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Abst rac t .  The concepts of pure-tail orderings as defined by sq- and D- 
orderings are shown to order the family of reliability life distributions which age 
smoothly in a natural way. This ordering extends to comparisons regarding the 
limiting behavior of the residual life, mean residual life, sojourn time between 
perfect repairs in repairable systems, failure rate and, through the preservation 
of sq- and D-orderings by various reliability operations, to certain coherent 
systems of components that age smoothly. Possible applications of the results 
to the industrial practice of cannibalization are also noted. 
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I. Introduction 

The concepts of life distributions with aging or anti-aging properties play 
a central role in the theory and practice of reliability. Thus, for example, the 
concepts of Increasing Failure Rate (IFR), Increasing Failure Rate on the Aver- 
age (IFRA), and New Better than Used (NBU), life distributions have received 
well-deserved attention in the reliability literature (see e.g., Barlow and Proschan 
(1975)), and have proven to be quite useful in many applications in reliability and 
maintenance. Intricately related are the concepts of partial orderings of life distri- 
butions, examples of which we mention convex ordering, star-shaped ordering, and 
superadditive ordering. Indeed, it is well-known that a survival function S is IFR 
if and only if S is smaller, according to the convex ordering, than the exponential 
survival function. Similarly, S is IFRA (NBU) if and only if S is smaller than 
the exponential survival function according to the star-shaped (superadditive) or- 
dering. Other partial orderings of survival functions with interesting reliability 
applications include stochastic-, failure rate-, and likelihood ratio-ordering (see 
e.g., Singh and Vijayasree (1991), Lehmann and Rojo (1992)). One common fea- 
ture of these partial orderings is that they order the whole distribution. In some 
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industrial situations, however, the relevant comparisons among survival functions 
involve only the right tail of the survival functions. An example of such a situa- 
tion is provided by the industrial practice of "cannibalization" (see Isaacson et al. 

(1988)) whereby the used parts from a given failed system (judged to be beyond 
repair) are used as replacement parts in the repair and maintenance of another 
repairable system. 

In defining an optimal replacement policy for failed items, various costs must 
be taken into account. However, there are situations in which the only practical 
available replacement policy is cannibalization. One such situation is the escalat- 
ing need to maintain proper emergency medical services during and after natural 
catastrophic events. The increase in load on emergency power generators, for ex- 
ample, will be abrupt and demanding during the initial stages of the catastrophe. 
Typically, the variability in the demand for spare parts under such conditions is 
time dependent and difficult to predict. See, for example, Crawford (1987). It 
is thus likely that  spare parts will not be available in some instances. The final 
outcome of the catastrophe depends heavily on the ability to maintain a minimum 
number of emergency medical services and communication systems in a fully capa- 
ble status; the cannibalization strategy may be the only viable replacement policy 
under these conditions. 

Thus, in replacing a failed component in a repairable system, the choice be- 
tween two spare parts of the same age would surely be influenced by a comparison 
of the survival functions in the right tail in terms of either residual lifetime or 
mean residual life for example. 

Recently, Rojo (1988, 1992) introduced q- and D-ordering which order survival 
functions according to their right tail behavior. A detailed comparison of the q- 
and D-ordering was carried out in Rojo (1988) and Rojo (1992), and closure 
properties under reliability operators were discussed in Rojo (1993). Klfippelberg 
(1990) provides an interesting treatment of (right) tail equivalence. The related 
and interesting concept of age-smoothness of failure distributions which captures 
properties which are essentially tail dependent has been proposed by Bhattacharjee 
(1986). 

The purpose of the present paper is to demonstrate that sq- and D-orderings 
order the family of reliability life distributions which age-smoothly in a natural 
way. As a consequence, sq- and D-orderings impose an ordering on comparisons 
regarding the limiting behavior of residual lifetime, mean residual lifetime, and 
sojourn time between perfect repairs in repairable systems. 

2. Ordering the family of age-smooth life distributions 

The notions of life distributions being IFR, IFRA, NBU, etc. are central to the 
theory and practice of reliability, and have been helpful in developing bounds on 
system reliability and studying functionals of interest in maintenance policies. The 
characteristic of aging notions, such as IFR, IFRA and NBU, is that  these notions 
impose a requirement on the whole distribution. For some applications, such 
as cannibalization, this may be too strong a requirement. Bhattacharjee (1986) 
successfully weakened the notions of IFR and IFRA by introducing the notion of 
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life distributions which age smoothly and showed its connection to the notion of 
regular variation. In what  follows the hazard function of a life distribution F will 
be denoted by HF.  Tha t  is, HE(X) = --ln_P(x). It will be assumed throughout  
tha t  F(x) < 1 for all x > 0. 

