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A b s t r a c t .  The problem of detection of a change in distribution is considered. 
Shiryayev (1963, Theory Probab. Appl., 8, pp. 22-46, 247-264 and 402-413; 
1978, Optimal Stopping Rules, Springer, New York) solved the problem in a 
Bayesian framework assuming that the prior on the change point is Geometric 
(p). Shiryayev showed that the Bayes solution prescribes stopping as soon as 
the posterior probability of the change having occurred exceeds a fixed level. 
In this paper, a myopic policy is studied. An empirical Bayes stopping time 
is investigated for detecting a change in distribution when the prior is not 
completely known. 

Key words and phrases: Empirical Bayes, change points, Bayes sequential 
rules, stopping times, statistical process control. 

1. Introduction 

The  change-point  problem has received considerable a t ten t ion  in recent years. 
The  methods  with which this problem and related problems have been dealt  are 
fixed-sample and sequential methods.  A review which includes bo th  the fixed- 
sample and the sequential methodology,  and comprehensive bibl iography can be 
found in Zacks (1983). An excellent review, in part icular,  on sequential methods  
is given in the recent article of Zacks (1991). 

Procedures  of sequential detect ion of changes in distr ibution laws are of spe- 
cial impor tance  for statistical process control. When  a process is "in control" ,  
observations are dis t r ibuted according to F0. At an unknown point  in time, the 
process jumps  "out of control" and ensuing observations are dis t r ibuted according 
to F1. The  aim is to raise an alarm "as soon as possible" after  the process jumps  
"out of control".  Ear ly  work in this area is due to Shewhart  (1931). 

The  sequential methods  are classified into three categories: Bayes sequential 
procedures,  cumulat ive sum procedures,  and tracking methods.  The  interest  of this 
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paper is focused on Bayes sequential methods. Bayes stopping rules for the present 
problem were studied by Shiryayev (1963a, 1963b, 1978) and Bather (1963, 1967), 
and later developed by Zaeks and Barzily (1981), Zacks (1983), Pollak (1985) and 
others. 

Consider a sequence of independent observable random variables X1, X2 , . . . ,  
Xm-I ,X ,~ , . . . ,  where, conditional on m, X1 , . . . ,  Xm-1 have an identical distri- 
bution function Fo(x), and (conditional on m) Xm, Xm+l,.. .  have an identical 
distribution function F l (x ) (¢  Fo(x)). In the present paper we assume that the 
two distributions are known, but the index of shift (change point), m, is unknown. 
The sequence of variables is observed sequentially. Let N be a stopping variable 
associated with a detection procedure which stops soon after the shift occurs with- 
out too many "false alarms". (It is generally assumed that observations resume 
immediately on the same process if the alarm is false; a correct alarm terminates 
the process.) Let 7r(.) denote the prior distribution of the shift index m. Assume 
that the penalty for stopping before the change-point is 1 (loss unit), and the 
penalty for delayed stopping after the change-point is c (loss unit) per observa- 
tion. The Bayesian sequential problem is then to find a stopping rule N for which 
the prior risk 

(1.1) R(rr, N) = P~(N < m) + cE~{max(N - rn, 0)} 

is minimized; see Shiryayev (1963a, 1963b). Also, see Chapter 4 of Shiryayev 
(1978). The quantity P~(N < m) is naturally interpreted as the probability of a 
false alarm and E~{max(N - m, 0)} as the average delay of detecting the occur- 
rence of disruption correctly, i.e., when N > m. 

The shift index m is considered a realization of a random variable 0, having a 
prior distribution 7r(0) concentrated on the set of nonnegative integers {0, 1, 2,. . .}.  
Specifically, Shiryayev assumed that the prior probability function is of the form 

re, if 0 = 0 
(1.2) re(0)= ( 1 - ~ r ) p ( 1 - p ) j - 1 ,  if 0 = j _ >  1, 

0 < 7r < 1, 0 < p < 1. The optimal stopping (detection) time for the Bayes 
criterion (1.1) based on the prior (1.2) is given by (Shiryayev (1963a, 1963b, 1978)) 

