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A b s t r a c t .  We derive the exact Bahadur slopes of studentized score tests for 
a simple null hypothesis in a one-parameter family of distributions. The Stu- 
dent's t-test is included as a special case for which a recent result of Rukhin 
(1993, Sankhyd Ser. A, 55, 159-163) was improved upon. It is shown that lo- 
cally optimal Bahadur efficiency for one-sample location models with a known 
or estimated scale parameter is attained within the class of studentized score 
tests. The studentized test has an asymptotic null distribution free of the scale 
parameter, and the optimality of likelihood scores does not depend on the exis- 
tence of a moment generating function. We also consider the influence function 
and breakdown point of such tests as part of our robustness investigation. The 
influence of any studentized score test is bounded from above, indicating cer- 
tain degree of robustness of validity, but a bounded score function is needed to 
cap the influence from below and to ensure a high power breakdown point. We 
find that the standard Huber-type score tests are not only locally minimax in 
Bahadur efficiency, but also very competitive in global efficiency at a variety 
of location models. 
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1. Introduction 

A statistical test making a binary decision is subject to two types of errors, 
commonly known as type I and type II errors. A variety of definitions of asymptot ic  

efficiency of tests have been studied in the li terature to account for the two-sided 
risk. Some are based on the power of a test for a fixed level of significance. Others 
place emphasis on the size of the type I error while keeping the type  II error in 
check. In this paper,  we use Bahadur  efficiency as a measure of test performance,  
and consider testing the null hypothesis of H0 : 0 = 0 versus the alternative 
hypothesis of H1 : 0 > 0 based on a random sample from a one-parameter  family 
of distributions {re, ~ C R}. Special emphasis is given to location models where 
fo(x)  = s o l f ( ( x  - O)/So) for some known or unknown but  fixed scale parameter  
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So. With some trivial modifications, all results in this paper hold for the two-sided 
alternative hypothesis. 

Bahadur efficiency is closely related to the observed significance level or the 
so-called p-value of a test. For each n -- 1, 2 , . . . ,  let Tn be an extended real-valued 
function such that Tn is measurable in the a-field generated by X 1 , X 2 , . . .  , X n. 

Assume that large values of T~ are significant, and that Tn has a null distribution 
F~, then the level attained by T~ is given by 

(1.1) P~ = 1 - F~(Tn). 

We say that the test based on Tn has Bahadur slope c(O) if 

( 1 . 2 )  lim n -1 logPn = --C(0)/2 a . s .  
n ----~ ( x )  

where the sample X1, X 2 , . . . ,  Xn is drawn from fo. More generally, we define 

and 

~(0) = - 2  lim inf n -1 log pn, 
n ----+ ( X ?  

_c(0) = - 2  lim sup n - 1  log Pn 
n ----* O o  

as upper and lower Bahadur slopes. They may be used when existence of the limit 
in (1.2) is not assured. A somewhat artificial example is to take Tn to be the 
sample mean for some n but the sample median for others. 

The null distribution of the p-value Pn w a s  obtained by Bahadur (1960) for 
some special cases and by Lambert and Hall (1982) for more general settings. 
In typical cases, the p-value is found to be asymptotically lognormal under any 
alternative distribution. The Bahadur slope which measures the exponential rate 
at which the p-value approaches zero is twice the mean of the limiting lognormal 
distribution. 

Bahadur efficiency refers to the size of Bahadur slope. It indicates how fast 
the type I error can be asymptotically eliminated for a specification of power at 
each given alternative. Naturally, this depends on the distance between the null 
distribution and the alternative distribution. The larger the distance, the easier 
it becomes to distinguish one from the other. Bahadur (1965, 1971) used the 
Kullback-Leibler information number to establish an upper bound on Bahadur 
slopes, that is, 

(1.3) c(O) <<_ < 2Eo log{yo(x) /Yo(X)} .  

It was also shown that if c(O) exists, the optimal Bahadur slope is attained by the 
likelihood ratio test under general regularity conditions. 

The likelihood ratio test has an asymptotic chi-square null distribution, but 
an explicit form of the test statistic is available only at some special models. In 
general, it may be computationally inconvenient and suffers from non-robustness 
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against model misspecification or occurrence of outliers. The Rao-type score tests 
often become attractive alternatives. Akritas and Kourouklis (1988) showed that  

n 

(1.4) rn =  -1/2 f'(xd/f(xd 
i=1 

is locally optimal in Bahadur efficiency. In fact, this score test is asymptotically 
equivalent to the likelihood ratio test under the null distribution and has optimal 
local efficiency in almost every definition considered in the literature. 

However, the formulation of (1.4) makes an implicit assumption that  the 
variance of ~p*(X) = f ' ( X ) / f ( X )  is known and finite. In practice, the variance 
is typically unknown. Consider the Gaussian model where (1.4) reduces to a 
test based on the sample mean J(n, a more realistic test would be based on the 
studentized mean, or the popular t-test. This seemingly routine standardization 
usually has no effect on the asymptotic distributions of the test statistic under the 
null or contiguous alternative distributions, but it poses a challenging problem for 
the determination of exact Bahadur efficiency in general. In the rest of the paper, 
we consider the class of studentized score tests in the form of 

(1.5)  = E,:'2,  
JE \, 5 ,2 

where ~P is a score function such that  Eo~(X) >_ 0 where the equality holds if and 
only if 0 = 0. This condition is necessary to rule out inconsistent tests for the 
hypothesis testing problem we consider. We also consider the use of an auxiliary 
scale estimate to achieve scale invariance of the test in (2.5) below. For a related 
work using approximate pivots from M-estimators, see Lloyd (1994). 