DEFINITION 1. A life distribution F is age-smooth if 

(2.1) lim (HF(t + x) -- HE(t)) exists for each x > 0. 
t ~ o o  

Thus, the life distribution F is age-smooth if the hazard function of the 
residual lifetime converges in the extended sense as age increases. Also, note 
tha t  (2.1) is equivalent to the existence of l i m t ~  Ft(x) for each x > 0, where 
f 't(x) = ~'(t + x)/[~(t) denotes the survival function of the residual life at age t. 

It is clear from Definition 1 tha t  a life distribution F is age-smooth if the 
function F't (x) does not oscillate in a neighborhood of t = oc, and hence the name 
age-smooth. Examples of distribution functions which are not age-smooth are 
provided next. 

1 sin((1 x)i /2))e -z ,  where c Example 1. Let _P(x) = c(1 + (i+~.)1/a + + = 

1 sin((lnx)l/3))x -i/3, X > xl > 0 where (2+s in ( I ) )  -1. Also, G(x) = (0nx)l/a + 1 +  

G(Xl) = 1. Then it is not difficult to verify tha t  l i m t ~  Ft(x) and limt~oo Gt(x) 
do not exist due to the oscillating nature of Ft(x) and Gt(x). 

Let ~ denote the family of age-smooth distributions. This family is of great in- 
terest in reliability since, under some mild regularity conditions (see Bhat tacharjee 
(1986)), the family 9 c contains the IFR and DFR classes, while having a nonempty 
intersection with the IFRA, NBU, DMRL, and NBUE classes and their duals. Re- 
call the following definition (Bingham et al. (1987), p. 18), 

DEFINITION 2. A measurable function f > 0 such tha t  f ( a x ) / f ( x )  ---, aP, 
as x --* oo, for all a > 0 is called regularly varying of index p. 

Bhattacharjee (1986) showed tha t  

(2.2) F E 5 c ¢=~ F( ln  x) is regularly varying with index - p ,  0 < p _< oc. 

Moreover, F is age-smooth with 0 _< p < oc if and only if it can be represented 
in a unique manner  as F( t )  = e ptL(et) for some slowly varying L. When F is age- 
smooth with p = oc, then F has the unique representation F( ln  L(1 + x)) = (1 + 
z) - i ,  z > 0 for some slowly varying L as demonstra ted by Bhat tacharjee (1986). 
Since the family )c is motivated by considerations of pure-tail behavior of life 
distributions, it is of interest to introduce a notion of ordering in 5 c, which should 
reflect pure-tail properties of these life distributions. It is the characterization 
given by (2.2) that  paves the way for the introduction of a simple pure-tail partial 
ordering on ~ .  This is done by introducing the following concepts: Let F - 1  (u) = 
inf{t : f ( t )  _> u}, 0 < u < 1 and define, 
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DEFINITION 3. Let F, G be life distributions. Then 

F <_D G(F <q G) 

F <D G(F <q G) 

F ""D G(F ~q G) 

~'(x) (l=~ F- l (u)  ) 
if lim ~ < o c  - -  < o c  

x---* oc \ u " *  1 G-1 (u) 

if F < _ D G  and G~DF(F<_qG and G;~qF)  

if F <D G and G <_D F(F <_q G and G _<q F). 

The relationship between q-ordering and D-ordering is considered in Rojo 
(1992). Closure properties of q- and D-orderings under various reliability oper- 
ations are considered by Rojo (1993). See also the nice treatment of equivalent 
tailed distributions by Kliippelberg (1990). 

Next, the structure of 3c, as characterized by (2.2), is exploited to delineate 
the consequences of ordering .P by using _<D- For that  purpose, let F and G be 
distributions in $-, and let --PF and -Pa represent the index of regular variation of 
F and G, respectively. The following result concludes that if F and G are ordered 
according to D-ordering then the limiting values, as age increases, of the failure 
rates, mean residual lifetimes, and residual lifetimes of F and G are also ordered 
in a natural way. The proofs of all the results are included in the Appendix. In 
what follows, if F denotes a life distribution with density f ,  rE(t), mF(t), and 
Ft denote, respectively, its failure rate function defined by f ( t ) /F( t ) ,  its mean 
residual life at time t defined by f t  F(x)dx/ff'(t), and residual life at time t. The 
proofs of the main results hinge on the following lemma. 

