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A b s t r a c t .  A measure of discrepancy between two residual-life distributions 
is proposed on the basis of Kullback-Leibler discrimination information. Prop- 
erties of this measure are studied and the minimum discrimination principle is 
applied to obtain the proportional hazards model. 
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1. Introduction 

Let X and Y be two non-negat ive  r a n d o m  variables represent ing t imes to 
failure of two systems.  For example ,  they  might  be  the t imes to  failure of two bio- 
sys tems say the left and right kidneys, or the  t imes to failure of two engineering 
systems.  Let  F(x) = P ( X  < x) and G(y) = P ( Y  <_ y) be the  failure dis t r ibut ions  
of X and Y with  survival  functions F ( x )  = 1 - F(x) and G(y)  = 1 - G(y) 
respectively, wi th  F(0)  = G(0) = 1. We assume tha t  F and  G are differentiable 
and tha t  f ( t )  = F'(t) and g(t) = G'(t) denote  the  probabi l i ty  densi ty functions 
of X and Y respectively. We denote  the hazard  ra te  functions of X and Y by 
AF(X) = f ( x ) / F ( x )  and Aa(x) = g(x)/Cl(x) and their  mean  residual l ifetime 
functions by /S t ( t )  = E ( X  - t I X > t) and 5c( t )  = E ( Y  - t I Y > t) respectively. 

The  Kullback-Leibler  discr iminat ion informat ion I (X ,  Y)  or I(F, G) is defined 
as 

/2 (1.1) I ( x ,Y )  = I(F,G) = f (x )  log f(X)dx 
g(x) 

I t  is somet imes  known as the relative entropy, and also as the directed informat ion  
distance between F and G. I(F, G) is defined for f (x )  ~ 0 whenever  g(x) ~ O. 
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I(F, G) was introduced in statistics as early as (1951) by Kullback and Leibler 
and its use in hypothesis testing and model evaluation was propagated strongly 
by Kullback (1959). Since then it has been widely used in statistics, see Akaike 
(1973) and Ebrahimi et al. (1992). 

Frequently, in survival analysis and in life testing one has information about 
the current age of the systems under consideration. In such cases, the age must be 
taken into account when comparing or discriminating between two systems. Obvi- 
ously, the measure I(F, G) is unsuitable in such situations and must be modified to 
take age into account. This can be achieved by replacing F and G by distributions 
of the corresponding residual lifetimes. Given that both systems have survived up 
to time t, we therefore define Kullback-Leibler discrimination information at t by 

(1.2) I (X ,Y ; t )  = I(F,G;t) = . f ~  f(x) log f(x)/[ ' ( t )  d 

= logG(t) + H(F;t)  - j(t ~ f(x)  logg(x)dx,  6(t) 
where 

(1.a) H ( F ; t ) = . / ~  f f (x)  f(x) x P(t) log F (t) d 

- F(t) f(x) log f (x)dx - log/~(t) 

- f ( t )  ( l o g a F ( x ) ) Z ( x ) a x -  1. 

The third version in (1.3) can be obtained by integration by parts. Note that (1.1) 
and (1.2) coincide when t = 0. It is clear that for each fixed t > 0, I(F,  G; t) will 
have all the properties of the Kullback-Leibler discrimination information I(F, G). 
In particular, I(F, G; t) >_ 0 with equality if and only if the probability density 
functions of residual lifetimes are equal almost everywhere. 

The discrimination function in (1.2) is a measure of disparity between Ft (x) = 
P ( X t  < x )  --  F(t+x) d 

- -  F-V(K-, and Gt(x) = g(Yt < x) - a(t+~) - - - a - W ( ~ , w h e r e X t = X - t l X > t  

and Yt __a Y - t  I Y > t denote the remaining lifetimes, and d stands for distribution. 
If we have a system with true survival function _F then I(F, G; t) can also be 
interpreted as a measure of distance between Gt and the true distribution Ft. 
G is generally referred to as the reference distribution. The following example 
demonstrates computation and usefulness of I(F, G; t). 

Example 1.1. Consider a parallel system of two independent components, 
each one with lifetime uniformly distributed over [0, 1]. More specifically, suppose 
Y1 and Y2 are the lifetimes of components 1 and 2, respectively, with common 
probability density function g. If X is the lifetime of the system, then X = 
max(Y1,1/2) and the true probability density function of X is 

2x, O < x < l  

f(x) = O, elsewhere 
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1 _ log(1 + t) - t2 One can easily verify tha t  I(F, G; t) = log 2 - ~ ~ log t which 
is non-increasing in t. Furthermore limt--,1 I(F, G; t) = 0, It simply means tha t  
as the system gets older and older, the distr ibution of remaining lifetime of the 
system gets closet" and closet to tile distribution of the remaining lifetime of each 
one of the components. Intuitively speaking, after a certain age the redundancy 
has negligible effect on the performance of the system. 

