga(o) - G(@)),
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Biy = (1 - A VN / (Fun(z) — F(2))hy(F(x))dG(z),
Con = (1 Ay)VN / (Fn(2) — F(2))hy(F(2))d(Gn(z) — G(z)),

Caw = (1= A )WVN / (ha(Fn(z)) — ha(F(2))
— (Fnl2) — F(2))Hy(F(2)))dCn(2).

Obviously 1 n and pon are non-random. We show the theorem in the follow-
ing two steps.

Step 1. We show Cin,...,Cun are all 0,(1).
Step 1.1. To begin with, we show C;n = 0,(1). We use the following lemma.

LEMMA 3.1. (Puri and Sen (1971)) For all e > 0 and for all 0 < &' < %
there exists c(e,6') such that

VilGa(z) -~ G(z) ,
Pr o o e < o)) 21

By Lemma 3.1 and assumption (b), we have for all z,

Vi|Gr(z) - G(@)|H (G(2)) < ele, §)K(G(2)(1 - G(a))*

with probability larger than 1 — ¢, where §* = 6 — §¢'.
Because of arbitrariness of 6, we can get §' such that §' < ¢ and §* > 0,

AN

Cinl <
Crivl s T

Kele.d) [(6()(1 = G@) dVip, (@),

where Vir _p) is the total variation of F,, — F. By the law of large numbers,
ViF,,—F) — 0 as m — oco. Therefore C1y = 0,(1).

Similarly, we prove Csny = 0p(1).

Step 1.2. Next we show Con = 0,(1).

|Can| < TZ:hl X)) — m(G(Xy)) — (Ga(Xs) — G(X:))h1(G(X3))]
Zlh:l ~ hi(G(Zy)) = (Gn(Zi) — G(Z:)) (G(Zy))],
where Z;,...,Zy are the order statistics for the pooled sample X;i,..., X,

Yi,.... Y.
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Now let Ky = min{[¥],[N¥]},0< 2§ <6<}, and

Kn
O = 5 3 Im(Gul(Z)) = W(G(Z0) = (Gl ) = GUZNM G,
i=1

N—-Ky
c?) = L |h1(Gn(Z4)) — M(G(Z:)) — (Gn(Zs) — G(Z:))1(G(Z:))),

o) = j— Z I(Ga() = h(GUZ) ~ (Gn(2) ~ CEM(GEZN
i=N—-Kn

We note that |Con| < C( +C(2) +C(3) We consider CS\)r Because hq is strictly
increasing and convex, we have

hi(G(Z;)) < ha(1), and  hy(G(Z:)) < hy(1-).
Then

ciy < —Z A1 (G (Zi)] + |hi(G(2))| + (IGn(Z0)| + 1G(Z)))1p1(G(Z:)])

<N~ 1/2KN(2h1(1) + 2R (1-))
< N~V4(2n (1) + 2K, (1-)).

The last inequality follows from Ky < N # and 0 < & < g < %. Therefore
0(1) = 0p(1), similarly, CS\) = 0p(1). Next we consider C’S\;
N—-Kn
Ci = f 3 hi(GalZ:)) — mM(G(Z:) — (GalZi) ~ G(Z:))B (G(Z:))).
i=Kn+1
Let
SY (1) = {z:67}(r) <z <GV (1-1)},
S () = {x; Zk,y <z < G7H7)},
SO(r) ={2;G (1 = 7) <z < Zn_Knt1}s
then

Cin=3_ /  h(Gn(2)) — M (G(2)) — (Gn(2) — G(2)),(G(2))[dG(2)-

By definition of the derivative of hy, for "|v| < 7, 7 <Vu <1 — 7, we have

VN |y (u-i— %) — ha(u) — \/—%h'l(u)

()

= o(1).
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Thus,

sup  sup VN

lv|<r 7<u<l—T1

-0 (N —>o0).

hy <u + %) — ha(u) — \/—%hg(u)

Hence, we have with probability larger than 1 — ¢,

VN|hi(Gn(2)) — hi(G(2)) — (Galz) — G(2))R}(G(2))|dG(2)

S;,“(r)
B VE(G(z) - G(2)
s VN (G(z) N vN >
h(G(2) - W(G”(jjv‘ GOy 6| dote) < <.

There exists 0 < ¢ < 1 for j = 2, 3, such that

o VN|h1(Gn(2)) = hi(G(2)) = (Gl2) = G(2))M1(G(2)ldG(2)

= VN|Gn(2) - G(2)|

59 ()

|R(9G(2) + (1 = $)Gn(2)) — h1(G(2))]dG(2).

