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A b s t r a c t .  I propose a simply method to estimate the regression parameters 
in quasi-likelihood model. My main approach utilizes the dimension reduction 
technique to first reduce the dimension of the regressor X to one dimension 
before solving the quasi-likelihood equations. In addition, the real advantage of 
using dimension reduction technique is that it provides a good initial estimate 
for one-step estimator of the regression parameters. Under certain design con- 
ditions, the estimators are asymptotically multivariate normal and consistent. 
Moreover, a Monte Carlo simulation is used to study the practical performance 
of the procedures, and I also assess the cost of CPU time for computing the 
estimates. 

Key words and phrases: Regression parameter, quasi-likelihood model, link 
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1. Introduction 

In the general parametr ic  inference approach,  one frequently assumes the 
distr ibution of Y I X = x to belong to a family of distr ibutions depending on 
the pa ramete r s /3Tx  and 0. Here /3  is a p-dimensional column vector of regression 
coefficients and 0 is a q-dimensional column vector parameters .  In the present 
paper,  I consider the following model: 

(1.1) L x = x) = g(Z x; 0) 

and 

(1.2) Var(Y I X = x) = ¢V[g(/3rx; 0)]. 

Here I let g(.;-) and V(.) be given functions and ¢, /3, and 0 are unknown 
parameters  to be estimated.  If the t rue parameter  0 is 0o, g(t; 00) can be referred to 
as a inversed link function (see McCullagh and Nelder (1989)), and thus g(/3Tx; O) 
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can be considered as a parametric family of link functions. Under 0 = 00, the 
model of form given by (1.1) and (1.2) were discussed by McCullagh and Nelder 
(1989) using the quasi-likelihood approach. 

Suppose the observed random data are {(Y/, Xi), i = 1 , . . .  ,n}, where Y/ is 
a real-valued response variable and Xi = (Xi l ,  X i 2 , . . . ,  Nip) T is a p-dimensional 
column vector of covariates. Then the quasi-likelihood estimate (/3, 0~) is a set of 
solution to the system of equations: 

( 1 . 3 )  

and 

(1.4) 

i=l ~ r - ~ ~ ~ "  

og(9 x ; o) = o 
09 

Og(/~T x i ;  O) __ O. 
00 

The parameter ¢ is unknown. In the absence of information beyond two 
moments of Y given X = x, there is little alternative to using 

1 L [~ - g(~Txi; 0~)]2 
- n - p - q v[g(9 x ; 

General asymptotic theory for/~, 0n and $~ are given in Cheng and Wu (1994). 
Usually, there is no explicit solution to (1.3) and (1.4). Numerical method 

must be frequently employed to determine the solution, though not every numerical 
procedure can guarantee a solution for the system of equations (1.3) and (1.4) even 
if the solution exists. 

A simple estimation method is proposed in this paper for solving the above 
problem. My main approach utilizes the dimension reduction technique, (see 
Powell et al. (1989), Duan and Li (1987), and Brillinger (1982)) to first reduce the 
dimension of the regressor X to one dimension before solving the quasi-likelihood 
equations. In Subsection 2.1, I discuss the simple estimation procedure and show, 
under the sufficient conditions, the est imator/~,  based on the simple estimation 
method is asymptotically multivariate normal. The consistent estimator of the 
asymptotic covariance matrix of/~, can be derived. Another approach is to use 
the quasi-likelihood estimate/~ based on the estimated link using the estimate 0n 
developed in Subsection 2.2. The estimator/~ is also asymptotically multivariate 
normal. Further, the consistent estimator of the asymptotic covariance matrix of 
the estimator ,~ exists. 