ro*pt = inf{n; 7rn(X~) > A*}, 

where ~r,~(Xn) is the posterior probability of {0 _< n}, given 9t-n = cr{rr, Xt,  
. . . ,  X~}, and A* (0 < A* < 1) is a function of (c, rr,p). An explicit expression of 
A* in terms of (c, 7r, p) is not given by Shiryayev. Only a Wiener process approxi- 
mation has been obtained. Bather (1967) proved that, for the variational problem 
(i.e., minimize E,~{N-  m I N >_ m} under the constraint P,~(N < m) < c~, 
0 < (~ < 1), if the expected number of false alarms is bounded by B, then 
A* = (B + 1) -1. Motivated by this fact and due to the Markovian structure 
of the optimal rule %*pt, in this paper we study a stopping rule r* of the form 

r* = inf{n _> 1; 7rn(Xn) >_ p/(p "1"- C)}. 
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Clearly, if B = p - l ( c _ p )  with c > p, then r* is the optimal rule for the variational 
problem. The stopping rule r* is equivalent to the one-step look-ahead stopping 
rule for the present problem; see, e.g., Zacks (1991) or Zacks and Barzily (1981). 
Optimality of myopic rules, such as r*, have been examined by Chow and Robbins 
(1961) and Abdel-Hameed (1977), among others. 

Assume now that the prior (1.2) is not completely known. Then the stop- 
ping rules r*ov ~ and r* are not available. One would still like to approximate the 
optimal and suboptimal procedures. But some auxiliary information is needed. 
Suppose that one has available a number of independent observations Y1,..., Y,, 
where Y~ = (]~l,...,Y/k~). Conditional on 0i, the observations Yil, . . . ,Yi,e~-i 
are independent with distribution F0 and are independent of Yie~,..., Y/k, which 
(conditional on 0i) are independent with distribution F1, 1 <_ k~ < oo, u > i > 1. 
Furthermore, we assume that (01, Y1),..., (0,, Y,) are independent of (O,X)'s, 
u > 1. The O~'s are unobservables, as is 0. Then it may be possible to use empiri- 
cal Bayes methods to estimate unknown parameters of the prior and to construct 
a stopping rule for the present detection problem. The proposed empirical Bayes 
(EB) stopping time is given in Section 3. The performance of the EB stopping 
rule w.r.t, the rule T* is measured by comparing their respective Bayes risks. In 
particular, we show that the Bayes risk of the EB stopping time is asymptotically 
smaller than that of stopping rule r* as u (-number of independent data vectors 
available from the past) goes to infinity. Broadly speaking, this exhibits that the 
EB stopping time is comparable and may be even better in performance com- 
pared with the component stopping time r* when u is large. This result is given 
in Section 3 as well. Proofs of the main results are deferred to Section 4. 

2. The Bayesian detection procedure 

In this section we develop the stopping rules Top t and 7" discussed above in 
detail. The exposition follows that of Zacks ((1991), §2.2). 

The observable random variables X1, X2, • .. are defined on a probability space 
(~,Se), on which a family of probability measures {P,~,0 < rc < 1}, induce for 
(X1 , . . . ,  X~) with n > 1, joint predictive c.d.f. 

(2.1) . . . . .  xn) = + ( 1 -  ( I  fl(z ) 
i=1 

n--1 j in I + ( 1 - T r ) p Z ( 1 - p ) J . H F o ( x ~  ) Fl(xi) 
j--1 i=1 i= j+l  

+ (1 - rr)(1 - p)n [ I  Fo(Xi). 
i--1 

Let X0 = 0 and be~ = a{Tr, X0, X1,. •., X~} be the a-field generated by the first n 
observations. Let fo(x) and fl(x) denote the p.d.f.'s corresponding to F0 and F1, 
respectively. Then the posterior probability function of 0 on {n, n + 1, . . .},  given 
X l , . . . , X n ~  is 

Try, if 0 < n 
(2.2) Try(O) = (1 - 7cn)p(1 - p)O-n-1 if 0 >_ n + 1, 
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where  

(2.3) 
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= P, {o <_ I 'n} 
n n - 1  j n 

( T r + p ( 1 - T r ) )  1-I f l ( x i ) + ( 1 - T r ) p  y: . (1  _p) j -1  1-I fo(xi) 1-I 
i=1 j = l  i = l  i = j + l  

fl(Xi) 

with  

D~ 

n 

(2.4) Dn = (Tr + p(1 - 7 r ) ) H  f l (xi)  
i=1 

n--1 j f i  
+ (1 - ~r)p E ( 1  - p)J H f0 (x i )  f l  (xi)  

j = l  i=1 i=j+l 
n 

+ (1 - 7r)(1 - p)n I I  fo(xi). 
i=1 

n 
Divid ing  the  n u m e r a t o r  and  the  d e n o m i n a t o r  of  lrn by  (1 - 7r) Y I j = I  fo(xj), we get  

n n--1 n 
71" 1-Ii=1 R(Xi) "~-PEj=o (1 -- p)J H i = j + 1  R(Xi) 