As a dynamic measure of discriminatory information I(F, G; t) turns out to be 
rather useful. Ebrahimi and Kirmani  (1995) have proved the fact tha t  I(F, G; t) is 
constant  in t if and only if F and G satisfy a proportional hazards model G(x) = 
(/~(x)) z, for x _> 0, where /3 > 0. The importance and utility of proportional 
hazards model are well-known, see e.g. Efron (1981) and Cox (1959). 

This paper is organized as follows. In Section 2, we s tudy  some properties 
of this measure. In Section 3, it is shown tha t  the proportional hazards model 
can be obtained from the minimum discrimination information (MDI) principle of 
Kullback (1954). 

2. Properties of I ( F , G ; t )  

In this section we s tudy the properties of I(F, G; t) defined by (1.2) and ex- 
amine the implications of these properties. Our first result shows how I(X, Y; t) 
is affected by a common increasing t ransformation of X and Y. 

THEOREM 2.1. I(X,Y; O-l( t ) )  = I (¢ (X) ,  ¢(Y); t )  for all increasing func- 
tions ¢. 

PROOF. 

~ f ( ¢ - l ( x ) )  f(¢-l(x))/F(¢-l(t))  
I(¢(X),d)(Y);t) = ¢,(¢_l(x)) /~(O_l( t ))  log g(O_l(x))/~(¢_l(t)) 

-- jf¢~ f(Y) log f(Y)/f'(¢-l(t)) dy 
- g ( y ) / 0 ( ¢ - l ( t ) )  

= I(X, Y; ¢-1(t)) .  

This completes the proof. 

Theorem 2.1 has a straightforward but interesting interpretat ion for the accel- 
erated-life model. Suppose tha t  two systems have lifetimes X ° i = 1, 2, when 
operated under field conditions. Suppose also tha t  failure testing can be carried 
out more rapidly in the laboratory in which case X* -- X°/O, i = 1, 2, is the time 
to failure of system i. The acceleration factor 0 is a constant  possibly depending on 
variables, such as temperature  and pressure, tha t  accelerate failure. It follows from 
Theorem 2.1 tha t  the discriminatory information between systems of laboratory 
age t equals the information between systems of field age 0t. 

The next theorem gives a relation between I(F, G) and I(F, G; t). We first 
recall tha t  F is said to be new better  (worse) than  used if f'(x+y) <_ (_>)F(x)-P(y) 
for all x, y _> 0. 



260 N A D E R  EBRAHIMI  AND S. N. U. A. KIRMANI  

THEOREM 2.2. Suppose 
~F(x) 

(a) ~ is increasing (decreasing)in x, 
(h) both F and G are new better (worse) than used. 

Then I(F, G; t) > (< ) I (F ,  G). 

PROOF. We shall prove the result for the case when AF(x)/Ac(x) is increas- 
ing and both F and G are new better  than  used. If ft(x) and St(X) are probability 
density functions of Xt and Yt respectively and H - l ( u )  = Inf{u : H(x) >_ u}, then  
from (1.2) we have 

(2.1) 

Further,  

(2.2) 

~0 °Q 
I (F,G, t )  = f t (x ) log f t (X)dx  gt(x) 

fo b ° f ,  ft(x)'~ 
= 

~0 1 f t (F t l (Y) )  dy 
= log - 1  • 

gt(Ft (Y)) 

ft( F t l  (y) ) = ,~Ft ( g t l  (y) )Yt( F t l  (y) ) 
-- AF(t + F t l ( y ) ) f t ( F t l ( y ) )  

= A F ( F - I ( 1  - ( 1  - -  y)f'(t))). ( 1  - y ) ,  

where we used the fact tha t  F t - l (y )  = F - l ( 1  - (1 - y)f'(t)) - t, 0 < y < 1. Also, 

(2.3) --1 9~(Fi  ( v ) )  = A G , ( F i - I ( Y ) )  • at(FVl(y)) 
-~ .~G(t -[- g t l ( y ) ) G t ( F t l ( y ) )  

= AG(F-I (1  - (1 - y)F(t)))Ot(F~-l(y)). 

Combining (2.2) and (2.3), 

f t (F t l ( y ) )  A F ( F - I ( 1  - (1 - y)F(t))) 1 - y 
(2.4) gt(Ft l (y))  - AG(F-I (1  - (1 - y)G(t))) Gt(F~-l(y))" 

Under the assumption made on AF(x)/AC(x), 

(2.5) A F ( F - I ( 1 -  ( 1 -  y)F(t))) > AF(F-I(y))  
AG(F-I (1  - (1 - y)~'(t))) - AG(F-I (y) )  " 

Now, when both F and G are new bet ter  than  used (NBU), we have 

(2.6) O(F~-l(u)) <_ G(F-I(u)) .  