In Section 3, I compare the asymptotic properties of the estimators/~,/~, and 
/~ under linear model. Further, general finite sample properties of the estimates 
are discussed using simulations. The simulation performances of/~, /~, and /3 
are very similar, however, it deserves to be mentioned that  in my Monte Carlo 

1 of that  required simulation, the cost of CPU time for computing/~, is only about ? 

for computing the estimator /~, on the average. On the other hand, the cost of 
1 of that  required for computing/~. In general, CPU time for computing/~ is about 

the computations of/~, and/~ are much simpler. 
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2. Estimates of regression coefficients 

2.1 Simpler estimation procedure 
Let {(1~), Xi) , i  = 1, 2 , . . . ,  n} denote a random sample, where Y/ is a real- 

valued response variable and Xi  = (Xil ,  X i 2 , . . . ,  Xip) T is a p-dimensionM column 

vector of covariates. Theoretically, the quasi-likelihood estimates (0,,¢),), under 
the certain conditions given in Cheng and Wu (1994), will converge in probability 
to a constant vector (00,/30). However, in practical applications, if the dimension 
of the parameters (0,/3) is too large, then the solution of the system of equations 
(1.3) and (1.4) is not easy to derive• To overcome the computation difficulties, 
here I shall start with the technique which is especially useful for reducing the 
dimension of the covariate space. My aim is to first estimate some proportion 
60 of the true regression coefficients/3o. Let ~/060 = /3o where ~/0 is some scalar 
constant. If 6o is estimable and suppose 6o is regarded as known, then one can write 
g(/~r.~:; 0) = g(~/z; O) with z = 6rx  being the reduced one-dimensional covariate. 

The ordinary least squares method provides the simplest and most popular 
estimates of 50. It is defined as 

11 ~, = ~-~Yi (Xi  - X )  T" (Xi  - X ) ( X i  - X )  T ; 
i=1 

see Brillinger (1982) and Duan and Li (1987). The estimator 6~ is v/~-consistent 
estimator of 6o with unknown ~/0 if I assume the design condition satisfying: 
E( w T X  I/~ToX) is linear in ~0Tx for all linear combinations a ; T x  of X (see Duan 
and Li (1987), Li and Duan (1989)). Although this condition is satisfied by random 
covariates with jointly elliptically symmetric distribution (see Fang et al. (1990)). 
Nevertheless, this condition may not be fulfilled by the usual polynomial regression 
models. In a technical report, Cheng and Wu (1991) argued that 5,, is not very 
robust against the violation of the above design condition. 

A more robust estimator of 6o is 

~ n  m LL( ) 
n - n Z (  i=1 j = l  

j7£.i 

• K ~ (X i  -h X:i ) . y~, 

which was suggested and studied by Powell et al. (1989)• Here the kernel K(-) is 
a weighting function and h = h,~ --~ 0, as n --~ oc, is a smoothing parameter that 
depends on the sample size n. The theoretical conditions of the kernel function and 
the smoothing parameter were given in Powell et al. (1989). Moreover, I conjecture 

that ~ is strongly consistent if nhP+l log~ --* oc and the kernel function K(.) satisfies 
Condition 6 of Prakasa Rao ((1983), p. 183). In addition, other estimation method 
for the parameter 60 such as AD method (see H/irdle and Stoker (1989)) and SIR 
method (see Duan and Li (1991), Li (1991)) may also be considered. But, here, I 
only consider the estimators ~ and ~,. 
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Let Z~ = -T 6 nXi,  i = 1 , 2 , . . . , n ,  and 4 = (%0T) T" Then I consider the 
quasi-likelihood estimator ~n (~n, ~T T = 0 n) to be a set of solution to the system of 
equations: 

(2.1) ~ Y / -  g(3'2i; 0) Og(TZi; O) _ 0 

and 

(2.2) ~ Yi - 9(72i; O) Og(TZi; O) 
o o  - o 

In the f@owing, I shall discuss some properties of the quasi-likelihood estima- 
tors ~ and 0~. Before stating the basic conditions and asymptotic results, I first 
denote ( = (~, 6), ~ = (~n, ~n), (0 = (~0, 60), OL((;x,y) y--g("[(6Tx);O) Og(~(6Tx);O) 

o~ - Vb(~(~rz);O)] O~ , 
and g((; x) =~ g("/(6Tx); O) for the ease of presentation. According to the proof and 
assumptions Conditions (R1) (R4) of Theorem 2.1 are basically very similar to the 
classical treatment of the standard M.L.E. given in Settling ((1980), pp. 144-149), 
and hence the proof will be shortened in here. 