If ~p(x) = x, (1.5) is just a monotone transformation of the conventional t-test 
statistic whose Bahadur efficiency was derived by Rukhin (1993) under certain 
conditions. As a matter of fact, Efron (1969) showed that  this equivalent form 
has an advantage over the conventional one: the critical values are extremely 
stable across a wide range of sample sizes n so that  the asymptotic approximation 
works better. In general, the use of studentization in (1.5) or (2.5) avoids the 
need to estimate the asymptotic variance of Tn as the resulting distribution is 
asymptotically free of the scale parameter. 

Mainly due to the difficulty in evaluating the exact Bahadur slopes, some 
authors have been resorting to approximate Bahadur slopes by using the limit- 
ing null distribution instead of the exact distribution of Tn. In some contexts, 
the approximate Bahadur slopes are the more relevant quantities, see Lambert 
(1981). However, the approximate Bahadur efficiency suffers the lack of invari- 
ance to monotone transformations of the test statistic and could be sometimes 
misleading (cf. Groeneboom and Oosterhoff (1977)). Equivalence of the local 
limit of exact Bahadur efficiency and Pitman efficiency is shown in Kallenberg 
and Ledwina (1987) for a class of weakly continuous statistical functionals. The 
functionals corresponding to the studentized score tests of (1.5), however, do not 
have the continuity required. 
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A recent work of Shao (1994) on large deviation of self-normalized sums pro- 
vided us with the necessary technicality to evaluate the exact Bahadur slope of all 
score tests in (1.5) at any univariate model. In Section 2, we derive the Bahadur 
slopes and show that under mild conditions the likelihood score ¢(x) = f ' ( x ) / f ( x )  
is indeed locally optimal in Bahadur efficiency. At location models, the same local 
optimality remains valid if an auxiliary estimate of the scale parameter is needed in 
(1.5) to achieve scale invariance of the test. In fact, the Bahadur efficiency of any 
score function is locally equivalent to the asymptotic efficiency of the correspond- 
ing M-estimator. By a result of Huber (1964), a robust test of locally minimax 
Bahadur efficiency can be easily constructed. Robustness of tests in contamination 
neighborhood is discussed in Section 3, based on the standard notion of influence 
function and breakdown point of tests. The studentization results in an automatic 
boundedness of the influence function from above. But a bounded score function 
is still necessary for robustness of power. For a variety of models, including logis- 
tic, normal and t-distributions, the Huber's score function is found to be highly 
competitive in Bahadur efficiency with the locally optimal test and actually does 
better for modest to large alternative location parameters. The t-test is less at- 
tractive at non-Gaussian models. The technicality needed to incorporate the use 
of a scale estimate in the derivation of local Bahadur slopes is rather complicated, 
and therefore deferred to Section 4. 

2. Locally optimal score test 

In this section, we begin with any parametric model for a random variable 
or vector X with probability density function {fo, 0 C R}. The null hypothesis 
is the same as in the introduction. The calculation of Bahadur slope applies to 
the studentized score test in general one-parameter models including the location 
model. Whenever we write f or E without subscript, we mean the density function 
or expectation under the null hypothesis. We impose minimal regularity conditions 
on the model distributions. 

(R1) The Fisher information I0 = E ( f ' ( X ) / f ( X ) )  2 is finite. 
(R2) The Kullback-Leibler information number K(O) = Eo log{fo(X)/ f (X)}  

is finite and locally quadratic K(O) = 51o01 2 _~ 0(0 2) a~s 0 ~ 0, 

(R3) P { ¢ ( X )  = 0} = 0, E¢(X)  = 0 and Eo¢(X) > 0 for any 0 > 0. 
(R4) ~/= lim0lo Eo¢(X)/O exists. 
It can be seen from the following derivations that if Eo¢2(X) is infinite, the 

Bahadur slope at 0 is zero. Therefore, we may restrict ourselves to score functions 
with finite second moments. 

THEOREM 2.1. Under the condition (R3), the Bahadur slope of the studen- 
tized score test Tn of (1.5) is given by 

(2.1) c~(O) = - 2  log{sup inf Ee t(2c~°(x)-a(°)(c2+~2(x))) } 
c_>0 t_>0 

where a(O) = Eo¢(X)/v/Eo~b2(X). Under the additional condition (R4), the local 
Bahadur slope is determined by 

(2.2) l im ¢ ¢ ( 0 ) / 0  2 = ",/2/E~j2(X). 
o,to 
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The statement (2.1) follows from Theorem 1.1 of Shao (1994) and Theo- 
rem 7.2 of Bahadur ((1971), p. 27). The continuity of w(a) = sup~>0inft>_0 

Ee t(2c~(X)-a(c2+~°2(X))) in a > 0 was established in Shao (1994). The local result 
(2.2) can be derived from Theorem 3.1 of Shao (1994) using similar arguments to 
those in our proof of Theorem 2.3 below. We omit the details. 

Under a stronger condition that  the moment generating function of (X, X 2) 
exists in a neighborhood of the origin, Rukhin (1993) obtained the Bahadur slope 
of the t-test as 

cT(O) = --2 sup inf log Ee a(°)ctl+c2t2-tlx-t2x2. 
c>_O tit2 

This can be shown to be equivalent to (2.1) for ~b(x) = x. Rukhin (1993) argued 
further that  the t-test is never globally optimal in Bahadur slopes. Theorem 2.1 in 
the present paper is valid without the existence of a moment generating function, 
thus generalizing the results of Rukhin (1993). 