1-- Tr 
n n--1 n (2.5) 7rn 7r [ i i = l R ( x i ) + p ~ _ ~ j = o ( l _ p ) j [ i i = j + l R ( x i ) ÷ ( l _ p ) n  

1 - T r  

where  R(xi) = f l (x i ) / fo(x i )  is the  l ikel ihood rat io.  Le t  q~ -- 1 - 7~. For  n = 
0, 1 , . . .  one can  wr i te  

(1  - 7r ) (1  - p ) n + l  

qn+l = n(Xn+l){Dn - (1 - 71-)(1 - p)n} "k B n + l  
(2.6) 

where  

(2.7) Bn+ l  = R(Xn+l)(1 - lr)(1 - p)~p + (1 - 7c)(1 - p)~+l .  

B u t  (1 - 7r)(1 - p)~ = q~D,~. Hence,  we ob ta in  the  recurs ive  formulae  

q (1 - p) 
(2.8) qn+l ---- R(Xn+l ) (1  -- qn(1 -- p)) + qn(1 -- p)' 

or, for n = 0, 1 , . . . ,  

(Trn + (1 - 7r,~)p)R(Xn+l) 
(2.9) 7rn+l -- (~rn + (1 - 7rn)p)R(Xn+l) + (1 - 7r~)(1 - p ) '  

whe re  7to -- 7r, q0 = 1 - ~r. T h e n  t he  op t ima l  s topp ing  (de tec t ion)  t ime  for t he  
Bayes  cr i te r ion  (1.1) w.r . t ,  t he  p r io r  (1.2) is given by  (Sh i ryayev  (1963a,  1963b)) 

(2.10) ~-ovt = inf{n;  7r~ > d*} ,  
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where 0 < A* < 1 is a constant  depending on c, 7r and p only. We consider the 
following stopping rule 

(2.11) r* = inf{n _> 1; 7rn _> p/(p + c)} 

= inf{n _> 1; c~r~ - p(1 - 7cn) _> 0}. 

Finally, for later use, it is relevant tha t  {~r~, )r*, p~} is a submartingale, for 
n _ > l ,  

(2.12) E,~{Trn+l [ 5~} = 7 r ~ + p ( 1 - z r n )  a.s. (P~), 

where .7:* = a{zro,zrl,... ,7r~}, and for any stopping time ~-, the prior risk (eft 
(1.1)) takes the form 

{ / (2.13) R(Tr, ~-) = E ,  (1 - 7c,) + c ~rk 
k = l  ) 

with 7rk given by (2.5), k > 1. Furthermore,  it is easy to show tha t  

(2.14) P~(v* < ec) = 1 and E~7-* < oc. 

3. An empirical Bayes detection procedure 

Suppose now tha t  the prior (1.2) is not completely known. Tha t  is, suppose 
tha t  7r or p or both  are unknown. Also, suppose tha t  we have available a number of 
observations Y1 , . . - ,  Y.  from the past, where the formulation of random vectors 
Yi is as defined in the introduction 1 < i < ~, ~ _> 1. Let us suppose tha t  

f #  = # ( Y I , . . . ,  Y~) 
(3.1) 

= / ? ( Y I , . . . ,  Y~) 

denote consistent estimates of ~r and p, respectively, based on the auxiliary da ta  
Y 1 , . . . ,  Y.,  v > 1. Thus, we suppose tha t  as v --* oc, 

^ P ^ P 
(3.2) 7c -~ 7c and p --* p, 

where P denotes convergence in probability w.r.t, random vectors Y 1 , . . . ,  Y~, 
v >_ 1. We first s tudy the case where only 7r is unknown but  p is known. Following 
the form of (2.11) our empirical Bayes stopping time is defined as 

(3.3) ~ = inf{n _> 1; c~n - p(1 - ~n) _> 0}, 

where #k is defined by the right side of (2.5) with ~r replaced by #, i.e., 

(3.4) #k = the right side of (2.5) I~=~ • 
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Let R(~, ~,) denote the unconditional prior risk (w.r.t. the prior (1.2)) of the 
stopping time (3.3). Then from (2.13) we obtain 

(3.5) *.) = E { (1 - c F.  / ' 
k=l 

where E denotes expectation w.r.t, all random variables involved. The next the- 
orem compares the the prior risk R(~, T*) with the prior risk R(Tr, ~.) as v --+ c~, 
where T* is the stopping time given by (2.11). 