THEOREM 2.1. Suppose assumptions Conditions (R1)-(R4) given in the Ap- 
pendices are satisfied. Then there exists a sequence of solutions ~n to the system 
of equations (2.1) and (2.2) such that as n ~ oo 

(i) 4n -~ ~0 = (70, 00), with probability one, 
and 

(ii) V ~ ( ~ n  -- ~0) _~d MVN(O,  E0), 
--TiJ[O2L(~°;X'Y) , E* .~T where E0 = V . - 1 E * V .  -1 ,  V. = ~k 0( 2 ] = • E6o - .F  -~ E l l  Jr- 25 c T  

~T12' " ~  : ~[17J'[O2L(~°;X'Y)]o(06 1, Y]12 = E{[OL(~-~ X'Y)] • [ 2 ( P ( X , Y )  - E ( P ( X , } Z ) ) ) ] T } ,  

}-]'11 ---- E[O"L((;~X'Y)] ' [OL((_~X,Y)]T ~6o ~- 4 E [ P ( X ,  Y )  . ( P ( X ,  Y )  ) T] - 4(~ 0 • (~T 

Og(~T X;O) I P(x ,y )  = f (x )  . [ ox j - [y g(/3Tx;O)] " 0f(x) and f (x )  is the probability cgx ' 
density function of X .  

PaOOF. By (R1), for every j ,  and ~ in the neighborhood N(40) , Taylor's 
expansion of oi(C;x,y) about the point ~ = 40 gives: o~j 

OL((, ~n; X, y) OL(~o, 6n; x, y) 02L(~o, ~n; X, y) 
0% - o4j o4jo4 ( ~  - ~o) 

+ ~(4 -~o) r- Mj(~; ~, x, y). (~ -40) 

where, ~ lies in the line segment between ( and (0 and 

- -  

Mj(( ,6n;x,y)---  k o io  oek (q+l)×(q+l)  
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Define A~ = (An1 . . . . .  An(q+l)) T, Bn =- (B.nt, . . .  ,Bn(q+t) )  T,  Cr~ = (Cnl  . . . .  
C,~(q+a)) ~ where, 

Anj  = 1 ~ OL(~o, 6~; X i ,  Y~) 
n ~=~ O~j 

i=1 

OL(~,6n;X~,¥~) t h e n  Define U,n(~) = 1_ ~i,~=1 o~ 
g t  

u,~(~) = An + ~ .  (~ - ~o) 
1 

~o) C.~/~+~)(~ - ~o)] r .  + ~ [ ( ~ - ~ o ) r c . ~ ( ~ - ~ o )  . . . .  , ( ~ _  r 

(a )  d,~ ,o.~,l 0,  n ~ o o  

(by (1.1), (Ra), 3~ "va~ 5o, and the strong law of large numbers (S.L.L.N)). 
__+ E[09L(~o ;X ,Y)  ] 

(b) B,~ O ~jf_#l Vj ( (o) ,  n 0% Vj  where ~ ( (o )  = t oe~o~ ~ < oc, j = 
1,2 . . . . .  q + l  

(by (R1), (R3), (R4), ~., ~_~1 50, and S.L.L.N), 
(c) For every j ,  

i=1 i=1 

~""-J < H j ( X , V ) ]  - Cj, ?~ --+ oO 

(by (R2), 6n ,~.p.1 6o, and S.L.L.N); 
and, when n is sufficiently enough, for every j,  I has 

IC,~jksf <_ Cjk.s + 1, with probability one, 

where, C w [Cnjks] and Cj = [Cjks], j ,  k, s = 1, 2, . . . , q + 1. 
(d) By the asymptotic result of ~~ is 

n 

V(~(6. - fo) = ~ E [ P ( X i ,  ~ )  - E ( P ( X , Y ) ) ]  + %(1) 
i = l  

given in Powell et al. ((1989), pp. 1410-1412), 6~ ~z~z+l 50, (R1), (Ra), (R4), and 
S .L .L .N ,  I has 

(e) By (a), (b), and (c), there exists n0 = no(rl, e), such that  for all n > 
n0(r/,e) 

p{IA,~y] < rl; tB~jk - Vjk(Co)l < rl; ]C~jk, t < c} > 1 -- s, 
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where, c is the finite positive number  and larger than  {maxj,k,s Cjks + 1}; ~/and 
are two small positive number.  Then  as in Chanda  (1954), I can prove (i). 