The exact Bahadur slope of (2.1) is involved with a double optimization pro- 
cess whose analytic solutions are possible only with some special choices of f and ga. 
However, the bivariate function in c and t is usually well behaved and a numerical 
solution is not difficult to obtain, see the end of Section 3 for more details. 

The local Bahadur efficiency, however, is quite simple. It is equivalent to the 
asymptotic variance of the M-estimator of 0 determined by ~ i  ~o(Xi) = 0. If 
{fo} is a location family of distributions such that fo(x) = f ( x  - 0), then the 
score function g,*(x) = f ' ( x ) / f ( x )  attains its highest Bahadur slope locally. 

THEOREM 2.2. Consider a location family of distributions { f ( x  - 0), 0 E 
R}. I f  Eo~*(X) is differentiable under the integral sign at 0 = 0 where ¢*(x) = 
f ' ( x ) / f ( x ) ,  then under the conditions (R1)-(R4), 

(2.3) lim c.~/,. ( O ) / K ( O )  = 2, 

and the likelihood score test is locally optimal in Bahadur efficiency. 

Since the limit in (2.2) for ~b* becomes the Fisher information I0, the result 
follows immediately from (R2) and the upper bound (1.3). 

The local optimality in Theorem 2.2 does not require the existence of a mo- 
ment generating function of ~;,* (X). Akritas and Kourouklis ((1988), p. 191) pro- 
vided an interesting counterexample for score tests without studentization. 

As with other criteria of global test efficiency, this locally optimal score test 
does not ensure good Bahadur efficiency at all alternatives. Consider the double 

l~-]m-01 The locally exponential distribution with mean 0, that  is, fo(x) = ~ 
optimal score test of Theorem 2.2 is the equivalence of the well-known Sign-test 
whose Bahadur slope is given by 

(2.4) c(O) = 2{log 2 + F(O)log F(O) + (1 - F(O))log(1 - F(0))} 
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which has a maximum value of 2log 2, see Bahadur ((1971), p. 25). A straight- 
forward calculation shows that  K(O) -- 0 + e -°  - 1. The upper bound of (1.3) 
increases linearly (to infinity) in 0. 

A pure location model is rare in practice. In the presence of an unknown 
scale parameter, the test of (1.5) is not scale invariant unless ¢ is either invariant 
or equivariant under scale multiplication. One common practice is to standardize 
the observations and use 

n 
( 2 . 5 )  T n  s = ~- '~i=1 ¢ ( X i / S n )  

JSL:I ¢2(x,/,n) 

where s~ is a preliminary scale estimate (which is required to be scale equivariant). 
Usually, the asymptotic null distribution of the test statistic does not change so 
long as s~ is consistent. 

When the scale parameter is unknown, there are two forms of hypotheses 
that  we may consider. One is to allow arbitrary scale parameters in both the 
null and alternative hypotheses. The other is to keep the scale parameter fixed 
(but unknown) in the parameter space. The latter implies that  the location shift 
is the only difference between the null and alternative distributions. We take on 
the latter for relative simplicity in the derivation of the exact local Bahadur slope 

s ± f ( x - o )  for some for T~. To this end, our model distribution can be written as so-.  so - 
so > O, where f is a known density symmetric about zero. We assume that  for 
any 6 > O, there exists 7? E (0, 1) such that 

(2.6) Pe(ISn - Sol > 6) ~ ~n 

for all n. Furthermore, we assume the following conditions for the score function. 
Note that  E without subscript denotes the expectation at 0 -- 0. 

1 (R5) For any ~ < a < 2, I¢(xa)l <_ K(1 + I~p(x)l) for some K < oc. 
(R6) There exists U0 > 0 such that  for any 0 < 6 < ~0 and 1-~0/2 < s < l+2u0 

and 0 <_ 0 < ~o, Ee suPl<t<l+6(¢( sX  ) - ¢ ( s t X ) )  2 ~ K 6  a for some a > 0 and 
K > 0 .  

Throughout the article, we assume without loss of generality that  So = 1 and 
~o = 1. 

LEMMA 2.1. I f  Sn satisfies (2.6) and ¢ satisfies E¢2(X) < ~ in addition 
to (R3), (R5) and (R6), then 

(2.7) lim Xn 2 logP(T~ > Xn) - - - -  --1/2 
Tt --+ OO 

for  any sequence of positive numbers {xn} with ~ < x n ~- O(v/-n). Further- 
more, for  any 0 < e < 1, there exist 6 and N such that 

(2.8) e -(l+e)x:/2 (_ P(TSn ~_ x) (_ e -(1-~)x2/2 

for  every n > N and lv/i-~n < x <_ 6x/~. 
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The proof of Lemma 2.1 is provided in Section 4. With the help of (2.8), we 
obtain 

THEOREM 2.3. Suppose that Eo¢2(X) < ec for 0 in a right neighborhood 
of zero. Under the conditions (R3), (R4), (R5) and (R6), the lower and upper 
Bahadur slopes of TS~ satisfies 

(2.9) lim e(0) _c(0) = lim = 72{E¢2(X)} -1 
0 ~ o ~ -  0 ~ 0 ~ -  

If ~;(X) does not have a finite second moment, (2.9) becomes a trivial identity. 
Theorem 2.3 implies that locally the score test T~ is as good as Tn (with So 
known) in terms of Bahadur efficiency. Note that Lemma 2.1 does not necessarily 
guarantee the existence of the Bahadur slope (1.2). If it does, it has the same limit 
as in (2.2). 