THEOREM 3.1. Let "r* and ~-~ be defined by (2.11) and (3.3), respectively. 
Let prior risks R(~, "r*) and R(r ,  ~,) be defined by (2.13) with T -- ":* and (3.5), 
respectively. Suppose that only 7: is unknown of (1.2). Let :: be defined by (3.1) 
and satisfy (3.2). Furthermore, suppose that limsup,__.~ E ( ~ )  2 < c~. Then, 

(3.6) limsup R(Tr, ~ )  < R(~, ~-*). 
/ / - - +  (:X~ 

Now we examine the case where both ~r and p are unknown of (1.2). For this 
case we define 

(3.7) T.~ = in f{n  ~ 1; cfffn - p(1 - ~n) ~ 0} 

as our empirical Bayes stopping time for the detection problem, where ~ is defined 
by the right-side of (2.5) with now ~ and p replaced by # and 15, respectively. Let 
R(7~, T~) denote the unconditional prior risk of ~..  Then, 

(3.8) 
A { 

R(Tr,~,) = E ( 1 -  
"1 / 

~ )  +ck~__)~k . 
An asymptotic result, such as (3.6), can be established again to compare R(~r, ~ )  
and R(~r, T*). However, more regularity conditions are required. The next theorem 
is a version of such a result. 

^ 

THEOREM 3.2. Let 7" and ~-~ be defined by (2.11) and (3.7), respectively. 
Let "k and15 be defined by (3.1) and satisfy (3.2). Suppose that limsup.__.~ E ( ~ )  < 
cx~ and that limsup,__+~E(1/(1 _p) iv)2  < oc. Then, l imsup~_~R(Tr, T,) < 
R(Tr, T*). 

Remark 1. The inequality (3.6), i.e., the asymptotic comparison of risk 
R(~T, ~ )  to the "component risk" is termed " asymptotic superiority" of the em- 
pirical Bayes stopping time sequence {~,}; see Karunamuni (1988). When ~-* 
is the optimal rule, then (3.6) implies that limn--.o~ R(~, ~.) -- R(Tr, T*), i.e., the 
"asymptotic optimality" (Robbins (1956, 1964)) of the EB stopping sequence {~}.  
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Fig. 1. Behaviors of/r (solid curve) and/5 (dotted curve) w.r.t, v, for 7r = 0.5, p -- 0.1, 
F0 = N(5, 1), f l  = N(10, 1). 

To see this, note tha t  R(Tr,~-*) < R(Tr, 4) if ~-* is optimal. Then, R(Tr, ~-*) _< 
l i m i n f , ~  R(Tr, ~). Hence the result. 

Remark 2. Consistent estimates # and i5 satisfying (3.2) based on the pre- 
vious da ta  can be constructed in many ways. One simple set of estimates is the 
method of moment  type: By the assumptions of auxiliary da ta  Y 1 , . . . ,  Yv, note 
tha t  the first and the second random observations of these vectors (i.e., Y.1 and 
Y.2) have the joint distribution (see (2.1)) 

(3.9) f~r(Yl, Y2) - - - -  (71" -}- (1 -- 7r)p)Fl(Yl)Fl(Y2) + (1 - 7r)(1 -p)pFo(y l )FI (Y2)  

+ (1 - 7r)(1 - p)2Fo(Yl)Fo(Y2). 

Let #l, j  denote the first moment  of Fj (y), j = 0, 1. Then, one can easily show 

that 

(3.10) /yl dF~(yl,  Y2) = (Tr + (1 - 7r)p)#l,1 + (1 - 7r)(1 - P)#l,0 

and 

(3.11) / y2dF~(yl, Y2) : (Tr+(1-Tr)p)Pl , l+(1-Tr)(1-p)P#l , l+(1-Tr)(1-P)2#l ,o • 
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Fig. 2. Behaviors of ~- (solid curve) and/5 (dotted curve) w.r.t, u, for 7r ---- 0.4, p ---- 0.2, 
Fo = N(2, 1), F1 = N(10, 1). 