To proof the result (ii) of Theorem 2.1, I note tha t  for n sufficiently large, 

{ 1 } 
-- Bnj -4- ~(~n -- ~o)TCnj " (~n -- ~0) = A~3 + Op(n-~/~), 

j = 1 , 2 , . . . , q + 1 ,  

so, (~n - ~o) = (V,) -~ " A~ + O p ( T t - 1 / 2 ) .  

Thus, by (d), x/~(~n - ~o) d M V N ( O ,  Eo), n ~ oo. 
This establishes the assertion (ii) of Theorem 2.1. [] 

Eo is related in making inferences about/3.  One may use/~* = 7~5n to esti- 
mate  ft. To measure the precision of/3,, I need to consider consistent est imator  Eo, 

of Eo. I define ~'o = ( $z , ) - lE , ( l / , ) - l ,  where V, = n --A1 Z--i=ILX--"~ ra~L(¢~;X~'YO~ ], ~* = 

n 0 2 L ( ( ~ ; X " Y ~ ) ]  ~ o  = 4[l~--~i=lPn(Xi,Yi)  ff/~.~5o.~'d_~ll+2fi"T.~lT2, .~T = 1 E i = I [  0~05 J' n 

~ ( X i ,  Y i )  - ~n " ~T] f n ( X  ' y )  = fn (x )  • Og(~T~'#") [Y --  ~ ( ~  T x ,  ~ n ) ]  ' Ofn(X) ' Ox Ox ' ~ ~ 
1 n z l E ? - - I [ a L ( < ~ X ~ ' Y ~ ) ] ' [ O L ( ¢ ~ i ' Y i ) ]  T ,  ~ 1 2  f n ( X ) =  ~ )-~=I(-~)P • K ( ~ ) ,  E u  n = 

n n 1 n _1E~=~{(°~(~""))  [2(P~(x,, ~ ) -  Pn)7}, and P~ = ~ E,=I Pn(X~, ~)  
Finally, I also state the asymptot ic  properties of the estimators ~,  = ~n6~. 

COROLLARY 2.1. Suppose the conditions in Theorem 2.1 are satisfied, then, 
as n - ~  cc 

(i) /3, ~ / 3 o  = ")'o80, with probability one, 
and 

(ii) v ~ ( ~ ,  - t3o) X M V N ( O ,  E,) ,  
where X. = "~3X~o + ~ o X ~  +'~o(*o~T2 + ~,Yo ), X~ is the 1 × 1 submatrix of 

E12 E ° , 

a12 = E[(V~{aL(¢-~ X 'Y)}  + J:~ • [ 2 ( P ( X , Y )  - E ( P ( X , Y ) ) ) ] )  • [ 2 ( P ( X , Y )  - 

E P ( X ,  Y))]], V[ is the q + 1 row vector of the matrix 

Lv2*J 
and ~ is p row vector of the matrix 

LY;/ 
Thus, the asymptotic variance-covariance matrix E,  can be consistently esti- 

mated by E, ,  where E ,  = ;y2 n • ESo + 5~ " E~ " ~T + ~/n(Sn " ~T2 + ~12" ~T) E~ is the 
1 × 1 submatrix of 

r ,o 1 
= [~o~ ~o j ,  
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1 n ^ ,  .~;  [2(Pn (Xi, y/)  [2(Pn (Xi ' y/)  

V~ is the q + 1 row vector of the matrix 

LV;j ' 

^ 

and .P~ is p row vector of the matrix 

[1~,-1~ "T] = I~" ~ ] 

and E5o, Pn(x,y),  D~ as the above definition. 

2.2 Estimation procedure based on estimated link model 
I consider the random data in the Subsection 2.1. According to the proof of 

Theorem 2.1, I have: 

(2.3) 
t n 

O n = 00 ~- - - E @ n ( X i ,  }ri) dr-Op(n -1/2) 
~t 

i=1 

where the vector Qn(X,y) is the q x 1 subvector of the matrix V . I [ ° L ( ~  x'y) + 
E.[ 02 L( ~o ;X, Y) } .  [2(P(x, y) - EP(X, Y))]T]. 

