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A b s t r a c t .  We consider two tests of the null hypothesis that the k-th deriva- 
tive of a regression function is uniformly bounded by a specified constant. These 
tests can be used to study the shape of the regression function. For instance, 
we can test for convexity of the regression function by setting k = 2 and the 
constant equal to zero. Our tests are based on k-th order divided difference of 
the observations. The asymptotic distribution and efficacies of these tests are 
computed and simulation results presented. 
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i .  Introduction 

In some regression analyses, determining certain characterist ics of the re- 
gression function is more impor tant  t han  obtaining an accurate  es t imate  of the 
function. For instance, in evolut ionary ecology, it is impor tan t  to determine if the 
dependence of the probabil i ty  of survival upon some physical t ra i t  is monotone,  
convex, or concave. The  shape of the function determines how the physical t ra i t  
evolves in the populat ion (see, e.g. Sehluter (1988)). Another  example of research 
involving the shape of a regression function is in the analysis of human growth 
data.  The  "pubertal  spurt" is a rapid period of growth typical ly occurring at 
twelve years of age in girls and fourteen years of age in boys. Determining the 
age span of this spurt  involves s tudying the convexity of height as a function of 
age. (See, e.g. Gasser et al. (1984), for analyses of these types of data.)  Here, we 
s tudy test ing tha t  the k-th derivative of the regression function is bounded  by a 
specified number.  
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Suppose that the regression function f has k continuous derivatives on a 
compact interval, which we take to be [0, 1]. We wish to test the hypothesis 

(1.1) Ho:  f(k)(t)  _< 7 for all t E [0, 1]. 

The test is based on observations 

(1.2) Xi  = f ( t i )  + ei, 1 < i < n, 

where the ci's are independent and identically distributed with mean zero and ti = 
i / ( n +  1). (If one wishes to test f(k)(t)  > V instead of (1.1), one uses the proposed 
statistics with Xi replaced by -X~. If one wishes to test that f(k)(t) < g(t) for 
all t, for some specified 9, one uses the proposed statistics, but with Xi replaced 
by X~ - G(t~), where G is any function with G(k)(t) -- g(t).) Two test statistics, 
T and S, are defined in Section 2. Both statistics count the number of divided 
differences of the Xi's which are greater than or equal to a specified threshold, 
and H0 is rejected if this number is too large. If k = 1 and the specified threshold 
is chosen appropriately, S is the Mann T-test (Mann (1945)) which is used to test 
the hypothesis that f is constant, versus the alternative that f is non-decreasing. 
The Mann test rejects the null hypothesis if the number of times that X i -  X j  > 0, 
i > j ,  is too large. The statistic T is equivalent to a test proposed by Sen (1965) 
in a time series setting. Sen studied T's null distribution, but not its efficacy, as 
we do here. 

In Section 2 we give the asymptotic distributions of S and T assuming f 
is on the "boundary" of the null hypothesis, f(k)(t)  = 7, and assuming that 
f = f~, a sequence of regression functions local to the null hypothesis. These 
results can be used to calculate the asymptotic significance levels of the tests and 
the efficacies. The efficacies are discussed in Section 4. Unfortunately, when k ¢ 1, 
the asymptotic variances of the statistics depend upon unknown parameters. In 
Section 3, we present estimates of these parameters. Section 5 contains simulation 
results. The simulation results and the efficacy calculations indicate that the test 
statistic S is a good one, particularly if the data contain outliers. 

It is possible to construct statistics to test H0 : 71 _< f(k)(t)  ~ 72 for all 
t E [0, 1] by counting the number of divided differences of the Xi's that fall within 
a specified interval. For a sequence of functions {f~} approaching a fixed function, 
the asymptotic distributions of the test statistics are easily derived by the methods 
of this paper. However, it is very difficult, if not impossible, to determine the 
significance levels of the tests, that is, to calculate the supremum, over H0, of the 
probability of rejecting H0. Therefore, we do not analyse these tests here. 

2. Definitions and main results 

Suppose that (1.2) holds. We test the null hypothesis H0 : f C ~'~,k, where 

5~,k -- :P = {f  : [0, 1] ---, T~ : f has k continuous derivatives and 

f(k)(t)  < 7 for all t e [0, 1]}. 
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Our test statistics count the number of k-th order divided differences of the Xi's 
that  are larger than a specified value. For instance, when k = 1 and the specified 
value is c, S is equal to the number of times that  ( X i - X j ) / ( t i  - t j )  >_ c for i > j.  
The statistic T depends on an integer m, chosen by the user. When, say, k = 1 
and m = 3, T is equal to the number of times that (X i  - X i _ a ) / ( t i  - ti-3) _> c. 
When c = 0 and k = 1, S is equivalent to the statistic studied by Mann (1945). 
When c = 0, the statistic T is equivalent to one proposed by Sen (1965). 

To define S and T for general k, we recursively define ( A m ' k X ) i ,  the k-th order 
divided difference with spacing m evaluated at i of the n-vector X = (X1, . . . ,  X ~ )  t 
as follows. (The dependence upon n is suppressed in the notation.) For k = 0 and 
l < i < n  

(A~'°X)~ = Xi. 

F o r k = l  a n d m + l < i < n  

t'-~ ~J(A'~'IY~ i _ n + l  
m 

- - -  ( X ~  - X ~ _ ~ )  - 
n + 1 ( ( , s m , o x ) ~  _ ( A . ~ , O x ) ~ _ . , ) .  

For general k and k m +  1 < i < n 

m 
_ _ ( ( A m , k - i x )  i -- (z2km,k-l x ) i _ m ) .  

To count the number of times that  a k-th order divided difference exceeds the 
specified value c let 

14~ "~ = W[a'k(c)  = I { ( A m ' k X ) i  >_ c} 

for km + 1 < i < n. Then our two test statistics are 

n 

• 2 = T:(m,k)= Z w2 
i=krn+ l 

and 
[(~-l)/k] ~ [(~-~)/k] 

S ) = S ~ ( k ) =  E W ~ =  E T~'(m,k). 
r n = l  i=km+l m--1 

We will reject H0 if either T(. ~ or S~ ~ is too large. 
The asymptotic significance levels and the efficaeies of the test statistics are 

given in Theorems 2.1 to 2.3 below. We assume that  the distribution of q is 
continuous. The Appendix contains the proofs of these theorems, in addition 
to proofs of the asymptotic normality of the test statistics under more general 
conditions. 

