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A b s t r a c t .  Critchlow (1992, J. Statist. Plann. Inference, 32, 325-346) pro- 
posed a me thod  of a unified const ruct ion of a class of rank tests.  In this  paper ,  
we introduce a convex sum dis tance and prove the l imit ing normal i ty  of the  
test  s ta t is t ics  for the  two-sample problem derived by his method.  
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1. Introduction 

Let F and G be continuous distribution functions of the first population and 
the second population. We consider rank tests for testing H : F(x) - G(x) against 
K : F(x) >_ G(x), with strict inequality for some x. Critchlow (1992) proposed 
a method of a unified construction of a class of rank tests. For the preceding 
two-sample problem, his method is summarized as follows; let Z 1 , . . . ,  Zm be the 
observations from the first population and Zm+l . . . .  , Zm+n be the observations 
from the second population, and let ~v(i) be the rank of Z.i (i = 1 , . . . ,  N,  N = 
m + n) among Z1, . .  •, ZN. Then ~r is a member of the permutat ion group denoted 
by SN. The two permutat ions ~r and o are defined to be equivalent if and only 
if {Tr(1),.. . ,  7r(m)} = { o ( 1 ) , . . . ,  o(m)},  then the equivalence class including ~r is 
[71-] : 71"(Srn X Sn) , where S m ×  S,~ = {0 E SN;o( i )  < m, Vi _< m}, and where 
~(Sm × Sn) is the left coset {7r o o; 0 • S m  × Sn}. Now the class of permutat ions,  
which are most in agreement with K, is S,~ × S,,. Let d be a metric on SN and 
define a metric d* on SN/(Sm × Sn) by 

d*([Tc], [a]) = max { m a x  min d(a,13), max min d(a, t3) } . 

Critchlow suggested using d*([rr], S,,~ x S,~) as a test statistic, where 7r is the 
observed ranking. 
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Now we introduce the convex sum distance on SN.  Take a strictly increasing, 
convex, twice differentiable function f satisfying f(0)  = 0. For any 7r, a in SN, we 
define 

i= l  

The purpose of this paper is to study the asymptotic distribution of d*([Tr], 
S m ×  Sn), induced by the convex sum distance. 

2. Representation of the test statistic 

Now we rewrite the m observations from the first population as X t , . .  •, Xm 
and the n observations from the second population as Y1,.- . ,  Yn. 

DEFINITION 2.1. The metric d on SN is called right-invariant, if and only if 
d(a, fl) = d(a o % ~ o 7) for all a, fl, ~' • SN.  

Note that if d is a right-invariant metric, then the formula given for d*([~], [a]) 
simplifies to 

min d(a,/3). 
~[~],~[~] 

DEFINITION 2.2. Let d be a metric on SN. Let a,/3, V C SN be permutations 
such that a and /3 differ by a single transposition; that is, there exist integers 
p,q • { 1 , . . . , N }  such that a(p) = ~(q), a(q) = ~(p), a(i)  = /3(i), Vi ~ p,q. 
Suppose further that a(p) _< a(q) and 7(P) -< v(q). If the preceding conditions 
imply that d(a, 7) < d(~, V), then the metric d is said to possess the transposition 
property. 

LEMMA 2.1. The convex sum distance is right-invariant, and possesses 
transposition property. 

This lemma is the generalization of Lemma 2 of Critchlow ((1985), pp. 52-53), 
for the "case" d = R. 

THEOREM 2.1. The test statistic for two-sample location problem d* induced 
by the convex sum distance is represented by 

( ) f i  i -  r(i) + f m + j - 8 ( j )  

TN = f N -N- ' 
i=1 "= 

where r(1) <_ " .  <_ r(m) are the ordered ranks of the X ' s  in the pooled sample 
X l , . . . , X m ,  Y1 , - . . ,Yn ,  and similarly s(1) <_ . . .  <_ s(,~) are the ordered ranks of 
the Y ' s. 

PROOF. Critchlow (1992) showed that if the metric on the permutation 
group is right-invariant and possesses the transposition property, then the test 
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statistic induced by it can be writ ten in the form of Theorem 2.1 using r(i ) and 
s(j). Thus by the lemma, we have the theorem. 