Given the estimator 0~ derived in Subsection 2.1, I have an estimated link 
model defined by g(.; 0.,). Based on the estimated link model. I arrive at the 
following equation: 

f i  Yi -- g(/3Txi; On) Og(/3Txi; On) 
(2.4) V { 9 ~ - 0 n - ~ -  " 0/3 = 0 .  

i=1 

Let the solution of (2.4) be denoted by/) .  
The asymptotic theory for the estimator/3 is very similar to that  developed in 

Theorem 2.1. Moreover, the conditions for the asymptotic theory are also very sim- 
ilar to those given in Appendices. I simply replace OiL(~, 6; x, y) by 0iL(_/3, 0; x, y), 

= (~,6) by a = (/3,0), g('~(6Tx);O) by g(/3Tx;O), and (~ ,6n)  by (/3,0~). I also 
replace 0~ = (0% 00) by 0/3, 06 by 00, and q+  1 by p in the Conditions (R1)-(R4), 
but replace 6. by 0~, 6 by 0, ~ = (% 0) by/3, and [2(P(X, Y)  - E P ( X ,  Y))] by 
Qn(X, Y) .  Consequently, I have 

THEOREM 2.2. Suppose the above corrected conditions in the Appendices are 
satisfied. Then there exists a sequence of solutions ~ to the equation (2.4) such 
that as n ~ oc 

(i) /3 --~/30, with probability one, 
and 

(ii) v/~(/3 -/30) d MVN(O,  Eo), 
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whet(7 thc coyariaf tce  ll~atFix ~0  -~ 9 , - 1 ~ ' 9 ,  -1 ,  9 ,  : - E {  02L(~°;X'Y) j ,  (3:0 : 

(/30, 00), ~* .~- . ~ T .  ~0o " ~ -}- ~11 -}- 2. ~T "~T2 ,  ff:yT = E {  02L(°~°;X'Y)~ j ,  ~ ~0o : 

E[Qn(X,Y)] • [Qn(X,y)]T, Ell = E{°i("°;x'v) 
E{[OL(~X'Y)] • [Qn(X, Y)]T}. 

Similarly, to measure the precision of/3, I note that E0 can be consistently 

estimated by Eo. Here I define Eo = 17, E V, , where E = f • Eoo " ~ + 

E l l  + 2.T . E12, .fi- 1 }, E11 1 = ~ A~i=l t  OflO0 n A~i=l t  Off } " 

OL(3,#.~;X~,Y.~) 1 n ^ X : 

1 V,~ fIOL(~,~;X,,YO1. [Q~(Xi, y/)]T}, and Qn(X,i, Yi) is the q x 1 subvector n A.~i=I L i Off l 

of [ ~  ~ / = l {  n O2L(#~,8..;Xi,Yi) O~ 2 jill--1LrOL(~"'$";X~'YO ~ + {n  1 E i = I  n O':'L(#,~,6~;XI,}~) O-OT06 J 

__ ~'~n iO2L(fl,On;Xi,Yi) A,)]T],  ¢* =  i=lt }" 

3. Simulation studies and final remarks 

^ ^ 

In order to compare the finite sample properties of the estimates/3, fl, and 
/3, a Monte Carlo experiment has been done in which 1000 samples of different 
size n were generated from different populations for the dependent variable and 
covariates. The computation of the estimate/3, involves the selection of the kernel 
function K and the smoothing parameter h. To stabilize the density estimates, I 
usually use positive product kernel. Thus I define 

p 

K ( . i , . 2  . . . .  ,up) = 
i=1 

and let K.  be univariate "b/weight" kernel 

15) (1 1); = - 2)2x(M < 

see also Mfiller (1984). Although my theoretical results do not constrain the choice 
of bandwidth h, some Monte Carlo experience suggests that reasonable small- 
sample performance is obtained by setting h in the range of 1 to 2 (one to two 
mean standard deviations of predictors), (also see H~Lrdle and Stoker (1989)), so I 

V ~p (& / set h = 1.5 z_~i=l~pJ where Si is the sample standard deviation of the predictor 
xi. 