The conditions (R5) and (R6) can be easily verified for a wide variety of com- 
monly used model distributions and score functions ~b. Jump discontinuities in ~/~ 
are also allowed. A robust scale estimate such as s~ = median{ IX i -median(Xj)[} 
times a normalizing constant may be used for any location-scale model. It can be 
verified that this choice of sn satisfies the large deviation requirement of (2.6). 

PROOF OF THEOREM 2.3. We first show that 

n 
(2.10) E i = I  f ; 2 ( X i / s n )  __, E o ¢ 2 ( X )  a.s. as Tt ---4 oo. 

n 

For 1/2 < s < 2 and any A > 1, we have, by (R5), 

1~2(sX) - ~2(X)1 ~ 2 K I ¢ ( s X )  - ¢ ( x ) l ( 1  + I~(X)l)  

_< 2K(1 + A)l~(sX) - ¢(x)b  

+ 2Kl~(sX)  - ¢(X)t(1 + ]~(X)I)I{t,(X)I>A } 

< 2K(1 + A) l%sX)  - ~(X)[ 

+ 4K2(1 + I~,(X)l)~I(i,(x)l>a}, 

and then, by (R6), 

limsup E0 sup [~,2(sX) - ~2(X)] 
610 (1-5)_<s_<0+~) 

< 2K(1 + A) l imsupE0 sup 
650 (1 5)<s<(1+6) 

+ 4K2Eo(1 + I¢(X)l)~I~l~(x),>A} 

I ~ ( s x )  - ~ ( x ) l  

Letting A ~ c~ leads to 

(2.11) lim E0 sup 
~to (1-6)<s_<(1+6) 

1~2(sX) - ~/,~(X)l = o. 
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On the other hand, (2.6) implies s~ -~ 1 almost surely. Therefore for any 
> 0, it holds for sufficiently large n that  

1 n 1 n 

sup 
n i = 1  n = (1--6)_<s_<(1+5) 

l¢2( xd - ¢2(Xdl  

which converges to E0sup(t_6)<s_<(l+5 ) [¢2(sX) - ¢2(X)1 as n --* ec. Lett ing 
5 --+ 0 and by (2.11), we have 

n 

1 ~ [•2(Xi/8n) ~ ) 2 ( X i ) [  - 4  0 
n 

a . s .  

n By the law of large numbers applied to L }-~i=1 g)2(Xi), we obtain (2.10). n 
Similarly, we have 

E n  i = 1  ~)(Xi/8n) 
n 

---* Eo¢(X)  a.s. as n --* oc, 

and therefore, 

(2.12) ~i~=1 ¢(Xi/s,~) ~ a(O) a.s. as n --* co, 
v /n  E n l  ¢2 (X, /sn)  

where a(O) = Eo¢(X) /~ /Eo¢  2 (X). 
Similar to Theorem 7.2 of Bahadur  (1971), we have 

(2.13) 

and 

(2.14) 

c(0) >_ - 2 1 i m l i m s u p n  -1 log P(T~ _> (1-  e)a(0)V~), 
elO n ~ o o  

6(0) _< - 2 1 i m l i m i n f n  -1 log P(Tn s _> (1 + e)a(O)v/~). 
e l 0  n ~ o c  

By (2.8) and the fact tha t  lim0to a(O) -- 0, we have, for any - 1 / 4  < r / <  1/4 

(2.15) l im0 -2 ( - 2 l o g  lim P(T,~ > a(0)(1 + ?~)V/n) l /n )  
010 n---*oo - -  

= lim(1 + rl)2a2(O)/O 2 = (1 + rl)2"~2/E¢2(X). 
olo 

Taken together,  (2.12)-(2.15) imply (2.9). The proof  is then complete. 

3. Robustness of score tests 

An optimal test  at  a part icular  model  does not imply any goodness of the test  
at a different, even though neighboring, model, unless there is a built-in robustness 
proper ty  in the test. Parametr ic  models are rarely meant  to be exact in practice, 
so an opt imal  test wi thout  being robust  isn't worth as much as it sounds. For 
instance, the t- test  would have Bahadur  slope equal to zero if the random variable 
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does not have a finite second moment, even though it remains a consistent test so 
long as the mean exists. 

Robustness of a test can be studied from several different perspectives. In 
this section, we consider the influence function and breakdown points for the score 
test. 

Hampel (1974) defined the influence function of a statistical functional T(.) 
at F as 

(3.1) I F ( x ; T , F )  = d r ( ( 1  - e)F + e6x) I~:0 

where 5x denotes the point mass distribution at the point x. This has been used 
as a standard measure of local robustness for parameter estimators. It provides a 
heuristic measure as to how much the functional can be influenced by infinitesimal 
contamination at a single point x. Several variants of the influence function have 
been proposed to study the robustness of a test. For example, the influence can 
be measured on the level, power or p-value of the test. Lambert (1981) applied 
Hampel's influence function to the transformed p-values and showed that  the in- 
fluence of the t-test is bounded from above, but not from below. It indicates that  
an outlier may inflate the t-statistic, but cannot pull the p-value arbitrarily close 
to zero under the normal alternative. Lambert's definition of influence function, 
based on the Bahadur slope at contaminated alternative distributions, makes a 
direct computation highly nontrivial. Hampel et al. (1986) proposed to use the 
influence function for a transformed test statistic U -1 (T) where U -1 is the inverse 
function of U(O) = EoT. The transformation from T to U - I (T)  is to make the 
resulting functional on the scale of the original parameter 0 so that  the influence 
functions of different test statistics are directly comparable. They showed that  
if the p-value depends on data through the test statistic Tn alone, the influence 
function of Lambert is proportional to the influence function of U-I(T) .  If the 
Bahadur slope is non-constant in 0, the qualitative robustness (ie. the bounded- 
hess of influence function) of one implies the other. Therefore, we follow Hampel 
et al. (1986) to derive the influence function of the score test as follow. 