N :r(i)-a(i) Example. Spearman's  footrule: F(Tr, a) = N ~ = I  ] N [ and 

Spearman's  rho: R(Tr, a) = N(y'~NI(~(i)~a(i))2) 1/2, where Ir, a E SN, a r e  con- 
vex sum distances. Note tha t  the test statistic induced by F is equivalent to 
Wilcoxon test statistic, and tha t  the test statistic induced by R is equivalent to 

n ~.~1 ir(~) + ~-~j=~(m + j)s(j). ~ e d a  (1993) showed tha t  this test statistic is 
asymptotical ly normal and superior to Wilcoxon test statistic for a wide class of 
asymmetric  underlying distributions. 

3. Limiting normality of the test statistic 

The following theorem states the limiting normali ty of the test  statistic in- 
duced by a convex sum distance. 

We use the following assumption. 
(a) There exists A0 such tha t  for all N,  0 < A0 < Z~N ~ 1 - -  "~0 < 1~ where 

m 
AN = 7"  

(b) There exist K and 5 such tha t  for all Ao _< A _< 1 - Ao, i = 0, 1 and 
0 < x < 1, IAif(i)(Ax)[ <_ K(x(1 - x)) i-1/2-[-5. 

THEOREM 3.1. Under assumptions (a) and (b), (TN--#TN)/aTN converges 
to the standard normal distribution. 

We put hi(x)  = / ( ( 1  - AN)X) and h2(x) = / ( A N ( 1  -- x)), then #TN and aTN 
are given as follows: 

,TN = m / hl(G(x))dF(x) + ~ f h2(F(x))dG(x), 

= - -  m 2 F(x)(1 - F(y))h~l(G(x))h~l(G(y))dG(x)dG(y ) ~r2N 17t cx)<x<y<c~ 

F(x)(1  - F(y))h~(G(x))h~(F(y))dG(x)dG(y) -- 7nTt //-c~<x<y<ac 

-- 17tTt //-c>a<y<x<cx~ (1 - F(x) )F(y)h~l (Gix) )h~( F(y) )dG(x)dG(y ) 

@n2 //-oc<x<y<~a 

2 + -  
71 

F(x)(1  - F(y))h[(F(x))h[(F(y))dG(x)dG(y)) 

( m~//-oo<x<~<~ C(x)(1 - a(y))hl (a(x))hl (a(~))dF(x)~F(y) 

- rnn/J~o~<x<y<oo G(x)(1 - G(y))h i (C(x))h[ (F(y))dF(x)dF(y) 

- m n  j / _ ~ < y < x <  (1 - G(x))G(y)h~I(G(x))h~(F(y))dF(x)dF(y) 

+n 2/f_~<x<y< G(x)(1 - G(y))h~(F(x))h~(F(y))dF(x)dF(y)), 
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and these are the asymptotic expectation and variance of TN. 

PROOF. The  statistics r(i) and s(j) may be represented as follows; 

r(~) = # { k ; X k  < X(~)} + # { l ;  Yz < X(~)} 

= i + # { l ;  Y~ < X(~)}, 

s(~) = j + # { k ; X k  < Y(j)}. 

The n  we have 

n X , 

f ( ' m + J - N  s(j)l ) -- f ( m -  ~{k;Xk Y(J)} ) -- f (m-~(1-Fm(Y(J)))) ' 

where Fm and G ,  are the empirical distr ibution functions of X 1 , . . . ,  X m  and 
Y1,- • •, Y~, respectively. 

Let  hi(x) = f ( (1  - )~N)X), h2(x) = f (~N(1  -- x)),  then  

n ) 
1 hl(G,~(Xi)) + E h2(F,~(Yj)) v~N T ~ -  v ~  

j = l  

= /~NV~ / hl((Tn(x))dFm(x) q- (1 - ~N)V/-N / h2(Fm(y))dGn(y). 

Similar to  Chernoff-Savage, we may  expand TN as follows: 

2 4 4 

i = 1  i = l  i = 1  

where 

~IN = ~ N ~  / h~(~(x))dF(x), 

B1N --- )~NV~ / hl (G(x) )d( Fm(X) - F(x)), 

B2N = ~NV~ /(Ca(X) - G(x))h'l(C(x))dF(x), 

C~N = ~ V ~  f (Gn(x) - a(x))h'l(a(x))d(F..(x) - Y(x)), 

C2~ -- ~ / (hl (Cn(X) ) - hl(C(x)) - (Cn(X) - G(x) )h~ (G(x) ) )dFm(x), 

P2N = (l -- )~N)vfN / h2(F(x))dG(x), 

B 3 N  = (1 - AN)V/-N / h2(F(x))d(Gn(x) - G(x)), 
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B 4 N  = (1 -- AN)V/N I(Fm(x ) - F(x))h[(F(x))dG(x), 

= (1 - ) ~ N ) V ~ / ( F m ( x )  -- F (x ) )h~(F(x ) )d (Gn(x )  - G(x)),  C3N 

= (1 - A N ) V ~ / ( h 2 ( F m ( x ) )  - h2(F(x))  C4N 

- (Fro(x) - F (x ) )h [ (F(x ) ) )dGn(z ) .  