First consider the statistic $2. To define its asymptotic mean and variance, 
we introduce random variables U, Ul( l ,  l '), and U2(1, lP), l, l' = 0 . . . .  , k. Let 

(2.1) U = (Am'%).  
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where e = ( e l , . . . ,  en) t. Notice tha t  the distribution of U depends only upon k and 
the distr ibution of el. For fixed l, l', rn, m' ,  i, and i' with {i - k m , . . . ,  i - m, i} N 
{i '  - k i n ' , . . . ,  i' - m ' ,  i '}  = {i - Ira} = {i' - I 'm ' } ,  (Am'ke) i  and (Am"ke) i ,  involve 
exactly one common e, namely el-tin = e i ' - l 'm' .  Thus the joint distr ibution of 
( r n / ( n  + 1 ) ) k (Am'ke ) i  and ( r n ' / ( n  + 1 ) ) k (Am"ke ) i ,  does not depend upon n, m, 
m',  i, or i': it depends only upon the position of the "overlap" determined by l, 
l', and k and upon the distr ibution of q .  Therefore, we can define 

(U,(l,¢),U=(l,l'))= 7 7 i  (LXm'k~)~' 7 7 7  (LX~"k~)~' " 

The dependence of the distributions of U and (Ul(1,1') ,  U2(1,1')) on k and the 
distr ibution of el is suppressed. 

Let 
C ~- --/1/k 

"s* = "s(* , 7) (1 - k a ) P { U  >_ ak (c  - " / )}da,  
oe=O 

and 

k r l / k  
s v ,'Y) = [1 - max{/e ,  I'c~'} - max{(k - l )a ,  (k - l')c~'}]+ 

l ,od=O 

x cov(I{Ul(l ,  l') >_ a k ( c  -- ~/)}, I{U2(1, l') > a ' k (c  - "y)})dada'.  

Here u+ is the positive part  of u. 
Let f ~ ( t )  = f * ( t )  = 7 t k / k !  (so f ,(k) _= ~/) and let P f  be the probabili ty 

assuming tha t  f is the true regression function. 

THEOREM 2.1. I r a *  s > O, then 

{qn 2 .  } ~c n 2 * } - n  # s  f S ~  - n  # s  
supP s na32--~s _>z, =Ps*[ ~ > _ z , - - + 3 ,  
fe..T 

where z z  is the 1 - / 3  quantile o f  the s tandard normal  distribution.  I f  c -- ~/ and the 
dis tr ibut ion of  q is s ymmet r i c ,  then 2 • n It s can be replaced by the exact  expectat ion 
4 s 2  

) Eo(S2) = T n - ~(n  + 1) 

where n* is the largest integer in (n  - 1 ) / k .  

To s tudy  the asymptot ic  distr ibution of T~, define new random variables V1 (1) 
and 172(l), l = 0 , . . . , k -  1: 

( )k m (Vl(l),U~(l))= ~ ((Al'k¢)~+~_Z,(~l'k~)d. 



NONPARAMETRIC TESTS FOR DERIVATIVES 319 

Since (Al'ke)i and (Al'ke)i+k_l involve the 1 + 1 common errors, e i -~ , . . . ,  ei, the 
joint distr ibution of Vl(l) and V2(l) depends only upon l, k, and the distr ibution 
of q .  For a0 E (0, 1/k), let 

T PT(C,%aO) (1 kao)P{U > ako(C "y)} 

and 

,2  = ~ } 2 ( c  ' ~,  ~o )  (7 T 
k--1 

= 2 E ( 1  - ( 2 k -  l ) a 0 ) +  cov(I{Vl(l) • olko(c- "/)}, I{V2(l) ~ olk(c- ")/)}) 

/=0 

+ (1 - kao)var(I{U _> a ~ ( c -  7)}). 

THEOREM 2.2. Suppose that 

(2.2) m = m n  = [ha0] with ao E (0, I lk)  

and [x] the greatest integer less than or equal to x. Suppose that a~. > O. Then 

{ T: - ~ > z~} = ps. { Tc~ - ~ } 
sup Pf nl/--2c~ _ n l / 2 ~  " > z~ ---+/3. 
f e.~ 

If  c = 7 and the distribution of q is symmetric, then np~ can be replaced by the 
exact expectation of T2 

Eo(T, n) = (n - kin)~2. 

We now consider the efficacies of the test  statistics under local alternatives. 
Although results for general local alternatives are given in the Appendix,  we 
present results here only for alternatives local to f*,  the "worst case" function 
in 5 c. We assume that  X~ = f n ( i / (n  + 1)) + ei with fn(t)  = i f ( t )  + 5nn-1/2g(t), 
where g has k continuous derivatives. To define the efficacies, we need to define 
a functional which is similar to A "~'k, the divided difference vector. We call this 
new functional, A~ 'k, the k-th order divided difference functional with spacing a 
of a function g. It is defined for g a function from the unit interval to the reals, k 
integer, and a in (0, 1/k). A~ 'k is defined recursively: 

A~'°(t)  = g(t) t E [0, 1] 

Ag,k(t) = l [A~ ' k - l ( t )  - A g ' k - l ( t  - c~)] t C [kc~, 1]. 
c~ 

t C [a, 1] 

We define 
A ° * ( t )  = g (~) t t ) .  
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Note that, for g = (g(1/(n + 1 ) ) , . . . , g ( n / ( n  + 1))) t, Ag/(n+l) 'k( i / (n + 1)) = 
(A ,kg)i. 

THEOREM 2.3. Suppose that U, as defined in (2.1), has a continuous density 
f v  and that 5n --~ 5 < co. Suppose a* s > 0 and let 

- -  a k fU (a k (c - 7))Ag 'k (t)dtda. e s  = e s ( g )  = J =o 

Then, under fn, 
2 * 

S~ - n #s  5es ==~ N(O, 1). 
n3/2 *s 

Suppose that a~r > 0 and let 

O'T J r =  czo k 

I f  m = ran satisfies (2.2), then under fn, 

T 2 - np~ SeT ==V N(O, 1). 
nl/2a~ 

3. Estimation of ~ and cT~ 

The results of Theorems 2.1 and 2.2 indicate how we would use the statistics 
S n and T~ to construct asymptotic level a tests of H0 : f(k) (t) < 7. If we assume 
that  the regression error distribution is symmetric about zero and set c = ~f then 
the asymptotically level a tests reject H0 if S~ >_ Eo(S~) + z~n3/2a*s(C, c) or 
if T~ >_ Eo(T~) + zanl/2a~(c, c, oL0). However, the parameters cr~ and a~ are 
typically unknown. In this section we consider two types of estimates of a~ and 
a~ (or equivalently, of the standard errors of S~ and T~). One estimate is based on 
the asymptotics of Theorems 2.1 and 2.2. The other estimate uses bootstrapped 
samples. In simulation studies, we found that the asymptotic-based estimate of 
a~ 2 performed poorly, often taking on negative values. The asymptotic-based 
estimate of a~ performed very well. Therefore, we will only define the asymptotic 
based estimate of a~. 