THEOREM 3.1. 
bution Fe is given by 

Eo (x) (2¢(x)Eo 2(X) _ _ _ _  
(3.2) [F(x ;T ,  Fo) = h,(O)(Eo¢2(X)) 2 

where h(O) = (Eo~(X))2/Eo~2(X) .  

The influence function of the score test (1.5) at the distri- 

h(O) 
h'(o) 

PROOF. Since the influence function of the test is invariant under one-to-one 
transformations, we work with h-(T2),  where h -  is the inverse function of h and 
T(F)  = (EF~(X) )2 /EF~2(X)  for any distribution F. 

Let H = (1 - e)Fo + ebx. Direct calculations show 

(EH~(X))  2 = (Eo¢) 2 + 2eEo¢(~(x) - Eo¢) + O(e2), 

and 
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{EH~2(X)} -1 = (E0¢2) -1 - e(¢2(x) - E0¢ 2) + O(e2). 

Taking derivative of h-(T2(H)) with respect to ¢ at ¢ = 0, we obtain (3.2) after 
suitable rearrangements of terms. 

If the scale estimate sn is representable by a function S(F) which is Fisher 
consistent and has an influence function, then (3.2) also holds for the test statistic 
T s 

The score test has a bounded influence function for each bounded ~. More 
interesting is the fact that  if ~ is unbounded, the influence function is bounded 
from above or below at Fe depending on the sign of Ee¢(X)/h'(O). In typical 
applications with d E e ~ ( X )  > 0 at 0 = 0, the influence is always bounded above 
at the null distribution. In this sense, every studentized score test has some ro- 
bustness of validity: the effect of outliers is limited under the null distribution. 
This is another advantage from studentization. The non-standardized score test 
has unbounded influence in either direction if ~ is unbounded. 

The preceding discussions also enable us to arrive at a score test of locally min- 
imax Bahadur efficiency over contamination neighborhood in the simple location 
problems. For simplicity, we consider the Gaussian location model and assume 
to be continuously differentiable. Since lim0~0 c(0)/02 = ( f  ~ ' ( x )dF)2 / f  ¢2(x)dF, 
the locally minimax Bahadur efficient score test maximizes 

i n f { ( / ~ ' ( x ) d F ) 2 / / ~ 2 ( x ) d F ,  F = ( 1 - ~ ) F o + e G ,  any G } .  

This is exactly the same problem worked out by Huber (1964) for minimax variance 
M-estimators. The solution is the well known Huber's score function 

(3.3) Co(x) = median{x, c, -c}  

where c depends on the contamination size e. With no contamination, the minimax 
test is the t-test. If the contamination is allowed to be as large as 50%, the Sign-test 
is called for. Huber (1965) constructed the same minimax test from the likelihood 
ratio approach, using local power as optimality criterion. 

Huber's score function also guarantees a good global stability as evidenced by 
its high breakdown point. The power and level breakdown of a test statistic was 
studied in He et al. (1990). The level breakdown point gives the smallest amount 
of contamination of the null distribution under which the test statistic will favor 
any alternative over the null. The power breakdown point is the least fraction of 
contamination needed to render the test inconsistent at every alternative. High 
level and power breakdown points are desirable for a test to be robust against 
multiple outliers. The breakdown property of the non-standardized score tests is 
given in Theorem 3.1 of He et al. (1990). The following proposition stated for Tn 
can be proved in the same way. If Sn is a scale estimate with breakdown point 
1/2, the same is true for T s 

n "  

PROPOSITION 3.1. The level breakdown point of any score test is 1. The 
power breakdown point is 1//2 if ~ is bounded, but zero if ~ is unbounded. 
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Table 1. Bahadur slopes of selected score tests. 

0 0.2 0.4 0.6 1.0 2.0 3.0 

Huber 0.03 0.14 0.31 0.70 1.77 3.04 

t- test  0.04 0.15 0.31 0.69 1.61 2.30 

bound 0.04 0.16 0.36 1.00 4.00 9.00 

1 e-z2~2 (a) Normal f ( x )  = ~ 

0 0.2 0.4 0.6 1.0 2.0 3.0 

Huber 0.01 0.05 0.11 0.29 0.92 1.74 

t- test  0.00 0.04 0.10 0.28 0.85 1.41 

~b* 0.01 0.05 0.11 0.29 0.86 1.46 

bound 0.01 0.05 0.12 0.33 1.25 2.63 

e--z (b) Logistic f ( x )  = (l+e_~) ~ . 

0 0.2 0.4 0.6 1.0 2.0 3.0 

Huber 0.03 0.11 0.25 0.63 1.72 2.74 

t- test  0.02 0.09 0.19 0.48 1.29 1.97 

¢*  0.04 0.15 0.30 0.63 1.28 1.56 

bound 0.04 0.16 0.35 0.92 2.95 5.13 

(c) t -distr ibution with 3 degrees of freedom. 

0 0.2 0.4 0.6 1.0 2.0 3.0 

Huber 0.01 0.03 0.07 0.19 0.60 1.04 

~b* 0.02 0.07 0.14 0.31 0.58 0.71 

bound 0.02 0.08 0.17 0.45 1.39 2.36 

(d) Cauehy f ( x )  = 1 
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Under  general conditions, 1/2 is the highest possible power breakdown point  
achievable for the hypothesis  test ing problem we consider. As observed in He et  

al. (1990), the score test  has a level breakdown point  of one versus 1/2 for tests 

based on parameter  estimates.  
To examine their  global Bahadur  efficiencies, we use (2.1) to compute  the 

Bahadur  slopes at several common location models for the locally opt imal  score 
¢*, the t-test ,  and the Huber-score (3.3) with constant  c = 3. They  are all 
compared with the opt imal  slopes at each alternative.  Table 1 gives some of the 
Bahadur  slopes at  normal,  logistic, Cauehy and Student  dis tr ibut ion with 3 degrees 
of freedom. The  t-test  is not included at the Cauchy model, since it has zero slope 
at all alternatives. 