Obviously #IN and #2N are non-random. We show the theorem in the follow- 
ing two steps. 

Step 1. We show C 1 N , . . . ,  C4N are all Op(1). 

Step 1.1. To begin with, we show C1N ---- Op(1). We use the following lemma. 

LEMMA 3.1. (Puri and Sen (1971)) For all c > 0 and for  all 0 < 5' < ½, 
there exists c(~, f ' )  such that 

Pr {sup (G(-(-~v/-n'Gn(x)-G(x)]--- G ( x ) ) ~  --~' -< c(~,5 ')} > 1 - c. 

By Lemma 3.1 and assumption (b), we have for all x, 

v~lC. (x )  - G(x)lh'(a(x)) _< c(c, 5')K(G(x)(1 - C(x))) ~'-1 

with probability larger than  1 - ~, where 5* = 6 - 5'. 
Because of arbitrariness of 5', we can get f '  such tha t  6' < [ and 5* > 0, 

~N Kc(~,5') f (a(x)(1 - a(x)))~*-ldV(Fm_F)(x), ]C1N] ~__ V/1 __ )~N 

where V(Fm_F)  is the total  variation of Fm - F.  By the law of large numbers, 
V(F,~-F) --~ 0 as m -+ oc. Therefore C1N = op(1). 

Similarly, we prove C3N = Op(1). 

Step 1.2. Next we show C2N = Op(l). 

1 ~* 
[C2N[ ~ ~ E I h l ( G n ( X i ) )  - h l ( ~ ( X i ) )  - ( ~ n ( X i )  -- ~ ( X i ) ) h l l ( ~ ( X i ) ) ]  

i=l 
N 

1 E I h l ( G n ( Z i ) )  - h l ( G ( Z i ) )  - ( G n ( Z i )  - G ( Z i ) ) h t l ( G ( Z i ) ) ] ,  
< ~ i = 1  

where Z1,...,ZN are the order statistics for the pooled sample X1,...,Xm, 
YI, . . . , Yn. 
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and Now let KN = min{ [N] ,  [Ne'l}, 0 < 25' < ~ < 5, 

C2(I 1 KN N -- V ~  ~ Ihl(C'~(Zd) - hl(G(Zd) - (an(Zi) - G(Zd)hi(G(Zd)l ,  
i=1  

N--KN 
C2(2 1 - v ~  ~ Ih l (Gn(Zi ) )  - h i ( G ( Z j )  - ( G n ( Z d  - G ( Z d ) h i ( G ( Z d ) l ,  

i=KN+l 

N 

c2(3) _ 1 ~ Ihl(an(zd) - h~(a(Zd) - (an(Zd - a(z~))hi(a(zd)l. N 
V ~  i = N -  N + I  

We note  tha t  IC2NI < ~(1) _ ~ ( 2 )  , ,~(3) We consider ~(1) Because hi is strictly 
- -  ' J 2 N  - -  " J 2 N  -~- t-~2N" ' ~2N"  

increasing and convex, we have 

hl(C(Zi) ) ~ h i ( l ) ,  and h~l(C(Z{)) < h i ( l -  ). 

Then 

KN 

C2(1 < 1 }~(Ih~(Cn(Zd)l  + Ihl(C(Zd)l + (IC~(Zdl + la(Zdl)lhi(C(zd)l) 
N - -  

i = 1  

< N-U2KN(2hl(1) + 2 h i ( l - ) )  

< N-1/4(2hl(1) + 2 h i ( i - ) ) .  

1 Therefore The last inequality follows from KN <_ N 5' and 0 < 5 ~ < { < ~. 

~(3) = Op(1). Next  we consider ~(2) ~(1) = Op(1), similarly, "~2N V2N" "~2N 

N--KN 

C(2) v/-~N ~ Ih~(Gn(Z~))_ha(G(Zd)_(G~(Zd_G(Zi) )hI (G(Zd)I .  2N 
i=KN+I 

Let 

s~)(~) = {x ;C- l (~ )  < x < c-~(1 - ~ ) } ,  

s~)(~) = {~; zK~ < • < c - ' ( ~ ) } ,  
,(3) 
N (7) = {x; G - ~ ( i  - r )  < x < Z N - K ~ + I } ,  

- - o ( i ) .  

then 

3 

.~2N'~(2~-_ ~= ~(.) Ihx(an(Z))-hl(a(z))-(an(Z)-a(z))h' l(a(z))lda(z).  