I first consider the regressors Xi -- (Xn,  Xi2, Xia) T to have jointly multivari- 
ate normal distribution with mean (0, 0, 0) and the identity covariance matrix. For 
each given Xi, Yi was generated from a binomial distribution with the number of 
trials N = 50 and the probability of success p(Xi). For Xi = (Xn, Xi2, Xi3) T, 
I consider two models for p(Xi): logit {p(Xi)} = 0 +/31Xil +/32X~2 +/33Xi3, 
and p(Xi) = q2(O + ~31Nil ~- /32Xi2 ~- /33Xi3). Secondly, in addition, two models 
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were also investigated in my experiment. Model 1 considered Yi = 0 +/31Xil  + 
[32Xi2 +/33Xi3 + Gi. The regressors Xi = (Xil ,  Xi2, Xi3) T are independent of er- 
ror ci and have jointly multivariate normal distribution with mean (2, 1, 0.5) and 
variances and covariances: ch21 = cry2 = 9, e~3 = 64, cr12 = ~13 = 0, ~23 = 10. 
Random error ei has identical logistic distribution with mean zero and variance= 
7c2/3. It is noted tha t  the logistic distribution can be obtained as a mixture of 
extreme value distribution. Model 2 is basically the same as the Model 1 except 
tha t  I define Xi2 = Xyl and the distribution of (Xil,  Xi3) is the marginal dis- 
tr ibution derived from the multivariate distr ibution of Model 1. For Model 2, 
according to Xi2 X e hence the dimension reduction technique is only used to il, 
(X2, X3). So in the system of equations (2.1) and (2.2), I replace (Zi = 6,~-Txi," 0) 
b y ( 2 i .  = - T  - 5 n Xi , ,  Xi ,  = (Xi2, Xia)T; 0, = (0,/~1)). The true parameter  values are 
0 = 1, and (~1, ~2,]33)= (1,1,2). 

Thus, the Monte Carlo estimates of the means of/3i are given in Tables 1 
4. Also~ for each case considered, the est imated mean squared errors are also 
calculated in order to measure the efficiencies of the estimates. 

I find the experiment encouraging: Basically speaking, when the sample size 
is large, the biases of the estimates fl, D., and ~ are almost negligible. And, 
the mean squared errors of/3i are slightly smaller than  the other estimates. This 
means tha t  conlparing with the quasi-likelihood estimates /3 and /)., the overall 
performance of/3 is more satisfactory. 

Moreover, my simulations show that ,  the cost of CPU time for computing f). 
is only about 1 of tha t  required for computing the es t imator / ) ,  on the average, and 

the cost of CPU time for computing/3 is about  -~ of tha t  required for computing 

the estimator [~. In general, the computat ions of the estimators t) and/~,  are much 
simpler. 

Table 1. 
for the logit model. 

50 0.9815 0.9914 1.9976 
(6.473) (6.468) (7.685) 

100 0_9917 0.9954 1.9984 
(4.476) (4.354)(4.987) 

~1. ~2, ~3. 
50 0.9923 0.9831 1.9846 

(6.245) (6.233) (7.586) 
100 1.0061 0.9928 1.9924 

(4.431) (4.322) (4.675) 

50 0.9898 0.9916 1.9914 
(6.234) (6.156) (7.575) 

100 1.0032 1.0035 2.0075 
(4.385) (4.321) (4.647) 

Note: The unit in parentheses is 10 -4 . 

Estimated means and empirical mean squared errors (in parentheses) of the estimators 
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Table 2. 
for the Probit model. 

JONG-WUU WU 

Estimated means and empirical mean squared errors (in parentheses) of the estimators 

n a,  a= 
50 0.9759 0.9673 1.9421 

(4.296) (4.357) (5.038) 
100 1.0191 0.9978 2.0162 

(3.425) (3.352) (4.075) 

n ~1, /~2, ~3, 
50 0.9876 0.9968 1.9938 

(4.257) (4.317)(4.983) 
100 1.0082 1.0084 2.0156 

(3.321) (3.325) (3.857) 

n /31 ~2 33 
50 1.0047 1.0038 2.0081 

(4.237) (4.287) (4.973) 

100 1.0035 1.0041 2.0075 

(3.319) (3.323) (3.785) 

Note: The unit in parentheses is 10 -4 . 

Table 3. 
for the Model 1. 

n /~1 /~2 /~3 
50 1.0020 0.9828 1.9988 

(9.560) (11.497) (1.580) 
100 1.0036 1.01828 1.9946 

(4.176) (4.774) (0.820) 

50 1.0068 0.9905 1.9960 
(9.194) (10.424) (1.268) 

100 1.0002 1.0110 2.0009 

(3.346) (4.626) (0.754) 

n /31 /32 /~3 
50 1.0092 0.9943 1.9940 

(9.011) (9.887) (1.112) 
100 1.0074 0.9985 2.0040 

(2.931) (4.552) (0.721) 

Note: The unit in parentheses is 10 -a.  