Numerical  calculations for the double opt imizat ion of (2.1) are ra ther  straight- 
forward for the range of 0 we consider. We found tha t  the inner i n f  function 
increases from 0 to a maximum and then drops to 0 again as c moves away from 
zero. For each value of c, the function of t can be minimized at its critical value. 
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However, for very small or very large values of 0 (which correspond to h(O) close to 
0 or 1), high precision is needed in the calculation to ensure a reasonable relative 
error. 

Table 1 indicates that the locally optimal score is usually close to optimal for 
alternatives between 0 and 0.4. When 0 gets larger, the Bahadur efficiency of the 
Huber-score increases faster. In fact, the Huber-score is highly competitive at all 
alternatives and all models considered, in consistency with its robustness property. 
The t-test is less attractive at non-Gaussian models. It is also worth noting that  
even at the normal model, the Huber-score outperforms the t-test for 0 > 1. 

4. Proof of Lemma 2.1 

PROOF OF LEMMA 2.1. 

(4.1) 

and 

(4.2) 

To prove (2.7), we need to show 

l imsupxn 2 logP(T~ _> Xn) < -1 /2 ,  
n-- -+  O 0  

l iminfxg  2 logP(T,~ _> Xn) >_ -1 /2 .  
7 2 , ~ O O  

For any 0 < e < min(1, ~ ) / 4 ,  by (R6), there exists 0 < 5 < 1/4 such that 

(4.3) (1 - e / 2 ) E ¢ 2 ( X )  < E inf ¢2(sX) 
Is-ll_<5 

_ E sup ¢ 2 ( s X )  <_ ( 1 +  e/2)E~b2(X). 
Is-ll_<e 

By (2.6), we have 

P(T~ > Xn) ~_ P(TSn >_ X n ,  l S n  - -  11 <_ 5/2) + P(ls~ - 11 > 5/2)  

< P(Tg > x~, I*~ - 11 < 5/2) + ~ .  

2 n/X2n . We then have Let z n = 

P(T~ _> x~, I~ - 1[ ~ 5/2) 

- \1,-1l_<6/2 v / E ~ l ¢ 2 ( X i / s )  - 

( E~"__I ¢(sx~) ) 
< P sup y~]~ > xn 

\l,-ll_<e v / i=l¢2(*zd - 
_< P ( ~up E~n~ ¢(~xdI{l¢(Xdl <_ zn} > (1 - ~)x~ 

\Is--l[<5 v/Ei"=l ¢2(sXi )  - ] 
+ P sup i=l ~b(sXi)I{[~(Xi)[ > Zn} > eXn 

\ I s - - l [ - -  <5 ~ / E i L 1  ~22(8Xi) - 

< P ( sup E i = l ¢ ( ~ X d I { l ¢ ( X d l < z ~ }  ) 
\ ls-l l<~ x / n E ¢ 2 ( X )  > (1 - g)2xn 
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( ) + P inf E ~2(sXi) < n(1 - c)2Eg,2(X) 
~k Is- l[-<6 i = ]  

+ P /{ l¢ (Xi ) l  > z~} _> c x~ 
i=1 

_< P sup y~¢(sxdI{lO(xi)f _< --.} _> (1 - c ) 2 x ~ v / n E ¢ 2 ( x )  
\ ls- l l<_6 i= 1 

+ P ( f i i = l  Is-ll<_6inf ¢ 2 ( s X i ) < n ( l - e ) 2 E ~ b 2 ( X ) )  

+ r /{[~p(X~)l > z~} _> e x~ 
i=1 

:=I1 +-/2-f-13. 

Note that ~ i=l I{ ]~#(Xi)] > z,  } has a binomial distribution, and for any binomial 
random variable B(n, p), 

P(B(~ , ; )  > x) < ( e~P)~ ,  x > o, 
\ x / 

it then follows that 

I3 <_ \ e2z2 ~ 

-<~ 
\ /~TL c oaT/, 

2 2 

_ <_ (c-2o(1)) e2x~ . 

As to -/2, let ~i = inf]s-ll<6 %b2(sXi), and ~ = infl~_ll< 6 %b2(sX). By (4.3), 

12 <_ P E~i - ~i) >_ enE~2( X 

< ( inf  e-teE¢2(x)+tECEe -t~) n. 
- -  \ t > 0  

Take A > 1 such that E~p2(X)I{I~b(X)t > A} <_ ~E~p2(X). Prom the elementary 
inequality 

e x < 1 + x + 2 min(x 2, IxI), 

for any z _< 0, it follows that for every t > 0, 

Ee -t~ <_ 1 - tE~ + 2Emin(t2~ 2, t~) 

<_ 1 - tE~ + 2tE~Z{l~(X)] > A} + 2t2E~2I{[¢(X)l <_ A} 
< 1 - tE~ + 2tE~b2(X)f{lO(X)[ > A} + 2t2A 4 

< exp( - tE~  + t eE¢2(X) /2  + 2t2A4). 
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Let t = eE~,2(X)/(SA4). From the above inequalities we obtain 

( e2n(E¢2(X))2"~ 
I2 <_ (exp(-teE¢2(X)/2 + 2t2Aa)) n = exp ~ ] .  