Let  ftl = u -1  2iV=l Y/1 and ft2 = p-1 ~iV__l ]2/2. Then  the equalities (3.10) and 
(3.11) mot ivate  the following sample moment  relationships: 

(3.12) 
{ /~1,1 -t- (1 - , ~ ) # 1 , o  : ]~1  

A#l,i + (1 - A)p#i,i + (1 - A)(1 - P)#i,0 = fi2, 

where A -- ~ + ( 1 -  7r)p. The  solutions of equations (3.12) for 7r and p, restr ic ted in 
the interval (0, 1), can be taken as a plausible set of consistent est imates for ~ and 
p. In order to s tudy  the behavior  of resulting est imates (say, # and/5) with respect 
to ~, a Monte Carlo simulation was performed. The  distr ibutions F0 and F1 were 
chosen as normal  distr ibutions with variance 1. For several combinations of the 
means #1,0 and #1,1 of F0 and F1, respectively, and of prior parameters  7~ and p, 
we calculated the values of # and 15 for y ranging from 1 to 200, and sometimes 
from 1 to 500. The  results of three separate  cases, namely, (i) ~ -- 0.5, p = 0.1, 

#1,0 = 5, #1,1 = 10; (ii) ~ = 0.4, p = 0.2, #1,0 = 2, #1,1 = 10 and (iii) ~ = 0.5, 
p = 0.5, #1,0 = 3, #1,1 = 8 are displayed in Figs. 1, 2 and 3, respectively. Figure 4 
represents the behavior  of ~ for the case (iv) ~ -- 0.5, p -- 0.1, #1,0 -- 3, #1,1 = 8, 
when it is assumed tha t  p is known and only 7r is unknown (i.e., the s i tuat ion of 
Theorem 3.1 above). A number  of other  choices of 7r, p, #1,0 and #1,1 were also 
studied. Again, the behaviors of # and 15 were similar to  those of Figs. 1 to  4. 
In each case studied, it appears  tha t  est imates # and/5 approach their  respective 
t rue  values as ~ increases. For small values of ~ (i.e., for ~ < 25), however, the 
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Fig. 3. Behav io r s  of ~ (solid curve)  a n d  i~ ( d o t t e d  curve)  w.r . t .  ~,, for 7r = 0.5, p = 0.5, 
/7o = N(3 ,  1), F1 = N(8 ,  1). 

estimates seem to have a high fluctuation. We believe that  this is partly due to the 
facts that  the estimates were truncated into the interval (0, 1) in our simulation 
and the behavior of one estimate affects that of the other. 

Remark 3. In practice, the result (3.6) means that, in the presence of a large 
amount of auxiliary data from the past, one can expect to do well, as good as the 
unknown rule T* and sometimes better. In most practical applications a large set 
of auxiliary data is available as a result of repeating the same process over and 
over again. For example, this is the case with many industries in which sequential 
methods are applied for controlling manufacturing processes and for monitoring 
the stationarity of a process. Of course, behavior of the proposed EB stopping time 
for small and moderate amount of data is of critical concern in some applications. 
However, the performance of an EB procedure for relatively small y is not easy to 
establish except by simulation. 

Remark 4. In some practical situations the distributions before and after 
the change are not known, i.e., Fo(x) and Fl(X) are unknown. Even in parametric 
models these distributions may depend on unknown parameters, which have to 
be estimated from the data during the detection processes. Bayesian solutions to 
such cases have been developed by Zacks and Barzily (1981) using the backward 
induction principle of dynamic programming. They also considered the problem 
of detecting a change in the success probability in a sequence of binomial trials 
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Fig. 4. Behavior of ~ (solid curve) w.r.t,  u, for ~r = 0.5, p = 0.1, F0 ---- N(3,1) ,  

F1 = N(8, 1). 

using a two-step look-ahead stopping rule. In the preceding work it is assumed 
that the prior probability function (1.2) for 0. It would be interesting to study the 
corresponding empirical Bayes problem for such cases as well. As in the present 
paper, the resulting procedure would then be parametric empirical Bayes. When 
the form of the prior is completely unknown, then a nonparametrie (purely) em- 
pirical Bayes procedure should be implemented. However, the construction of such 
a procedure is more formidable, as for the corresponding Bayesian problem. 