LEMMA 2.1. Let F be a life distribution in 5 with density f . Then, 
(i) limt--.~ rF(t) = PF 

(ii) limt--.o~ mF(t) = 1/pF, 
where PF is the index of regular variation defined by (2.2). 

The following result relating the comparison of the limiting value of rE and 
r c  to the D-ordering of F and G is the main result of this section. 

THEOREM 2.1. Let F and G be life distributions in jc. Then, 
(i) F <_D (~D)G implies l i m t - ~ r F ( t )  >_ ( = ) l i m t - , ~ r a ( t ) ,  

l imt--~ rE(t) > limt__.~ re(t) implies F <D G. 
(ii) F <D (~D)G implies limt--.~ mE(t) < (=) l imt - -~  raG(t), 

l imt--~ mE(t) < limt--~ ma(t) implies F <D G. 
(iii) F <_D (~D, <D)G ** Ft <_D (~D,.<D)Gt for all t. 

and 

and 

The converse to (i) and (ii) does not hold as shown in the following example. 

Example 2. Let /~ = xe -(x-l), x > 1 and G =  ¼x2e -(x-2), x > 2. Then 
rF(t) : 1 -  ~1 ~ 1 and rG(t) = 1 -- 72 ._. 1 while, also, mR(t) - - *  1 and raG(t) --+ 
1. However, lima---.oc ~'(x)/G(x) = 0 and hence F <D G while limt___.~ rF(t) = 
limt_.~ re(t) and limt__.~ mF(t) = l i m t ~  me(t).  
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Note tha t  q-ordering as defined by Definition 3 is not strong enough to order 
5 c. Indeed, let F , G  ~ ~ ,  with F(x)  = e - P ~ L l ( e  ~) and G(x) = e-PC'~L2(e ~) 
where 0 < PF, PC < oo. Then, 

(2.3) lim F -  l(?'t) 
, t~l C - l ( u )  PF w-,1 lnL2(e a a(~))/ln(1 u) " 

Now, 

l nL l ( e  F-~(') ) lnL1 (t) l n L l ( t )  
(2.4) lira = tim = lira = 0 

~-1 ln(1 - u) t-~o In ~'( lnt)  t--.oc l n L l ( t )  - PF ln t  

and similarly (lnL2(e a *(~)))/ln(1 - u )  ~ 0, so tha t  F ~q G whenever 0 < 

PF, PG < OC. 
A partial ordering stronger than  q-ordering is now introduced in the family 

$2 

DEFINITION 4. Let F, G E 9 c. Then 

F - l ( l t )  
F_<sqG if lira < 1 

u-*l a - l (~ t )  - 

Y- l ( t t )  
F < ~ q G  if l i m - -  < 1  

f-l(u) 
F ~ q G  if lim - 1 .  ~-~1 G-l(u)  

F l ( u ) _  
Note tha t  the argument  given by (2.3) and (2.4) shows tha t  lim~_~l ~--~(~) 

~-~a for F, G E  ~ .  Therefore, the following theorem follows immediately by using 
~emma 2.1. 

THEOREM 2.2. Let F , G  E ~ with PF > 0 and PG < oc or pg < oc and 
Pc > O. Then, 

(i) F ~sq,  ~'~sq, <~sq G ~=~ limt-+oc rF( t )  _>,----, > l i m t ~  ro( t )  
(ii) F _<sq, ~.~q, <sq G ¢=~ l i m t _ ~  mF(t )  _<, =,  < l i m t ~  m a ( t )  

(iii) F <~q, ~.~q, <sq G ~ Ft <sq, ~.~q, <.~q Gt for each t. 