Next we est imate I1. Clearly, 

II <- P ( ~-~¢(Xi)I{]¢(Xi)l <- zn} >- (1-  

+ P sup y ~ ( ¢ ( s X d  - ¢ (x ~ ) ) I { l ¢ (x~ ) l  _< zn} _> CXnv/nE¢=(X) 
\[s-ll_<~/=1 

:=/1,1 + 11,2. 

Using the elementary inequality e ~ <_ 1 + x + x2/2 + IxlaeL we have 

/1,1 < e_(l_ae)x~v~/Z.Eexp ( 1 n ) 
_ Zn ~ ~ ¢ ( x d I { l ¢ ( x d l  <_ Zn} 

i = 1  ( ( 1 
= e -(1-3e)z~ E e x p  zn~¢(x)I{l¢(X)l < Zn} 

< e -(1-3~)x~ 1 zn~E¢(X)I{l%X)l > z,} 

1 
+ 2z2E¢2(x)E¢2(X)I{]¢(X)[ <_ zn} 

1 )n 
4 z3(E¢2(X))3/2E]f(X)13I{]¢(X)[ <_ zn}e 1 / ~  

(1 
<_ e-(1-~)< 1 + ~ + oO/z~) 

2 2 2 e_( l_3e)2x2 /2  < e-(1-3e)xn+n/(2z ,~)+°(n/zn)  < 

for sufficiently large n. 
Finally, we take on 11,2. Let 

r/i(s) = (9((1 + s~)Xi) - ¢(Xi))i{l¢(Xi)l ~ z,J, 
rl(s ) = (¢((1 + sS)x) - ¢(x))I{l¢(X)l <_ zn}, 

n 

a ( s )  = E r / i ( s )  and z ~ = n  -4/a. 
i = 1  

- 1  < s < 1, 

- l < s < l ,  

Wi thou t  loss of generality, assume 0 < a < 1. We have 

-/1,2 --< P sup E r h ( s )  _> 4e2XnV ~ 
\181<1/= 1 
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< P (  max A(kA)_> 2e2x~v/-~) 
-- -IIA<_k<_IIA 

x 

+ P ( max sup A( s ) -  A(kA) >_ 2 c 2 x ~ v ~  
t - -  1/A_<]~_<I/A kA<s<(k+l)A / 

-< E P(A(kA) > 2c2x..~) 
-llA<_k<llA 

-1/A<_k<_l/A i=1 kA<_s<(k+l)A 
:=  /1,3 + /1 ,4 .  

By (R5) and (R6), 

IEA(kA)I  < hEIr,((1 + k a ) x )  - V,(X)IS{I~,(X)I > ~,~} 

<_ nKE(1 + I¢(X)I)S{IW(X)I > z~} 
<_ :~nKEIW(X)IS{IW(X)I > zn} 

<_ 2nK~EI¢(X) I~S{ I¢(X) I  > zn} 
= o ( x , ~ 4 ~ ) .  

Write ffk = ~(kh) - E~(kA). From the well-known inequality 

(4.4) e ~ <_ 1 + x + x2e I~1, 

it follows that 

( 8Xn ~2 (64xnKzn) 
< 1+ \ ~ , / ~ /  EVk2exp \ 

- t , ~ , / - ~ )  t ~ 7 )  

< 1 + x 2 / ( a n )  <_ e ~ I ( ~ )  

as long as 5 is chosen to be sufficiently small. Hence 

P(A(kA) > e2x.x/~) < P(A(kA) - EA(kA) > c2xnvi~) 

2 //8xn(A(kA) - EA(kA)))  
<- ~-sx'~l~Eexp \ J-J~Tg 

( ° 

< e-7~J ~. 



310 XUMING HE AND QI-MAN SHAO 

Thus, for x > v/~g n, 

(4.5) I1,3 < (2/A)e -Tx~"/~ < e -2x~. 

~ E  sup Ir/i(s) - r/(kA)l 
i = 1  kA<s<(k+l)A 

< n(KAa)  112 <_ v/K = O(Xn~/~) .  

Similar to estimating Ii,a, we obtain 

1 1 , 4  ~ g s u p  [ ~ i ( s )  - ? ] ( ] g n ) ]  
\~__~ kA_<~<(k+X)~ 

- E sup I~(~) - ~(k~) l  _> c ~ v ~ ]  

% 

kA<s<(k+l)A / 
< e -2~ .  

Put t ing things together, we arrive at 

( 1  - 3 e )  a 
l imsupx~  2 logP(T~ > x~) < 

n--,~ 2 

This proves (4.1) by the arbitrariness of s. 
We now turn to (4.2). For any 0 < e < 1/4, take 0 < 5 = 5(e) < ¢ to be small 

enough so that  (4.3) is satisfied. Notice that  

P(T,~ > x,~) > P(T,~ >_ Xn, I*n -- 1[ < 5/2) 

> P inf ~'~i=1 ¢ (Xi / s )  > Xn, ISn -- 11 < 5/2 
- \ls-1,_<~/2 ~ /E~nl  ¢2(x~/~)  - 

/ 

inf E ~ I  ¢(~x~)  > x n )  - P(ISn -- 11 > 6/2)  

\ 

> P 
- -  n 2 - -  - -  

/ 

> P ( inf Ei~=l ~p(sX~) > m<axn [~P(Xi)[ < z~ / 
- \ls-~l<_5 V / E ~ l ¢ 2 ( s X i )  - x~, _ 

qn 

/ 
:= J1 - q ~  

and 

Jx > P ( inf ~"- -1¢(sXi)  > (1 +e)xn, m~lO(X~)l < zn~ 
- \ j ~ _ l j _ < ~  v / ~ E ¢ ~ ( X )  - _ - / 