Using (2.2)-(2.6), 

-1  )~F(F-I(y)) 1 -- y AF(F-I(y))  1 -- y (2.7) ft(Ft (y)) > > 
gt (Ft l (y) )  - AG(F-t(y))  (~t(Ft-l(y))  - AG(F-I(y)) (~ (F - l (y ) )  

f (F-a(y) )  
g(F- l (y) )  " 
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If follows from (2.1) that 

£o ° f(F-l(Y))  d- I(F,G) I(F,G,t) >_ log ~ y = . 

This completes the proof. 

Theorem 2.2 simply says that under the assumptions made, the disparity 
between two systems of age t is never smaller (larger) than the disparity when the 
two systems were new. 

The following example gives a simple application of Theorem 2.2 in the set-up 
of competing risks. 

Example 2.1. Let X = min{Y1,.. . ,  Y~} where Yi, i = 1, 2 , . . . ,  n, are inde- 
pendently and identically distributed with common distribution function G. Sup- 
pose also that G has a density g and that X has distribution function F. Then 
;~F(X)/),a(X) = n for all x. Further, it is easy to verify, if G is NBU (NWU) so is 
F. Hence, if G is NBU (NWU), I(F, G; t) > (<)I(F, G) for all t. 

The conclusion of Theorem 2.2 can be considerably strengthened if the distri- 
butions F and G are both IFR (DFR). F is said to be an increasing (decreasing) 
failure rate (IFR (DFR)) if )~y(t) is increasing (decreasing) in t. The following 
theorem provides useful sufficient conditions for monotonicity of I(F, G; t) in t. 

THEOREM 2.3. If (a) AF(x)/)~a(x) is increasing (decreasing) in x, and (b) 
both F and G are IFR (DFR) then I(F, G; t) is increasing (decreasing) in t. 

PROOF. When both F and G are IFR (DFR) 

1 1 

Gtl(F~l(y)) ~-~ (~-)~t2(F~l(y)) 
for all 0 < t2 < tl  and all 0 < y < 1. Further, under assumption (a), 

)~F(F-I(1 -- (1 -- y)F(t))) 
A t ( F - l ( 1  - (1 - y)F(t))) 

is increasing (decreasing) in t _> 0 for all 0 < y < 1. Hence, proceeding as in the 
previous theorem, 

~o I f t(Ftl(Y)) & 
I(F,G,t)=- log gt (Ft_l ~- ~ y 

is increasing (decreasing) in t > 0. 

The following example provides an application of Theorem 2.3 to the impor- 
tant case of Kullback-Leibler information for Weibull distributions. 
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Example 2.2. Let X and Y have Weibull survival functions F(x)  = 
exp(-(AlX) ~) and G(x) = exp(-(,~2x)Z), x > 0, Ai,A2,c~,/3 > 0. Then 
AF(x)/AG(x) is increasing (decreasing) according as c~ _> (<)~. It follows that  
if a >/~ _> 1 (0 < a _</3 _< 1) then I(F, G, t) is increasing (decreasing) in t > 0. 

Our next theorem provides easily verifiable sufficient conditions for I(F1, G; t) 
to be no more than I(F2, G; t). 

THEOREM 2.4. Consider three non-negative random variables X1, X2, and 
Y with probability density functions fl, f2 and g respectively. If (a) fl(x) is 
increasing in x, and (b) AF2 (x) _< AF1 (x), then 

I(F1, G; t) <_ I(F2, G; t). 

PROOF. From (1.2) 

(2.S) /(~1, a, t) - / ( F 2 ,  a; t) 

= ft °c~ fl(x) ~ ~ a ' x  -- joc f2(X) logfl(X)~(~ ) - - ~ ~ d 2 g  

ft ° f2(x) f2(x)P~(t) 
- &(t) log fl(x)_~(t) 

< [oc fl(x ) log fl(x)e(t)dx- [oc f2(x ) log fl(x)e(t) ' 

= /oc  f_l(X)log fl(X__~) __ j(t ~ f 2 ( x ) l o g f l ( X ) d x  ' 
F~(t) g(x) f:(t) g(x) 

where the inequality comes from the fact that  I(F2, F1; t) >_ O. Now, the assump- 
tion (b) is equivalent to saying that  X[ 2) is stochastically larger than X} 1) where 

X} i), i = 1, 2, is a random variable with density fi(z)/Fi(t), x > t. It follows that,  
when fl (x)/g(x) is increasing, the expression (2.8) is nonpositive. This completes 
the proof. 

The above result simply says that,  under the assumptions of Theorem 2.4, at 
any point of time, the reference distribution G is closer to F1 than to F2. 