R e m a r k  5. If Tv and @ are bounded then the regularity conditions given in 
Theorems 3.1 and 3.2 for ~ and @ axe trivially satisfied. This is usually the case 
in practise: In most applications, it is reasonable to assume that T* is bounded 
by some known large finite number N, say. Then, instead of ~ and ~ ,  one can 
implement stopping rules (compare with (3.3) and (3.7)), 

and 

~, = inf{N > n > 1; c # n  - p(1 - #n) > 0} 

~-~ = inf{N > n > 1; c~rn - i5(1 - ~r~) _> 0}. 

Since ~, and ~?~ are bounded by N, the conditions l i m s u p , ~ E ( ' ~ )  < oc, 

l i m s u p . ~  E(T~) < oc and limsup~_~o¢ E(1/(1 -p)}~)2 < ec axe easily satis- 
fied. 
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4. Proofs 

First we state three preliminary lemmas. Lemma 4.1 below is known as the 
Datta-Singh inequality; see Lemma 4.1 of Datta (1991). 

LEMMA 4.1. For any real numbers y, z, Y ,  Z and L such that z ~ 0 < L, 

LEMMA 4.2. 
for n >_ 1, 

Let rr~ and #~ be defined by (2.5) and (3.4), respectively. Then, 

{ 4 + 
7~(1--rc) (1 rr~--7 ' 

^ ^ 

PROOF. Write 7rn = Tn/Dn and ~r n = Tn/Dn, where D n is given by (2.4), 
Tn is equal to the numerator of (2.3), Tn = T~ I-=~ and / )~  = Dn I~=~" Then, by 
an application of Lemma 4.1, we obtain 

1 
1 IT " _ 77.1 + ( ~  + 2 ) I D "  _ b .  I 

{ - } 1 Tnl+  3 i E _ ~ l + ( l _ P ) ~ n f o ( X d l T r _ C r  I , 

n since 0 < 7rn _< 1 and Dn = T.  + (1 - 7r)(1 - p)" Hi=I fo(Xi)" Now the result 
follows from the following bounds: 

and 

1 [Tn-Tn[  < ( 1 - p ) l ~ - ~ l  1 I~ -~1  
D---~ - 7 r+p(1-Tr )  + (1-7r----~ 

1 n 1 

D,~ 1-~a f°(X~).= -< (1 - 70(1 _ p ) n  
[] 

^ 

LEMMA 4.3. Let rcn be defined by (2.5) and 4rn = rcn [~=~,p=~, where f) and 
# are as defined in Theorem 3.2. Then, for n > 1, 

8 4 3 } 
I r r n - ~ n l - < l  r r - # l  r e ( l - p )  + p ( 1 - T r ~  + (1 rr~---) 

{ 8  8 4 } 
+ 18 - pl v) + p2(1 _ rr) + p2(1 - rr)(1 - p)n 

6 + I( 1 _p )n  _ (1 -/5)hi. 
(1 -- 7r)(1 - p)n 
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^ "x .e, "X 

PROOF. Write 7r~ = T~/Dn and ~'n : T n / D n ,  where Tn = Tn [~=#,p=f  and 

Dn = DnlTr=#,p=i~. Then, again by an application of Lemma 4.1, we obtain 

3 

Now the result follows from the following bounds on (as in the proof of Lemma 

4.2) DnllTn - Tnl, Dn  I Hin=l fo(Xi) and 1(1 - 7r)(1 - p)n _ (1 - ~)(1 - iS)hi: 

± T n l  - ~ 1  < I ~ - * 1  + 
On 

+ I~ - Pl ~ + p2(1 _ ~_) + p2(1 _ 7r)(1 - p)n 

1(1 - 7 r ) ( 1  - p ) n  _ ( 1  - ~ ' ) ( 1  - / ~ ) n  I < 2 1 ( 1  - -  p ) n  _ ( 1  - -  i~)nl 

+ (1 - p)nlTr -- ~r I. [] 

P R O O F  OF THEOREM 3.1. Observe tha t  the difference R@r, ~,) - R@r, T*) 
can be writ ten as 

(4.1) R(~,*~) - R(~, 7*) = Z Z E[~* = s][*. = r] 
r = l  s = l  

I r i 1 ) }  

where [A] denotes the indicator function of a set A, throughout .  Also arguments 
of functions have been suppressed for notat ional  convenience, and E denotes ex- 
pectat ion w.r.t, all of the random variables involved. Write 