We present an estimate of a~ that satisfies 

lim sup P f { T  n > Eo(T n) + z c t n l / 2 ~ }  : o/ 
n---+ oo f 6 .T'~ 

where 
~n = { f  E ,~ : - p n n  k <_ f(k)(t) for all t}, 
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and Pn is any sequence of positive numbers  tending to zero. As usual, T n is 
constructed using rn~ as in (2.2). We see that  we must  est imate 

k - 1  
*2 aT = Z 2(1 -- (2k - 1)ao)+C(1) + (1 - kao)/4 

/=0 

where C(1) is the covarianee between I{Vl(1) >_ 0} and I{V2(1) >_ 0}. We est imate 
a~ 2 by subst i tut ing estimates of C(1). Our estimate,  C(1), is the sample covariance 
between the collection of pairs 

{(I{(Al'kx)i c}, I{(Al'kx)i-k+t C}), i = 2]g --/, -}- 1 , . . . ,  rt} 

u _> e}, I{(/x2'kX)  _> c}),  i = 4k  - 21 + 1 , . . . ,  

Then C(1) converges to C(1) in probability, uniformly on ~-n and our est imate of 
a~2 converges uniformly to a~  2. (It is possible to use only the first set of pairs in 
the est imation of C(l), but  simulations showed that  including the second set of 
pairs greatly increased the finite sample accuracy of the estimate.) 

To est imate the s tandard error of S~ (or T~ ~) from a sample (Xi , t i ) ,  i = 
1 , . . . ,  n, we draw with replacement a boots t rap  sample of size n from (X~, ti). We 
then calculate the resulting value of S~ (or T~). This process is repeated many 
times, and the s tandard deviation of the resulting values of S~ (or T~) is used 
as the est imate of the s tandard error. The exact theoretical propert ies of this 
procedure are unknown but  simulation studies, presented in Section 5, indicate 
that  the resulting estimates are good. 

4. Efficacy 

Here we s tudy relative P i tman  efficiencies of tests of H0 : f(k)(t)  ~ ~/versus 
HI  : f(k)(t)  ~ 2/for some t. Three tests are considered: the two tests introduced 
in Section 2, which use statistics S~ '~ and Tnc, and the least squares regression 
test. The efficacies are calculated with respect to local alternatives of the form 
fn(t) = i f ( t )  + n-1/~Sng(t), where f* is as in Theorem 2.1, 5n --~ 5, finite, and g 
has k continuous derivatives. Throughout  we assume that ,  in the construct ion of 
Tc ~, rn = rnn as in (2.2). No one of the three tests is clearly superior to the others 
and, for large classes of alternatives, all three have no power (see Theorem 4.1). 

From Theorem 2.3, we see that  the P i tman  efficacy of S~ is es  = es(g) and 
the P i tman  efficacy of T~ is eT = eT(g, aO). 

For the least squares regression test,  assume that  f ( t )  =/30 +/31(t - 1/2) + 
• .- +/3k (t - 1/2) k, with the/3j ' s  unknown. Let M = M(n,  k) denote the n x (k + 1) 
design matr ix with Mij = (i/(n + 1) - 1/2) J-1.  Then the least squares est imate of 
/3k is ~k -= ( ( M t M ) - I M t X ) k + I ,  and the least squares regression test rejects H0 
at approximate  significance level a if (k!)/~k _> V + (k!)z~ varl/2(C)k). (We could 

• ~*t k rejecting H0 base our test on the parameterizat ion f ( t)  =/3o +/3~t + . . .  + ~'k , 
when/)~ is too large. However, these two parameterizat ions are equiva len t - - tha t  

is, ~k ----- ~* /3 k. The/3k parameterizat ion is more convenient for the proof  of Theorem 
4.1 below.) 
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To calculate the effÉcacy of the least squares regression test, assume tha t  the 
variance of ei is a 2. Then, under the local alternative hypothesis, the variance of 
/3k is ~r2((MtM)-l)k+l,k+l, the mean is/3k + n-1/25~((MtM)-XMtg)k+l,  where 
g = (9(1/(n + 1) ) , . . .  ,g(n/(n + 1))) t, and so the efficacy is 

eLS = l i m n  -1/2 ( (MtM)- lMtg )k+l  
n (7((MtM)-l)lk/+2,k+l" 

We now show tha t  all three tests have no power against a special class of local 
alternatives. We assume tha t  n > k + 1, so tha t  our estimators are well-defined. 

THEOREM 4.1. If  g(k)(t) = --g(k)(1 -- t) for all t, then eLs = es = eT ---- O. 

PROOF. If g(k)(t) + g(k)(1 -- t) = 0 for all t, then g(t) + ( -1)kg(1 - t) is a 
polynomial of degree k - 1. This fact will be used in calculating all three efficacies. 

First  consider eLS. Let b -- ( M t M ) - I M t 9  -- (/~0,...,[~k) t. We will show 

that/~k -- 0. Let g* = (g(n/(n + 1)), g((n - 1)/(n  + 1 ) ) , . . . ,  g(1/(n + 1))) t. Since 
g(t) + ( -1)kg(1 - t) is a polynomial of degree k - 1, for n >_ k + 1, g + ( - 1 ) k g  * 
can be fit perfectly via least squares by a polynomial of degree k - 1, 

[ ( M t M ) - l M t ( g  + (--1)kg*)]k+l = 0. 

Let b* -- ( M t M ) - I M t g  *. Thus /~k + (--1)k/~ = 0. But,  as argued below, /~ = 

( -1)Jb j ,  j = 0 , . . . , k ,  and so 0 = bk + (--1)2kDk = 2Dk. 