We give below an application of Theorem 2.4 to nonhomogeneous Poisson 
processes. 

Example 2.3. Consider a (possibly) nonhomogeneous Poisson process {N(t), 
t _> 0} with a differentiable mean value function M(t) = E(N(t)) such that  
M(t) ~ cc as t ~ oc. Let Rn, n = 1 , 2 , . . . ,  denote the occurrence time of 
the n-th event in such a process. Then Rn has distribution function Fn with 
density 

{M(x)} ~-1 
f~(x)--  ( n - l ) !  f l(x) ,  x > 0 ,  n = l , 2 , . . .  



DISCREPANCY OF TWO RESIDUAL LIFE DISTRIBUTIONS 263 

where f l (x)  = d exp(-M(x)) ,  x > 0. Clearly, f n ( x ) / f l ( x )  is increasing in x. 
Moreover, f n ( x ) / f n - l ( x )  is increasing in x so that  AFt(x) < AF,,_I (x). It follows 
from Theorem 2.4 that  I(Fn, F1; t) is increasing in n for all t > 0. 

Finally, we look at the behavior of I(F, G; t) in the important special case 
when G is an exponential distribution. 

THEOREM 2.5. / f  (a) AF(t) < )% (b) 5F(t) = E ( X - t  ] X > t) is an 
increasing function of t, and G(x) = 1 - exp(-Ax), x > 0, then I(F, G;t) is 
increasing in t. 

PROOF. It can be easily verified that 

(2.9) I(F, G; t) = H(F; t) - log A + k6F(t). 

Differentiating (2.9) with respect to t, we get 

I'(F, G,t) = H'(F;t)  + A@(t) 

> - ;~v( t )e 'v ( t )  + ;~6'v(t) 

= (A - Av ( t ) )g~ ( t )  k o. 

The above result simply says that the residual life time distribution of a system 
moves farther and farther away from exponential as the system is aging. 

3. MDI principle and I(F,G;t) 

Kutlback (1954) introduced the minimum discrimination information (MDI) 
principle for statistical analysis. Since then it has been widely used; see Guiasu 
(1990). According to this principle, the best substitute F of the true distribu- 
tion function G can be found by minimizing I(F, G) subject to the constraints 
f f ( x ) d x  = 1 and w~ = fT~ (x ) f ( x )dx ,  r = 1, . . .  ,m, where T,.(x) are specified 
functions and w~ are specified constraints. The resulting distribution function F* 
is called the MDI distribution and I (F*,G) the minimum discrimination infor- 
mation. In this section we show that MDI principle, when applied to modeling 
survival function, leads to the very useful proportional hazards model. 

Once the current age t of a system is known, attention shifts from I(F, G) 
to I(F, G; t). Thus, the interest now is in finding the model closest to the true 
survival function G given Y > t. We, therefore consider the problem of minimizing 
I ( F, G; t) subject to constraints 

(3.1) o(t) = - log \ G(t) ] ] 

and 

(3.2) f (x )dx  = 1. 
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In survival analysis - log G(x), - log G(x) = fo )t(u)du, is called the cumulative 
hazard function. Therefore, intuitively speaking, the (3.1) simply means that the 
average cumulative hazard function after time t is O(t). 

The following theorem shows how the proportional hazards is obtained as the 
solution to the stated problem. 

THEOREM 3.1. Under the constraints (3.1) and (3.2), F* minimizes 
I(F, G; t), where 

(3.3) F*(x)  (G_(x)~ 1lot 
\ a(t) ) , ior x > t. 

PROOF. Since 

M(~-) = St ~ G(x)g-(x) (exp ( -mlog  ~ ) )  

1 
- - - -  ~ (:X), 

1 - - 7  

dx 

for r < 0. Therefore applying Theorem (2.1) p. 39 of Kullback (1959), I(F, G;t) 
is minimized if 

- 

f*(x) : ( e x p (  ~ l o g  ) g ( x )  
a(t) ) 

= ( 0 ( t ) ) _  1 ( g _ ( X ) )  (a_(x )~ l / ( ° ( t ) - l )  
\ a(x)  ) \ a(t)  ) , x > t. 

P*(x) _ (~(~) 5l/o(t) That is ~ - ~ a(t) s , x > t. This completes the proof. 

From Theorem 3.1, if t = 0, then we get F*(x) = (G(x)) 1/°(°). 
The following example illustrates an application of Theorem 3.1. 

Example 3.1. Suppose G(x) = exp(-x) .  Then, under the constraints 

f o  f(x)dx = 1 and f t ( x -  t) f(x)dx = O(t), ~*(x) = exp(-0-~t)(x - t)). This 
means, the closest residual life time distribution is the exponential. 
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