_ 

Turning to  I1,4, we note by (R6), 
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) ~_ P ~/~(Xi) > (1 + 2c)x,~v/nE¢2(X), m<%x [¢(X~)[ _< zn 

( - ) - P sup E(¢(sXi) - O(Xi)) > cx~v/nE¢2(X), max [O(Xi)] < zn 
\ l s - l l<_s  i= 1 i<n - 

- P ( ~ i = l  Is-ll<ssup ~2(sXi)>(l+s)2nE~2(X),m~x]¢(Xi)l<<_Zn) 

: =  J1,1 - , ] 1 , 2  - J 1 , 3 .  

Let 

& = s u p  ¢~(~x~)r{l¢(x~)l <_ ~} 
1~-11<_6 

Is-11<5 

and 

From (4.4) and (R5) we obtain 

(4x~( (  - EC) ~ 
Eexp \ anE¢2(X) j 

r 4x~ ~2 (4x~t~-Eel 
~_ 1+ [~nE-~(X) ) E(~- E() 2exp \ c~E--~(X)) ] 

< 1 + \ ~ E T ( X )  exp \~E¢2(X) 

• 4K2E(1 + ~/,4(XDDI{l¢(XDI <_ zn} 
( 4x~ )2 ( 8 K 2 ) 4 K 2 z ~ o ( 1 )  

< 1 + snE¢2(X) exp aE~,2(X) 

< 1 + z~/~ <_ ~ /~ ,  

provided that n is sufficiently large. Therefore, 

51,3 ~ P ~i ~ (1 + ~ ) 2 n E ¢ 2 ( X  

P i - E ~ i )  > snE¢2(X 

n E - ~ x : _  4X~n E ~ = l ( ¢ i  - ~i)) 

= e -4x~ Eexp \ ~n~¢2(X) / /  

for sufficiently large n. 
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In terms of (4.5), we have 

/ n ) 
J1,2 _< P sup ~-~(¢(sXi) - O(Xi) ) I{ l¢(XJI  <_ zn} > ¢XnV/rtE¢2(X) 

\ls-ll_<5 i=1 

_< e-2~. 

To estimate Jl,1, let ~-, T1, T2,. . .  be i.i.d, random variables with the distr ibution 
G(.) of O(X) conditional on 1¢(X)I _< zn. Then 

(4.6) dG(x) = /{Ixl ~ z~) dP(O(X) < x). 
P(J~(X)I <_ z~) 

Using Lemma 5.1 of Griffin and Kuelbs (1989), we obtain 

Jl,1 -- P ~-i _> (1 + 2C)XnV/nEO2(X) P(m<_a~n I¢(X~)l ~ z~). 

It is easy to see tha t  there exists w~ = o(1) such tha t  

P(m<anX I¢(X~)l ~ z~) = (1 - P( l¢(x)J  > z~)) ~ 

~> (1 --2 n --X~Wn - z ~  w~)) > e  

Let h = (1 + 3c)xn/v/nEO2(X). Clearly 

P(I¢(X)I ~ z ,JEe h~ = Eeh¢(X)I{IO(X)l ~ Zn} 

h2O2(Z) +O(1)h3]~p(X)13ehl¢(X)ll{]¢(X)] < Z,~}) = E  1 + h ¢ ( X )  + 2 

= P( I¢ (x) I  <_ zn) - hEO(X)I{IO(X)I <_ zn} 
h2EO2(Z) 

+ 2 + O(1)h3EIO3(X)II{]¢(X)] <- z~} 

h2EO2(X) 
= 1 + 2 + °(1)h2 + °(Zn2) 

h2EO~(Z) 
= 1 + 2 + °(h2)" 

Noting tha t  P( I¢(X)I  < zn) = 1 - o(z~2), we get 

Ee hr = 1 + 
h2E¢2(X) 

+ o(h 2) = 1 + (1 + 3c)2x2 n + o(x2/n). 
2n 

Similarly, we have 

ETe h~ = hE¢2(X) + o(h) = (1 + a ) x . f ~ ( x )  
+ o(x . / v~) ,  

and 
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E'r2e m" = E ¢ 2 ( X )  + o(1). 

Therefore 

ETe hT 
rnh .-- Eeh~ 

(1 + 3 ~ ) x ~ ~ / ~  + O(Xn/V~) 
1 +  (1+3~)2x  2 

2n + °(x2~/n) 

(1 + 3 ~ ) X n ~  
v~ 

(1 + 2~)X~v/E¢2(X) 

> X n ~  A- 
- v~ v~ 

+ o(x~/v~) 

C X n ~  + 
v~ 

2 Ev~h~ 

o(xn/v~) 

Consequently, applying Lemma 3.1 of Shao (1994) yields 

) J l l  = P ~:i > (1 + 2 C ) X n v / E ¢ 2 ( X )  
' i = 1  - -  ~ n 

> 0.75(Eeh~) n exp ( - -nhmh  -- 4 h v ~ E ¢ 2 ( X ) )  

> 0.75exp ( (1 + 3e)2x2~ ) 
- 2 + o ( x ~ )  . 

Putting things together, we conclude that 

(1 + 3e) 2 
linn~inf x~ 2 log P(T~ > x~) >_ 2 

From the arbitrariness of ~ follows (4.2), and therefore (2.7). It is easy to see, 
along the same proof here, that (2.8) holds. 
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