The fact tha t  D~ = ( -1)Jb j ,  j = 0 , . . . ,  k, follows directly from the fact tha t  b 
minimizes 

2 

Z g -Zb  
• J n + l  

and b* minimizes 

I ] (o_+1 

= Z  g -ZbJ(-1) 
l j 

l/J 1 2 

1 
To show tha t  es = eT = 0, we show tha t  ft=~k A~'k(t) dt = 0 for all a.  Let - - g  

g*(t) = g(1 - t). Then, by induction on k, A~:k(t) = (--1)kAy,k(1 + k s  - t) for 

k s  < t < 1. Since g(t) + (--1)kg(1 -- t) ---- g(t) + (--1)kg*(t) is a polynomial of 
degree k - 1, 

0 = A~'k(t) + (--1)kA~'k(t) = A~'k(t) + A~'k(1 + k s  - t). 
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Therefore 

f~ A~ ' k ( t )d t  = - A~'k(1 + k a  - t )dt  = - A ~ ' k ( x ) d x .  [] 
t = k a  t = k a  x = k a  

We now consider the case of testing for convexity, tha t  is, with k = 2, and we 
set c = 7. We assume that  the density of ei is symmetr ic  about  0. Then we easily 
calculate that  

ecs  = -- g( t )(6t  2 -- 6t + 1)dt, 

fu(O) [ 1 / 2  f t l  es -- ~ (g(t) -- 2g(t - a) + g(t  - 2a) )d tda ,  
G S d c~=O t=2c~ 

fu(O) f '  
eT - , (g(t) - 2g(t - ao) + g(t - 2ao))dt ,  

G T  2 a o  

and 

o - ~ 2 = 2 ( 1 - 4 o z 0 ) +  ( P { e 3 - 2 e 2 + Q  >O, e 5 - 2 e 4 + e 3 > _ O } - ~ )  

+ 2 ( 1 -  3ao)+ ( P { e 4  - 2~3 + e2 >_ O, e3 - 2e2 + ~] >_ 0} - ~ )  

+ (1 - 2ao) /4 .  

The test  based on T with a0 close to a half should do very well when 9(1) - 
9(1/2)  is much bigger than 9(1/2)  - g(0). For the special case g(t) = p(t  - 1/2) ", 
r > 2 ,  

and 

x/~p 1 r 
eLS -- ~ -  2,~+1 [1 + ( -1)" ]  (r + 1)(r + 3) '  

fu(O)p 1 [1 + (--1) 'r] r 
e s -  * 2 "+2 ( r + l ) ( r + 2 ) '  G S 

ew(g, ao) -- fu(O)p 1 [1 + (--1)"1 
G,~ r + l  

* 0 as ao + 1/2, we easily see that  S i n c e  o T ---+ 

lira lim eT(g, a o ) / e s  = cx~, 
c~n ~ l / 2  r - ~ o c  

and 
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lim lim eT(g, Cto)/eLS = Oe 
c~o--q/2 r-+oo 

for r not an odd integer. However we do not recommend using the statistic T, 
since its efficacy is highly dependent  upon the choice of a0. Our recommendat ion 
is also supported by the simulation results of Section 5. 

We now compare eLS and es  for general g in the case tha t  the ei's are normally 
distr ibuted with mean zero and variance a2. In this case, 

1/2 1 
es  1 f~=0 ft=2c~(g(t) -- 2g(t -- a)  + g(t  -- 2a))dtdc~ 

eLy; 6VZ6-~O'*s f l  g ( t ) (6 t  2 -- 6t + 1)dt 

f l / 2  1 
1.372 j~= 0 f t=2~(g(t)  - 2g(t - a)  + g(t  - 2a))dtd(~ 

f l  g ( t ) (6 t  2 - 6 t  + 1)dt 

When g(t) = p(t  - 1/2) r, r _> 2, r not an odd integer, then 

es  ~ --1"372 1 +  <0.858.  
eLS 2 r -- 

When r = 2, tha t  is, when the least squares test is the ideal test, we see tha t  the 
relative efficiency is fairly high--over  85%. 

While the least squares test always performs better  than  S under the above 
assumptions, under some conditions S will perform bet ter  than  the least squares 
test. For instance, the convergence of S does not require the existence of moments  
of ei. Also, for certain functions g, S will be more efficient than  the least squares 
test  statistic. In fact, for any positive constant  M,  we can find a function g so 
tha t  eLS <_ - M  and es  >_ M .  (Since we reject the null hypothesis for large 
values of the test  statistics, a positive efficacy indicates a strong tendency to reject 
the null hypothesis. A negative efficacy indicates tha t  the null hypothesis is not 
usually rejected.) Let 5 be a small positive number and, for C > 0, define g with 
continuous second derivative such tha t  g"( t )  = - 4 C  for t c [0, 1/4 - 5], g"(t)  = C 
for t C [1 /4+3,  1 / 2 -  5], 9"(1/2)  = 0, g" linear on [ 1 / 4 - 3 ,  1 / 4 + 5 ] U  [ 1 / 2 - 3 ,  1/2], 
and g"( t )  = g"(1 - t) for t E [1/2, 1]. To calculate eLS and es  we first rewrite the 
integral expressions using integration by parts,  and then approximate gH by a step 
function which equals - 4 C  on [0, 1/4] U [3/4, 1] and equals C on (1/4, 3/4). (The 
approximation holds for 5 small.) Thus 

[ [g"(t) + g"(1 - t)lt2(1 - t )2dt  eLS = ~ dO 

~ __-3'/5 c 
5120a 

and 

fu(O) f l / 2  
- -  - -  [g"(t) + g"(1 - t)]t2(3 - 4t)dt  es  12a~ Jo 

fu(O) C. 
1536~r~ 

Our claim follows by taking C sufficiently large. 
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5. Simulations 

To study the finite sample properties of our asymptotic results and to compare 
the finite sample characteristics of our test statistics, we carried out simulation 
studies. Our focus was on testing H0 : f"(t)  <_ 0 for all t versus H1 : fit(t) > 0 for 
some t. In this case, the function f* defined prior to Theorem 2.1 is f* (t) ~_ 0. This 
function is "on the boundary" between H0 and H1. Our simulated data followed 
model (1.2) with the ei's standard normal random variables. We considered two 
values of n, n = 50 and n = 100. For each function f considered and for each 
sample size, we conducted 1000 simulations. In all cases, the statistics T~ and 
S were calculated using c = 0. For sample size n = 50, the T statistics were 
calculated for values of m = 5, 10, and 15. (In the tables, these T statistics are 
denoted as T(5), T(10) and T(15) respectively.) For sample size n = 100, the T 
statistics were calculated for values of m = 10, 20 and 30. Note that, under f*, 
W ~  '2 = I{ei - 2ei-m + ei-2m >_ 0}, and thus the null distributions of T and S do 
not depend on the variance of ci. 