Note tha t  Theorem 2.2 does not hold if PF = Pa = 0 or pg = Pa = co. To see 
this, t ake /~(x)  = 1/(1 + x) and G(x) = 1/(1 + x2), x > 0, so tha t  PF = PG = O. 
It follows tha t  G <~q F while limt--.o~ rF(t)  = limt~oo ra( t )  = 0. Also, taking 
F ( x )  = e x p ( - e x p ( x ) )  and G(z) = exp ( - e x p ( z t / 2 ) ) ,  it follows tha t  F - l ( u )  = 
l n l n ( 1 / ( 1 - u ) )  and G - I ( u )  = 2 1 n l n ( 1 / ( 1 - u ) )  so tha t  F - ~ ( u ) / G - l ( u )  = 1/2 and 
hence F <sq G. However, PF = PC = oo. 
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3. Ordering of systems with age-smooth components 

Of more interest to applications in reliability is the ordering of systems with 
age-smooth components. For this purpose, closure properties of the family of age- 
smooth life distributions j r  under various reliability operations must be considered. 
One such property was discussed by Bhattacharjee (1986), and it is stated in the 
following lemma. 

LEMMA 3.1. Let F E jr. Then F~ = 1 - P~ E jr, ct > O. 

Note that for a an integer, F~ is the lifetime distribution of a series system 
of i.i.d, components. It follows that the age-smooth property is preserved by the 
formation of series systems of i.i.d, components. On the other hand, for arbitrary 

> 0, F~ represents the distribution of the sojourn time between perfect repairs 
in the imperfect maintenance model of Brown and Proschan (1980) in which the 
repair of a failed equipment is minimal or perfect (i.e. post recovery lifetime equals 
residual life or original life, respectively) with probabilities a and (1 - c~), respec- 
tively. It follows then, from Lemma 3.1, that age-smoothness is inherited by the 
sojourn time between perfect repairs in the model of Brown and Proschan (1980). 

Bhattacharjee (1986) also pointed out that other closure properties of jr, 
such as convolution and finite mixtures, were not known. However, there have 
appeared results in the literature which imply in particular the closure of j r  under 
convolution. We state this result and others in the following theorem. 

THEOREM 3.1. 
(i) Let F ,G E jr with PF, PC >_ O. Then, H = F , G C jr, with PH = 

min(pF, PC)" 
n 

(ii) Let Fi E jr, i = 1 , . . . ,  n with Pi >_ O. Then Ei=I aiFi E jr, where ai > 0 
n and ~-~i=1 ai = 1, so that jr  is closed under finite mixtures. 

(iii) Consider an coherent system with component lifetimes given by F1 , . . . ,  
Fn E jr, and suppose l imx_~Fj ( x ) /F io (X)  < oc, j = 1, . . .  ,n  for some io. Let G 
denote the system's lifetime distribution. Then, G E jr. 

Note that, in particular, when the components of the coherent system are 
identical, the assumption that limx_.~ f ' j (x)/Fio(X) < oc, j = 1 , . . .  ,n  for some 
i0 holds. As a consequence of Theorems 2.1, 2.2 and 3.1, and Lemma 3.1, we 
obtain the following. 

COROLLARY 3.1. Denote the two-fold convolution of the life distribution 
function F by F (2) . Then, 

(i) Theorems 2.1 and 2.2 hold with rF, ra, mE, me ,  Ft, Gt replaced by r~  ), 

r (2)C, 
(ii) Let H1 and 112 be the lifetime distributions of a coherent system with 

i.i.d, components and lifetimes F and G C jr, respectively. Then Theorems 2.1 
and 2.2 hold with rE, rG, mF, rnc, Ft, Gt replaced by rill, rH2, mill ,  mH2, Hi,t, 
H2,t, respectively, where [-Ii,t = fili(t + x)/[-Ii(t). 
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(iii) Let F~, and G~ be the lifetime distributions given by F~ = 1 - F~,  G~ = 
1 - Gc~ for F, G E ~ ,  o~ > O. Then Theorems 2.1 and 2.2 hold with rE, ra,  mE,  

m a ,  Ft, Gt replaced by rF~, rG~, rrtF~, ntG~, Fa,t, Ga,t, respectively. 