By definition of the derivative of hi,  for V[v I < T, v < Vu < 1 - T ,  we have 
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Thus, 

s u p  s u p  v / N  u + v - h i ( u )  v ~ h l  --+ 0 
lv]_<v v < u < l - v  

Hence, we have with probability larger than 1 - e, 

fs~)(T ) v ~ ] h l  (Gn(z) ) - hl ( G(z) ) - (Gn(Z) -- G(z) )htl (G(z) )]dG(z) 

-h~(C(~)) - v ~ ( G . ( ~ )  - G(z))h~(G(~)) 
v ~  

There exists 0 < ¢ < 1 for j = 2, 3, such that  

~ (~.) v/NIh~ (G~(z) ) - h~(G(z) ) - (G,~(z) - G(z) )h] (G(z) )ldG(z) 

= [ v~ lGn(z )  - G(z)l 
Js  

(N  ~ oc). 

E 
dG(z) < ~. 

• (Ih~(¢G(z)  + (1 - ¢ )G~(z ) ) l  + Ih~(G(z) ) l )dC(z) .  

Now by L e m m a  3 . 1 ,  we have with probability larger than 1 - c ,  

v ~ l G n ( z )  - G(z)l _< c(c, 5 ')(O(z)(1 - G(z))) 1/2-~', 

and by assumption (b), we have 

Ih~(¢G(~) + (1 - ¢)Gn(~))I  
<_ K( (¢G(z )  + (1 - ~)Gn(z))(1 - (¢G(z) + (1 - ¢)Gn(z))))  -1-1/2+6, 

and 
Ih'~(G(z))l <_ K(G(z ) (1  - G ( z ) ) )  - 1 - 1 / 2 + 6 .  

' ]h~((~G(z)  ~- (1 - ¢)Gn(z))  - htl(G(z))]dG(z). 

We have 

fs~)(~ ~ v ~ t G ~ ( z )  - G(z ) l l h~ (¢G(z )+  (1 - ¢)C~(z))  - h~(G(z))ldG(z) 

< [ v ~ l G ~ ( z )  - G(z)l 
Js  
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So 

L~4)(r ) v/NIG~(z) - G(z)l(Ih'l(¢G(z) + (1 - ¢)Gn(z))l + Ih'~(G(z))l)dG(z) 

< __/~)(r) C(~, ~S')(G(z)(1 - -  G(Z)))  1/2-5' 

x (K((¢G(z) + (1 - ¢)an(z))(1 - (¢G(z)  + (1 - ¢)Gn(z)))) -i-i/2+6 
+ K(G(z)(1 - G(z)))-I-U2+5)dG(z) 

T(,) c(e,~')g(a(z)(1 a(z))) -1+5-5 

X (((¢G(z)+(I-¢)Gn(z)) ( I - (¢G(z)+(I-¢)Gn(z)) ) )  - 1 - I / 2 + S G ( z ) ( I  - G(z)) 

+ 1) da(z). 

Since 

~)G(z) q- (1 - ~))Gn(z) 
a(z) = ¢ + ( i - ~  a-- ~ 

and 
1 - (¢G(z)  + (1 - ¢)Gn(z)) 

1 - G(z) 
there  exists fl such t h a t  

1 - Gn(z) 
= ¢ + ( 1 - ¢ )  i ~- G----~ , 

infzcs~)(r) (¢G(z } + (1 - ¢)Gn(z) )(1 - (¢G(z)  + (1 - ~))Gn(z)) ) 

Thus  

>/32( N ) 2 ~ - ~  • 

G(z)(1 - G(z)) 

(¢G(z)  + (1 - ¢ )Gn(z) ) (1  - (¢G(z)  + (1 - ¢ )Gn(z ) ) ) ' ~ -1 -1 /2+5  

G(z)(1  - G(z)) ) + 1 

< ( / 3 1 ~ + 1 ) - 3 + 2 ~ + 1 .  

Now, it follows t h a t  

3 

E f~(~) (G(z)(1-G(z)))5-5'-ldGn(z) 
j=2 S N (r) 

(/o/11 ) _< + (G(z)(1 - G(z)))6-6'-'dGn(z) 
- - q -  

< { 21-5-5' - \ XTp )~5-6'. 
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Since for all c > 0, 5; and ~- may be so chosen that 

we have '~2N~(2) = 0 p ( 1 ) ,  and C2N = %(1). 