We have
o, YNIGn(2) = G (8G (=) + (1= $)Gn()) — 5 (GLIAG(2)

< VN|Gn(2) — G(2)]

59 ()

(R (8G(2) + (1 = $)Gn(2))] + P4 (G(2) )G (2).
Now by Lemma 3.1, we have with probability larger than 1 — ¢,
VN|G(2) = G(2)] < ele, 8)(G(2)(1 = G(2))) />~
and by assumption (b), we have

W} (G (2) + (1 — )Gar(2))|
< K((¢G(2) + (1 — $)Gn(2))(1 — ($G(2) + (1 — )Gr(2)))) ~17H/2T8,
and
W (G(2))] < K(G(2)(1 - G(2))) 17 1/2+8,
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VN|[Gn(2) = G(2)I(|h1(#G(2) + (1 = $)Gu(2))] + |h1(G(2))])dG(2)

</ iy EENOE = Gl

< (K((¢G(2) + (1 = $)Gn(2))(1 — ($G(2) + (1 — $)Gpn(2)))) "1 V/2+S
+K(G(2)(1 - G(2)) "7 /*+*)dG(2)

- / ofe, )K(G)(1 - G(2)))
59 (7)

x(((¢G<z>+( 961 600+ ¢>Gn<zm>‘1‘”m
+1)dG(z).
Since
O HL0Ce) g, 1 Gl
and
LGE 19O g, g LGl

there exists 3 such that
inf 50, (9G(2) + (1~ $)Ga())(1 ~ (G(2) + (1 = 6)Gn(2)))
G(2)(1 - G(2))

N \?
2 r——
>0 (N+1)'
Thus

((¢G(z) + (1= ¢)Gn(2))(1 — (¢G(2) + (1 — ¢)Gn(z))))—1—1/2+6 o
G(2)(1 - G(2))

N —3+26
1.
< (,31 N o 1) +

Now, it follows that

> /S ., OGN Gu)

s(/ / ) (EE) - 6 46
<(?i_f_i)76—a
S\F-% ‘
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Since for all € > 0,6" and 7 may be so chosen that

21_5M5/ , N —3+26 c
! 66 =
6(5’5)K<5—5'>T <<ﬁ1N+1> <3

we have C’g\), = 0,(1), and Can = 0,(1).

Cyn = 0p(1) can be shown similarly.

Step 2. Finally, we show that Byy + Bay + Bsy + Bsny has the normal
distribution in the limit. We obtain

Bix = AWVN / 7 (G(2))d(Fon(z) — F(z))
_)\N\/v/Bl ( ) F(l'))

and
Bay = VN [ (Ga(s) ~ Gla)) I (G(@)dF ()
= AvVN <[ / h (G )} N
_/: : K, (G(2))dF (y)d(Gn(z) ~G(w)))
— VF /_ Z By(2)d(Gy(z) - G(z)),
where

Bile) =h(G(e) and  Balo) = [ I(G)AFw)
zg
Thus Byny + Bay is represented by
1 m
ANVN (E > (Bi(X:) - E[B1(Xi)]) — — Z(Bz(Y By(Y, )J)) :
i=1
Similarly we obtain
B3y + Byn

(1AW (—%i Ba(X) — BBy (X))

n

+

§|'—‘

— E[By(Yj;)) )

J=1



346 KAORU FUEDA

&mzf%mmw

Bule) = ha(F() = [ BFG)AF),

where

Therefore,

Bin + Ban + Bsn + Ban

L (Z ((Bu(x) ~ BIB(X0) — 2 (Ba(X:) — ElBa(X.)))

+ 3 (- (Bo(Y;) — BB(Y)]) + (BalYy) - E[B4<Y;->1>)>
j=1
We shall show that the variances of

(B1(X) - B[B:(X)]) = —(Bs(X) ~ E[By(X)))

and

_Z:_( By(Y) — E[Ba(Y)]) + (B4(Y) — E[Ba(Y)))

are finite. Since
Bi(X) ~ BB (X)) = [ ma(Gl@)d(Rua) - F(z)
~— [ (Fu(o) - P GlaiGte),
x) - BB = [ [ HPG)ICwAF @) - F@)
~— [ (R - Fe)raF@)c)

we have

Var(By (X))
=E { / / (File) — F(x))(Fi(y) — F(y))h(G(2))h}(G(y))dG()dC (y)
=2 / / w<z<y<m z)(1 — F(y))h} (G(x))h1(G(y))dG(2)dG (y),
Cov(B1(X), B3(X))
B / /_oo<$<y<o0 F(z)(1 - F(y))hi(G(2))hy(F(y))dG(z)dG(y)
+ / /_ oo<y<z<oo(1 — F(2))F(y)hi(G(x))hy(F (y))dG(x)dG(y),

and



TEST STATISTIC INDUCED BY CONVEX SUM DISTANCE 347
Var(Bs(X)) = 2 / / F(x)(1 - P(y)h (F(2))h(F(y))dG(x)dCy).
—00<TLY< 00

Therefore, we have

Var ((B1(X) — E[By(X))) — 2 (By(X) - E[By(X))))

n

m
2

— Var(By (X)) — 2— Cov(By(X), Bs(X)) + —5 Var(Bs(X))
m m

< 00.

Similarly

Var <

m
n

(Ba(Y) = E[Ba(Y))) + (Ba(Y) — E[Bu(Y)])) < .
Thus we complete the proof.
Ezample. (continued) Let FY and R} be the test statistics induced by

Spearman’s footrule and Spearman’s rho. Under null hypothesis H : F(z) = G(z),
we get

_ mn
BFy = oN’

2 _mn
7Fi T 3N

_ m?n+ mn?

BRV® = 73Nz

2 mn(4m?®+ Tmn + 4n?)
TRy T A5N3
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