Table 1 contains summary information for the T and S statistics under the 
model (1.2), with f ( t)  -- O. The simulated means are given with standard de- 
viations in parentheses. The asymptotic means and accompanying parenthesized 
standard deviations are those calculated from the results in Theorems 2.1 and 
2.2. (The asymptotic means are actually the values of Eo(S) and Eo(T).) The 
standard errors of T were estimated in the two ways described in Section 3: one 
using the asymptotic results of Theorem 2.2, and the other via bootstrapping, 
with 100 bootstrap samples taken in each simulation. The standard errors of S 
were calculated only via bootstrapping, again with 100 bootstrap samples taken 
in each simulation. The averages of the estimates are given, with the standard de- 
viations in parentheses. The simulated means and standard deviations of the test 
statistics are very close to the true means and asymptotic standard deviations. In 
addition, the estimated standard errors are extremely accurate. In most cases, the 
bootstrapped estimate of the standard error is not as accurate as the asymptotic 
estimate. However, we still recommend the use of the bootstrapped estimate, as 
it will never yield negative values. 

Table 2 contains simulation results for a 0.05 level test of H0. We considered 
the model (1.2) for the functions f ( t)  = - t  2, 0, t 2, and t 3. Using the statistic S, 
we reject H0 at this level if S >_ Eo(S) + 1.645~s, where ~s is our bootstrapped 
estimate of the standard error of S. We considered two tests based on T(m): one 
test rejects H0 if T(m) >>_ n/2 - m + 1.645&T, where ~T is the asymptotics-based 
estimate of the standard error of T(rn). The other test rejects H0 if T(m) > 
n / 2 -  m + 1.645~TB, where ~TB is the bootstrapped estimate. These two tests are 
denoted T(m) and TB(m) ,  respectively. The least-squares regression based test, 

denoted LS, rejects H0 if ~2 _> t0.05c~2, where t0.05 is the upper 5th percentile of 
a t distribution with degrees of freedom n - 3, and ~Z2 is the usual estimate of the 

standard error of ~2- As expected, we see that  the least squares test is the best, 
but that the test using S is comparable. The tests based on T do not perform 
very well. 

In each of the studies of T(5) with a sample size of n = 50, the estimate of 
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Table 1. Distribution of the test statistics with f ( t )  - -  O. 

n ---- 50 T(5) T(10) T(15) S 

Simulated mean 20.00 (1.91) 14.97 (1.90) 10.03 (1.93) 299.84 (20.25) 

Asymptotic mean 20.00 (1.86) 15.00 (1.84) 10.00 (1.94) 300.00 (18.77) 

SE est imate/asymptotic  1.82 (0.31) 1.83 (0.13) 1.94 (0.06) 

SE est imate/boots t rap 1.85 (0.14) 1.83 (0.12) 1.95 (0.13) 19.58 (1.46) 

n ---- 100 T(10) T(20) T(30) S 

Simulated mean 40.22 (2.76) 30.07 (2.62) 19.97 (2.74) 1223.6 (52.5) 

Asymptotic mean 40.00 (2.63) 30.00 (2.60) 20.00 (2.76) 1225.0 (53.1) 

SE est imate/asymptotic  2.60 (0.29) 2.60 (0.12) 2.76 (0.05) 

SE est imate/boots t rap 2.62 (0.19) 2.58 (0.19) 2.75 (0.19) 54.27 (3.99) 

Simulation results are based on 1000 simulation runs, with observations Xi = ¢i, 
ei s tandard normal. 

Table 2. Percent of times Ho is rejected in a level 0.05 test. 

Sample size Statistic f ( t )  = - t  2 f ( t )  = 0 f ( t )  = t 2 f ( t )  = t 3 

n---- 50 S 2.4 (0.5) 5.1 (0.7) 11.4 (1.0) 14.2 (1.1) 

T(5) 7.2 (0.8) 6.0 (0.8) 6.4 (0.8) 6.8 (0.8) 
T8(5)  6.2 (0.8) 4.7 (0.7) 5.2 (0.7) 4.8 (0.7) 
T(10) 5.8 (0.7) 6.1 (0.8) 5.7 (0.7) 6.0 (0.8) 

TB(10) 5.3 (0.7) 4.8 (0.7) 5.4 (0.7) 5.9 (0.7) 
T(15) 4.2 (0.6) 3.8 (0.6) 4.4 (0.6) 4.4 (0.6) 

TB(15) 5.4 (0.7) 4.5 (0.7) 4.8 (0.7) 5.0 (0.7) 
L S  1.8 (0.4) 5.5 (0.7) 13.5 (1.1) 17.9 (1.2) 

n = 100 S 0.6 (0.2) 4.5 (0.7) 14.0 (1.1) 22.0 (1.3) 

T(]0)  5.3 (0.7) 7.4 (0.8) 7.1 (0.8) 7.5 (0.8) 

TB(10) 5.1 (0.7) 6.4 (0.8) 6.5 (0.8) 6.8 (0.8) 

T(20) 4.6 (0.7) 5.2 (0.7) 5.4 (0.7) 6.0 (0.8) 

TB(20) 4.8 (0.7) 5.9 (0.7) 5.8 (0.7) 5.8 (0.7) 

T(30) 5.1 (0.7) 4.7 (0.7) 4.8 (0.7) 4.1 (0.6) 

TB(30) 5.1 (0.7) 4.7 (0.7) 4.8 (0.7) 4.0 (0.6) 

L S  0.9 (0.3) 5.2 (0.7) 17.7 (1.2) 28.3 (1.4) 

Results are based on 1000 simulation runs, with observations X i  = 

f ( t i )  + el ,  where t i  ---- i / ( n  + 1) and ei is s tandard normal. The entries 
in the table axe 7r ---- percent of times Ho is rejected and, in parenthesis, 
the s tandard error v/~r(1 - ~r)/1000 × 100. 
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the variance of T(5)  based on the asympto t ics  was negat ive in one of the  thousand  
s imulat ion runs. The  figures given in Tables 1 and 2 for T(5)  are based on the 999 
simulat ions tha t  resul ted in posit ive es t imates  of the variance.  