Estimated means and empirical mean squared errors (in parentheses) of the estimators 

Finally,  I c o m p a r e  the  a s y m p t o t i c  covar iance  ma t r i ces  of  the  e s t ima to r s  un-  
der  a l inear  model .  Cons ider  the  r a n d o m  regressors  Xi  = (Xi l ,  Xi2, Xi3) T to  have 
jo in t ly  mul t iva r ia te  n o r m a l  d i s t r ibu t ion  wi th  m e a n  (0, 0, 0) and  the  iden t i ty  covari-  

ance  mat r ix ,  and  the  response  var iable  sa t i s fy ing  Yi = O-~lXil-~2Xi2-[-~3Xi3--~gi 
where  ~i are  i n d e p e n d e n t  of  Xi ,  and  si ~ N ( 0 , 1 ) ,  i = 1 , 2 , . . . , n .  Suppose  the  
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Estimated means and empirical mean squared errors (in parentheses) of the estimators Table 4. 
for the Model 2. 

n 83 
50 1.0020 1.0018 2.0007 

(16.373) (0.749) (1.093) 
100 0.9829 1.0033 2.0067 

(8.221) (0.266) (0.717) 

n 81, 82, 
50 0.9997 1.0046 1.9996 

(15.179) (0.663) (0.991) 
100 0.9935 1.0044 2.0048 

(7.831) (0.262) (0.632) 

n 81 82 /33 

50 1.0101 0.9986 1.9999 
(14.582) (0.620) (0.940) 

100 1.0049 0.9987 2.0038 
(7.636) (0.259) (0.589) 

Note: The unit in parentheses is 10 -3 .  

true parameter  values to be 0 = 1 and (/31,/32,/33) = (1, 1, 2). Then the asymp- 

totic covariance matr ix of v ~ ( ~ ,  - / 3 )  is the symmetric  matr ix  A = [aij] with 
a n  = 2.0439724, a12 = -8.8118 x 10 -3, a13 = -0.0176236, a22 = 2.0439724, 
a23 = -0.0176236, a33 = 2.017537; But, the asymptot ic  covariance matr ix  of 
xfn(/~, - / 3 )  is the identi ty matr ix where/3,  = ~nOn. Moreover, I also can prove 

tha t  the asymptot ic  covariance matrices of v ~ ( ~  - /3 )  and v~(/3 - /3 )  are also the 
identi ty matrix. Therefore, the est imators/3, /3  and/~ ,  have the same asymptot ic  
covariance structure and seem to be better than /3 , .  
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Appendices 

Assumptions for Theorem 2.1. 
(R1) For all ~ in a neighborhood N(~0) of ~0 where ~ = (~, 6), the derivatives 

02L(~;x'Y)o~iO(j ' 02L(¢;x'Y)o~i06 and 03L(¢;x'Y)o~o(jo~k exist for all (x, y) in the support  of (X, Y) and 

i , j ,k= l,2,.. . ,q + l. 
(R2) There exist function Hi(x, y), possibly depending on ~0, and i = 1, 2 , . . . ,  

q+  1, such tha t  E{Hi(X, Y)} < ~ ,  and for all ( in N(~0), and (x, y) in the support  
of (x ,  y )  

03L(~;x'Y) <H~(x,y), i , j , k= l ,2 , . . . , q+l .  
O~iO~jO~k - 
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(R3) The functions OL(~;x,y) 02L(~;x,y) O2L(~;x,y) 0~ , 0~0~j and 0~0~ are uniformly continuous 

at ~0 for all (x, y) in the suppor t  of (X, Y), i, j = 1, 2 , . . . ,  q + 1. 
(R4) E{  OL(¢~_~X,Y)}.{ OL(¢~X,Y)}T is a positive definite matrix, ~ °2L(¢°;X'Y) t 

~ t O~O~j J 
E. f  02 L((o;X, Y) is a nonsingular matrix, and t 0~0a } < co. 
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