Similar results may be stated for finite mixtures of elements of 9 c. The state- 
ment of the result and its simple proof are left to the reader. 
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Appendix 

PROOF OF LEMMA 2.1. The case for which 0 _< p < oc is considered first. 
Using the representation (1.5.2) on page 21 of Bingham et al. (1987), it follows 
that 

(A.1) 
d 

rE(t)  = ~ - l n F ( t )  = PF - L ' ( e t ) e t /L (e t ) ,  

where L is slowly varying at oc. Now, by a Theorem of de Bruijin (1959) (see 
Bingham et al. (1987), Theorem 113.3), there is a slowly varying function L1, with 
L1 E C°C[0, oo), and such that L i ( e t ) e t / L l ( e  t) ~ 0 as t --~ oo, and L ( t ) / L l ( t )  ~ 1 
as t -~ oc. It follows that lnL(e t) - l n L I ( e  t) ---* 0 as t - ,  oo, and since 
L~(e t ) e t /L l ( e  t) -* O, d l n L ( e t ) / d t  --~ 0 as t --~ ~ .  It follows from (A.1) that 
rE(t)  ~ pp. To show (ii), note that by L'Hopital's rule l i m t _ ~ m F ( t )  = 

f? limt--o~ t F(z)dx F(t) -- l i m t - ~  1 1 
- -  r F ( t )  - -  pF" 

If p = oc, then by Bhattacharjee (1986), _P(ln L(1 + x)) = 1/(1 + x) for some 
slowly varying function L. It follows that rE (ln L(1 +z ) )  = L(1 + x ) / ( ( l +  z)L'(1 + 
x)). One more application of Theorem 1.3.3 in Bingham et al. (1987), yields the 
result. 

PROOF OF THEOREM 2.1. To prove (i) and (ii), note that as a consequence 
of (2.2), F _<D G implies PF >_ PG. Then, by using Lemma 2.1 the conclusion 
follows. 

(iii) This follows immediately from the definitions of D-ordering, and Ft. [] 

PROOF OF THEOREM 3.1. (i) The case 0 < PF < PC follows immediately 
from Breiman (1965) Proposition 3. The case PF = Pc follows from Theorem 3 of 
Embrechts and Goldie (1980) or Feller ((1971), p. 278). The case where pg 7~ Pc 
with either pg = 0 or Pc - 0, also follows from Feller. 
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(ii) To show that G(t) = ~-~inl c~iFi(t) E ~,  using (2.2), it is enough to show 
that G(lnt) is regularly varying. Now, G(lnt) = }-2-i~1 ai/~i(lnt) with each/~i(lnt) 
regularly varying. It then follows from Proposition 1.5.7 of Bingham et al. (1987), 
that G(in t) is regularly varying. 

(iii) Let h : R n -~ [0, 1] denote the reliability function of the system. Let ~r(x) 
be the vector (/~l(X),... , /~(x)) ,  we use the notation h(0i, F l (x) , . . .  ,/~n(X)) = 
h(Fl(X),...,Fi-l(X),O, Fi+l(X),...,Fn(X)) and h(l i ,Fl(x) , . . . ,~ '~(x))  = 
h(F1 (x),/~2 (x) , . . . , / ) i -1  (x), 1,/~i+1 (x ) , . . . , /~ (x) ) .  Then, 

5(ln(tx)) /~io (ln(tx)) 
F o(ln(x)) 
• {h(lio,f-I(ln(tx))) + (Fio(ln(tx))/~o(ln(tx)))h(Oio,?(ln(tx)))} 

h(l~o, H(ln(x))) + (F~ o (ln(x))/F~ o (ln(x)))h(0~o , H(ln(x))) " 

Since limx__.~ Fj(x)/Fio(X) < oc, j = 1,. . .  ,n, then limx__.~ h( l i0 , /~( ln(x)))+ 
(Fio(ln(x))/Fio(ln(x)))h(Oio,[I(ln(x))) < ec, and hence limx_~ooG(ln(tx))/ 
G(ln(x)) = limx__.~/~io (ln(tx))/Fio 0n(x)) and the result follows. [] 

PROOF OF COROLLARY 3.1. (i) Follows immediately from (i) of Theorem 
3.1 and Theorems 2.1 and 2.2. 

(ii) In the case of i.i.d, components /~l(lnt) and /t2(lnt) are polynomials 
in /~(lnt) and G(lnt) of the same degree, say k, and hence /~l(lnt) is (--pFk)- 
regularly varying while H2(lnt) is (-pck)-regularly varying. The result then fol- 
lows from Theorems 2.1 and 2.2. 

(iii) This follows immediately after observing that since/~(lnt) and G(lnt) 
are (-PF)-  and (-pa)-regularly varying, then f'c~(lnt) and G~(lnt) are ( -apF)-  
and (-apa)-regularly varying• Using Theorems 2.1 and 2.2 the result follows. [] 
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