Table 3 contains s imulat ion results for compar ing  the  least squares  procedure  
with the test  based on S in the presence of outliers. The  sample  size was n -- 
50. The  simulat ions were identical to those presented in Table 2, except  for the  
dis t r ibut ion of the  ~i's. Here, we genera ted  fifty s t anda rd  normal  r a n d o m  variables,  

then  chose N of these at  random,  replacing t hem with  normal  r a n d o m  variables 

with mean  zero and s tandard  deviat ion ten. We considered N = 10 and  N = 20. 
As one would expect ,  the s ta t is t ic  S is much less influenced by outliers t han  the  
least squares procedure.  For sample  size 100 (not presented here), the  differences 
between the  two procedures  were less striking. 

Under  all s imulat ion configurations,  the dis t r ibut ions of the tes t  s ta t is t ics  
were very close to normal .  

Table 3. Percent of times/4o is rejected in a level 0.05 test. 

Number of outliers Statistic f ( t )  = - t  2 f ( t )  = 0 I ( t )  = t 2 f ( t )  = t 3 

10 S 2.5 (0.5) 4.7 (0.7) 8.9 (0.9) 10.5 (1.0) 
L S  4.0 (0.6) 4.9 (0.7) 6.6 (0.8) 7.4 (0.8) 

20 S 4.8 (0.7) 5.9 (0.7) 8.0 (0.9) 9.6 (0.9) 
L S  3.8 (0.6) 4.4 (0.6) 5.2 (0.7) 5.6 (0.7) 

Results are based on 1000 simulation runs, with observations Xi = f ( t i ) +  
ei, where ti = i / ( n  + l) and ei is standard normal, except that outliers are 
normal with mean 0 and standard deviation 10. The entries in the table are 
7r = percent of times H0 is rejected and, in parenthesis, the standard error 
V/rr(1 - ~r)/1000 x 100. 

Appendix 

P r o o f s  o f  T h e o r e m s  
We first prove t ha t  f*  is the "worst case" function in 5 c, t ha t  is t ha t  

and 

sup Ps{s2 > 4 = Ps*{s2 >- 
fcY 

sup P s { T 2  > s} = Ps* > 
fEY 

This  is an immedia te  consequence of the following lemma.  

LEMMA A.1. L e t  f E 5 ,  a n d  X i  as in  (1.2) w i t h  t~ = i / ( n  + 1). 
X ?  = f * ( t i )  + ei. T h e n  I { ( A ' ~ ' k X ) i  _> c} < I { ( A m ' k X * ) . i  > c} .  

Define 
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PROOF. Let f = ( f ( t l ) , . . . , f ( t n ) )  t, and f*  defined similarly. Since 
(Am,kf)i = f(k)(~) for some ~ E [ti-km,ti], (Am'kf)i  < ~ -- (Am'kf*)i .  Therefore 

I{(Am'kX)i _ c} 
= I { (Am'k f ) i  + (Am'ke)i _> c} _< I{(A'~'kj'*)i + (A~'ke)i >_ c} 

= I { ( A m ' k x * ) i  >_ c}. [] 

We now study the distribution of S n under the model 

where the ei's are independent and identically distributed and {f~} is any sequence 
of functions in 5" (see Theorem A.1). In Theorem A.2, we study the distribution 
for a fixed function f ,  calculating the asymptotic mean and variance. Theorem 
A.3 states the efficacy of S 2. The analogous results for the distribution of T 2 are 
in Theorems A.4-A.6. 

THEOREM A.1. Let ~n be the Hdjek projection of S~ (Hdjek (1968)): 

j = l  j = l  

Suppose that there exists a sequence pn ~ 0 such that 

lim inf p~n -2 vat(S{) > 0. 
r t  -----~ (~:) 

Then 

and 

var(Sn) --* 1 

var(S n) 

$2 - E ( S 2 )  
varl/2(S2) 

'~- N(O, 1). 

PROOF. For convenience, the superscripts and subscripts n and c will be 
omitted. 

To prove the first statement, we show that 

(A.1) 

Write 

and 

pn -2 (var(S) - var(S)) ~ 0. 

[(n-1) /k]  n 

var(S) -- E E c°v(W/m' Wire') 
m,m~=l  i = k m + l  i~=km~+l 
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var(S) = £ var(~j) 
j = l  

[ (n -1) /k]  n n n 

= ~ ~ ~ ~cov(E(W,~t~),E(w~,"~'lcj)). 
m , m ~ = l  i = k m + l  i~=km~+l j = l  

Since W ~  = I { ( A ' ~ ' k X ) i  > c} involves X i - k m , . . . ,  X i ,  the calculation of the 
individual terms in the variances of S and S will depend upon 

A ( m , i , m ' , i ' )  = { i -  k m , . . . , i  - re, i} 0 {i' - k m ' , . . . , i '  - m ' , i ' }  

for 1 < m, m'  < [ ( n -  1)/k], k m  + 1 < i < n, and kin'  + 1 < i' < n. We partition 
the indices (m, i, m ~, i p) as follows. 

Ao = { ( m , i , m ' , i ' )  : A ( m , i , m ' , i ' )  = 0}, 

A1 = {(m, i, m',  i') : the eardinality of A(m,  i, m' ,  i') = 1}, 

A2 = {(m, i, m',  i') : the cardinality of A(m,  i, m' ,  i') > 2}. 

We first study the variance of S. If (m, i, m ~, i ~) E A0, then W ~  and W~, ~'  are 
independent and so cov(Wi m, Wim') = O. One easily shows that  the cardinality of 
A2 is O(n2). Therefore 

var(S) = ~ cov(W?, Wp,') + O(n~). 
(m , i ,m ' , i ' )EA1  

To study the variance of :~, first note that  if j ~ A (m ,  i, m' ,  i'), then either ~j 
and W ~  are independent, or (j and Wi m' are independent, or both. Thus, either 

E ( W :  ~ I cj) = E(W~)  or E(Wi, ~'  Iey) = E ( W f )  or both, and so cov(E(Wi ~ I 

~j), E(Wi,  ~ '  I cj)) = 0. 
Therefore 

var(S) = [ E E 
( m , i , m ' , i t ) c A 1  j c A ( m , i , m ' , i ' )  

cov(E(W~ q cj),E(Wi'," l cj)). 

If (m, i, m ~, i ~) E A), then there exists exactly one j in A(m,  i, m ~, i~). For this value 
of j ,  W~ ~ and W~; ~ are conditionally independent given ej. Therefore cov(E(W~ I 

m I ej),E(W~ ,m' I ej)) -- cov(W~'~ W~, ). Since the cardinality of A2 is O(n 2) and the 
cardinality of A(m,  i~ m ~, i ~) is at most k + 1, 

var(9) = ~ coy(W2, Wp') + O(~ ~) = var(S) + O(~). 
( rn, i ,m' , i '  )c  A1 
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This completes the proof of (A.1). 
Since 

E(S - ~)2 _ var(S) - var(S) ~ 0 

var(S) var(S) 

the asymptotic normality of S will follow once we show that 

varl/2(S) 
',. N(O, 1). 