C41v = %(1) can be shown similarly. 

Step 2. Finally, we show that BIN -t- B2N + BaN 4- B4N has the normal 
distribution in the limit. We obtain 

and 

BIN= /~NV/N / hl(G(x))d(Fm(x) - F(x)) 

= ~NX/~ / Bl(x)d(Fm (x) - F(x)), 

B2N = ~ ' , / N  / (C~(x) - a(x) )h'l (a(x) )dF(x) 

(I 1 = ANX/N (G,~(x) - G(x)) hi(G(y))dF(y ) 
0 - - 0 0  

F / ~  x ,,) 
- hi(G(x))dF(y)d(Gn(X ) - G(X 

o o  o 

/? = - ~ N v ~  B2(x)d(an(x) - a(x)), 
o ~  

where 

fx x BI(X ) = hl(a(X)) and B2(z) = h~l(G(y))dF(y). 
0 

Thus B1N + B2N is represented by 

( n ) 
. . . . .  m 1 ~ ( B 2 ( U )  E[B~(U)])  

/~Nv/-N rrtl E(Bl(Xi)i=l E[BI(Xi)]) r t j = l  

Similarly we obtain 

B3N -~- B4N 

(~  - -  (1 - a N ) v ~  - ~ ( B 3 ( X i / -  E[BI(X~/I/ 
/=1 ~n ) 

+ -  ~ ( B 4 ( ~ )  - E[B2(~)] )  , 
Tt j= l  
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where 

Therefore, 

fx x B3(x) = h[(F(y))dG(y), 
0 

B4(x) = h2(F(x)) = h~2(F(y))dF(y). 
0 

B1N + B2N + BaN + B4N 

_ 1  (~--~ ((BI(Xi)_ E[BI(Xi)]) n__(Ba(Xi)_ E[Ba(Xi)])) 
V ~ i =1 ?'n 

j= l  

We shall show that  the variances of 

E[BI(X)]) - n ( B 3 ( X )  - ElBa(X)]) (u~(x) 

and 

are finite. Since 

m (B2(Y) - E[B2(Y)]) + (B4(Y) - E[B4(Y)]) 
n 

we have 

F B I ( X )  - E[BI(X)] = hl(G(x))d(Fl(x) - F(x)) 
o o  

/ ~ ( F I (  i (  ( = - x )  - F ( x ) ) h  a x ) ) e a ( x ) ,  

J:l" B a ( X )  - E [ B a ( X ) ]  =- h ' 2 ( F ( y ) ) d a ( y ) d ( N ( x )  - F ( z ) )  
( x )  0 

/: = - ( N ( x )  - F ( x ) ) h ' 2 ( F ( x ) ) d a ( z ) ,  
( x )  

Var(B1 (X))  

=.  [ f f  (., (~) . ( x ) ) (  FI (y) - F(y))hll (a(x))h  i (a(y))dG(x)dG(y)l  

= 2 ff_ F(x) (1 - F(y))h'l(G(x))h'l (G(y))dG(x)dG(y), 
oc<x<y<oo 

C o v ( e l  (X),  B3(X))  

= / /  F(x) (1  - F(y))h~(G(x))h;(F(y))dG(x)dG(y) 
cx~<x <y< oo 

+ j / _ ~ < v < = <  (1 - F(x))F(y)h~(G(x))h~(F(y))dG(x)dG(y), 

and 
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V a r ( B 3 ( X ) )  = 

Therefore, we have 

- E l B a ( X ) ] )  - Var 
\ 

F(x)(1 - F(y))h~(F(x))h;(F(y))dG(x)dG(y).  

347 

- 

m 
ft 2 

= Var(BI(X)) - 2nm Cov(Bl(X), B3(X)) + ~ Var(Ba(X)) 

Similarly 

Var ( - ~ ( B 2 ( Y )  - E[B2(Y)]) + (B4(Y) - E[B4(Y)])) < 

Thus we complete the proof. 

OO. 

Example. (continued) Let F~ and R~ be the test statistics induced by 
Spearman's footrule and Spearman's rho. Under null hypothesis H : F(x) =_ G(x), 
we get 

m~t  

#F;~ - 2N '  
In?{ 

m 2 n  + m n  2 

# R .  N 2 - 3 N  2 , 

a2*N~R = mn(4m2 + 7mn + 4n 2) 
45N 3 
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