By the Lindeberg-Feller Theorem (see e.g. Serfling (1980)), it suffices to show that 

n 

linmvar-l(s) E E((r~j - Ewy)2I{lwy - E~jl __ Cvarl/2(S)}) = 0 
j = l  

for all ¢ > 0. We show that I{lvj - E~jl > ¢varl /2(S)} = 0 for all j ,  for n 
sufficiently large. Now 

[(n-1)/k] 

,~ - E(ny) -- ~ ~ [E(W~ I ey)- E(W~)]. 
r n = l  i=krn + l 

Since, for fixed j ,  E(W~ m I ej) = E(W~)  unless j = i - lm  for some 1 = 0 , . . . ,  k, 
the inner summation over i in the above contains at most k + 1 terms. Thus 
r]j - Er/j is a sum of O(n) bounded random variables. But the variance of S grows 

quickly: by assumption, there exists C such that n -2 var(S) _> C / p  ---* oo. [] 

We now consider the asymptotic distribution of S n for a fixed function f .  

Recall the definitions of A~ 'k, U, Ul(1, l'), and U2(1, l') in Section 2. Let 

and 

i ts = i t s ( f )  = P { U  > ak(c  - A~ 'k ( t ) ) }d tda ,  
Jo~=O k~ 

cov(Z{Ul(1, l') >  k(c- a 'k(t + a))}, 
I{V2(1, l') >_ a 'k(c  -- A~"k ( t  + l 'a '))}),  

fl(l, l', c~, a',  t) = I { m a x {  (k - l)a, (k - l ' )a '}  < t < 1 - max{/a , / 'a '}},  

a2s = a2 ( f )  = E f l (1 ,1 ' , a ,a ' , t )a~(1 ,1 ' , a ,a ' , t )d tdada ' .  
l,l'=O Ja'at=O 0 

In Theorems A.2 and A.3, we require that the integrands of # s ( f )  and 2 as(f) 
be Riemann integrable. It suffices that f has k continuous derivatives and the 
distributions of U and (UI(/, l'), U2(1, l')) be continuous. One easily shows that 
the distributions of U and (Ul(l,  l'), U2(1, l')) are continuous if the distribution of 
el is continuous. 
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THEOREM A.2. Suppose that fn -- f ,  a2(f) > O, and that the integrands in 
a2(f) and #s( f)  are Riemann integrable. Then, under f,  

$2 - E(S~'~) ~ N(0, 1), 
varX/2 (S n) 

~-~ va~(~2) ~ ~-~ vat(S2) --+ ~ 
and 

E(S2) = n2t*s + o(n 2) 

where $2 is the projection of S~, as defined in Theorem A. 1. If f = f*, as defined 
in Theorem 2.1, and if U has a continuous density, then 

E(S n) : n2ps + O(n). 

PROOF. Write 

By Theorem A. 1, the asymptotic normality of S and the asymptotic variance 
expression will follow if we show that var(S) ~ n3¢~. Since E(W~ I ej) = E(W~) 
if j # i - l m ,  l =O, . . . , k ,  

k [(n-1)/k] 

77j - E(~j) = E E (E(Wy ~lm I ej) - E(Wj~+im))I{km + 1 <_ j + lm <_ n} 
1=0 m = l  

and so 

(A.2) 

E 
m:] 

?~2/~ S . 

~ ,  k [(~-l)/k] 
var(S)= Z ~ [ /{ma~{(k-0m,(k-Z')-~'}  

j = l  l,l'=O m,rrff=l 

< 2 < n + 1 - ma~{Z.% Z'm'}} 

cov(E(W;hm I~j), s~(WL~,m, I ~J))] 
~ ~i(n-1)/kl ( m .~' j ) 

= E E E /3 l , l ' , n + l , n + l , n + l  
l,l'=O j : l  rn,m~=l 

- ~ 1, l', 
n + l ' n +  n ~ - I  

~.~ n3cr~. 

To study the asymptotic expected value of S, write 

C -  A / ( n + l ) ' k  

i :mk4-1 



332 NANCY E. HECKMAN AND BING LI 

The stronger statement concerning E(S) is easily shown. [] 

THEOREM A.3. Let f~(x) = f(x) +5,n-1/2g(x), where f and g have k con- 
tinuous derivatives, a2s(f) > O, and 6n ~ ~ < oc. Assume that (UI(1, Y), U2(l, l')) 
have continuous joint densities and that U has a continuous density, fv.  Then 

l/k 1 
E:(sn)) 6.°=0 f =ko akAX' (t)f.(ak(c - A 'k(t)))dtda 

and under fn 

n3/2as(f) 
;. N ( o ,  ~). 

PROOF. To prove the statement concerning the means of S n, write 

E s .  ( w ? )  - E : ( w ? )  = E ( W ? )  - E ( W :  m) 

= P{(Am'ke)~ > c -  (am'kI)~ - ~ ( A m ' k g ) d  

- P{ (Zxm'~)~  > e - ( ~ m ' ~ l ) d  

} m ( c -  (Am'kf)i)  - P  U >  

- v ~  -- 6 ( m )kA~/(n+l)'k ( i ) 

+ o(n -1/2 

uniformly in i and m. Thus the statement concerning Ef~(S n) - E f ( S  n) holds. 
Similarly 

m m/ j - a~ l,l', 1' = O(n-1/2) cry,, 1, ll, n + l , n + l , n - ~ l  n+  n + l ' n + l  

and so, using A.2, 
n - 3 ( v a r ( ~ 2 )  - v a r ( ~ : n ) )  --* 0 

where ~n and Scn are the projections of S~ and Sc n respectively. By Theorem 
A.2, n -3va r (S  *n) ---* a~(f), and so n -3 var(S n) ---* a2(f). The theorem follows 
from Theorem A.1. [] 

We now study T~. Assume that m = m n  as in (2.2). 
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THEOREM A.4. Suppose that 

lim inf var(T n)  = ~ .  
n ----~ 0(3  

Then 
T2 - E(T~) 
varl /2(T~) 

4- N(0,  1). 

PROOF. T n can be rewrit ten 
c 

~ t  

r:=Zz  
i=1 

where 

Z i ~-- Z i ( n  , c, ?Tt, k )  ~- w i r~km Jr- w i r ~ ( k + l ) m  J r - ' "  n L wir~(k+l(i))rn 

and l(i) = l ( i , n , m , k )  is as large as possible, tha t  is i + (k + l ( i ) )m < n < 
i + (k + l(i) + 1)m. Z1, Z 2 , . . . ,  Zm are independent.  

By the Lindeberg-Feller Theorem it suffices to show that ,  for all ¢ > O, 

?Yt 

v a r - l ( T )  E E((Zi - E(Zd)2I{IZi - E(Z{)I _> Cvar l /2(T)})  ~ 0. 
1 

This follows immediately, since Zi is a sum of at most n / m  = O(1 /a0 )  = O(1) 
bounded terms and var(T) ~ oc by assumption.  Thus, for n sufficiently large, 
I{[Zi - E(Zi)I  >_ Cvarl /2(T)}  = 0 for all i = 1 , . . . , m .  [] 

As in the s tudy of S~ ~, the s tudy of the asymptot ic  mean and variance of 
T~ requires the parti t ioning of index sets via A(m,  i, rn ~, i~). However, here the 
"overlapping" sets are much simpler since, for each n, m is fixed. Thus we need 
only consider A(m,  i, rn, i~): 

A ( m , i , m , i ' )  = { i , i  - m , . . . , i  - krn} N {i ' , i '  - m , . . . , i '  - km}  

for krn + 1 <_ i, i ~ <_ n. If A ( m ,  i, m, i ~) = 0 then Wi m and Wi, ~ are independent,  
so we can neglect these terms when studying the variance of Tc ~. We part i t ion 
{(i , i ' )  : A ( m , i , m , i ' )  ~ O}: 

] ( ( i , i ' ) : A ( m , ~ , m , i ' ) ¢ O } =  [UI(BI(1)  UB2(1)) U ( ( i , i )}  
L/=O Li=km+ l 

where 

and 

BI(/) = { ( i , i ' ) :  A(m, i ,m, i ' )  = { i ' , i ' - m , . . .  , i ' - I r a }  

= { i  - ( k  - l ) , % . . . ,  i - k , ~ } }  
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B2(l) = { ( i , i ' ) :  A ( m , i , m , i ' ) =  { i , i - m , . . . , i - l m }  

= {i'  - (k - l ) m , . . . ,  i' - k ,~ } } .  

The dependence of Bl(l) and B2(/) upon n, k, and m is suppressed. Note tha t  
(i, i ') • B1 (1) if and only if W/~ and WiT involve the 1 + 1 common observations: 
X~, = X ~ - ( k - 0 , ~ , . . . ,  X~,-l ,~ = X~-km. 

Recall the  definition of (VI(/), V2(/)) in Section 2. We thus have 

and 

Let 

( m )  k 
(Vl( l ) ,  v2(1)) ~ h - 7 5  ( (Am,ke ) ,  (zxm,k~)~,), (i,i') • Bl(1), 

(i,i') E B2(l). 

1 

PT = #T(f ,  a) = P{U >_ ak(c - A~'k(t))}dt 
t = k a  

and 
a}(k ,a , t )  = va r ( I{U _> ak(c - A~'k(t))}).  

For 1 = 0, k -  1, let 

cr~(l,a,t) =cov(I{Vl(1) > ak(c - A~'k(t))},  

I{V2(1) >_ ~ ( c -  @ k ( t  - (k - l ) ~ ) ) } )  

and 

Let 

b(l, a,  t) = I{(2k - l )a  < t < 1}. 

k -1  1 1 

l=O t = k a  k a  

For the  remainder of the section, assume that  a2(f ,  a0) is positive, and that  
there exists a neighborhood of a0 such that  a}(l, a, t), 1 = 0 , . . . ,  k, and P{U > 

a k ( c -  A~'k(t))} are continuous in (a, t) for all t and all a in tha t  neighborhood. 
For instance, it suffices to assume that  f has k continuous derivatives and that  
the distr ibutions of (VI(I), V2(1)) and U are continuous. This will be true if the 
distr ibution of el is continuous. 

THEOREM A.5. Suppose that fn = f is fixed. Then 

T2 - E ( T 2 )  
~- N(O, 1), 

v a r i / 2  (Tcn) 

n -1 var(T n)  ~ a2(f ,  Co), 

and 
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E(T~ <) = npT(f ,  aO) + o(n). 

and U has a continuous density then 

E(T,, ~) = npT(f ,  o~0) + 0(1) .  
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PROOF. We first prove the second statement.  

var(T:) : )_Z cov(WS, w,; 1) ; Z cov(W~, w~, ~) 
i , i;=krnT1 (i,i;):A(m,i,rn, i ')~O 

k-i n 

= ~ ~ cov(~-,, wi, ~) + ~ var(W:~). 
/ : 0  (i , i ')EBi(l)UB2(1) i = k m ÷ l  

For l -- O , . . . , k -  1, 

cov(WF, Wi, ~)  
(i,~')~Ul(I) 

: ~ cov(W~, wi, ~)  
( i , iQsB2(l)  

({ ())} ITt __ A T / ( n ÷ l ) ,  k i = cov I Vl(1)>_ ~ - ~  c ~ , 

- ~ - ~  / / j )  

i n T l ' n ~ - i  

where the summat ion is over all i with krn + 1 <_ i, i - (k - 1)m <_ n, tha t  is with 
(2k - l)m < i <_ n, or equivalently, over all i with b(1, m / ( n  + 1), i / (n  + 1)) = 1. 
Also, 

var(Wg) = ~} k, n + 1' n + 1 ' 

The second s ta tement  of the theorem follows immediately, by calculating Riemann 
integrals. 

The asymptot ic  normali ty of T follows from Theorem A.4. 
The third s tatement ,  concerning the expected value of T, follows from 

z=rnk-t-1 

The fourth s ta tement  follows easily. [] 
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THEOREM A.6. Let f~(x) = f (x)  + ~nn-l/2g(X), where f and g have k 
continuous derivatives. Suppose that U has a continuous density f u  and that 
5n --* 5 < e~. Then 

T 2  - E/° (Tn) :- N(0, 1) 
nl/2aT(f ,  So) 

and 

~t: 1 n-1/2(E/ . (T~)  - Ef(Tn))  ~ 5a k A~°'k( t ) fu(ak(c - A~O,k .~/ (t)))dt. 
t=~ok 

The proof is similar to that  of Theorem A.3 and is omitted. 
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