(4.2) R(~,*~) - R(~, 7*) = ~ .  + ~'.,  

where 

(4.3) 

and 

(4.4) 
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We shall show that  lim,_~o~ A~ -- 0 and that  lim sup._~o~ A ,  < 0. First, observe 
s - 1  s tha t  ~=1E[7* = s][#. = r]{% - ~r~ - c~-~.i= ~ 7~} _< E[r* = s]{2 + 2cs}, and 

(4.5) 
o~ 

E[r* = s]{2 + 2cs} = 2P(T* < oo) + 2cE(r*)  < oc, 
8 = 1  

where the finiteness of (4.5) follows from (2.14). This result allows us to take the 
limit sign (i.e. lim.__+o~) inside the summations  of (4.4). Also note tha t  by (2.11) 
and (3.2), for 1 _< r < s, 

(4.6) [7" = s][~. = r] < [CTr,. - p ( 1  - 7or) < 0][cTrr - p ( 1  - #r) > 0] 

= [ ~  < o1[<. _> 0] 

_< [1~  - ~ 1  _> I~ l ] [~r  < 0], 

where 

(4.7) &~ = cG. - p(1 - #~), r 2 1, 

and 

(4.s)  a~ = c7~, - p(1 - G.), r >_ 1, 

with 7rr and frr are given by (2.5) and (3.4), respectively. Then it is easy to show 
P 

that  &~ - a,. --+ 0 under the assumption (3.2) for all r >_ 1. Therefore, from (4.6) 
we get 

(4.9) lim E[T* = s ] [ 4 v = r ] = O ,  for 1 < r < s < o o .  
v ----~ oo 

It now follows from (4.4), (4.5) and (4.9) tha t  l im . -+o~ /X;  = 0, by an application 
of the dominated convergence theorem. To s tudy  the asymptot ic  behavior of Av, 
we re-arrange each term on the right-side of (4.3) and obtain 

(4.1o) 

(4.11) 

and 

o~ oG oo 

E E E[T* = kl[~. = e]rck = E E [ T *  = k][~ > k + 1]Trk, 
k = l  ~ = k q - 1  k = l  

oo o~ 

- Z } 2  <~*  = k][e. = e ] ~  
k = l  ~ = k + l  

k = l  g 1 

k = l  g g : k + l  
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oo oo /v--~g-1 "~ 

(4.12) c E E E[7*=k][~-v=g] ~._ rri ] k=l g=k+l 

= ~ Z El7* = k][~. > e>~_l. 
k = l  g=k+l 

Now combining (4.10), (4.11) and (4.12) we obtain 

(9O O(9 

(4.13) A ~ : ~  ~ '  E['~,>e][r*=k]{Tre<-rce+cTre_~}. 
k=l £=k+1 

By definition, [~ > g] e-1 ^ = l-L=1 [a~ < 0], where &~ is given by (4.7), i _> 1. Hence the 
random function [~. _> g] is { Y1, . . . ,  Y,; (Tr0, r r l , . . . ,  rrg_l)}-measurable, and [7" = 
k] is {r~0, rq, . . . ,rrk}-measurable.  Also, by the assumptions, the auxiliary data 
{ Y1, . . . ,  Y,} is independent of the random elements {~r0, ~rl , . . . ,  }. Therefore, we 
can rewrite (4.13) as follows: 

(XD O ~  

(4.14) A~ = E E 
k=l g=k+l 

O O  O O  

= E E  
k=l g=k+l 

0 ( 3  

- E E  
k=l g=k+l 

the last equality is 
write 

E[~, >_ e][~-* = k]{E(rCg_l - roe + crcg_l I ~;-1)} 

E['Fv ~ e][T* = /~]{'/rt~-i q- C71e-1 -- E(71-g I "~"; 1)} 

E[4~ >_ g] [7* = k]{crcg_l -p(1 - 7rg_l)}, 

obtained by E(Trg I ~;_1) : 7rg_ 1 q-p(1--Tre_l); see (2.12). Now 

(4.15) = A I/I A, A"+_~, 

where 

(4.16) 

and 

(4.17) 

o o  o<3 

/ ~  = E E E['fv :> e][T* = k ] { c ( T r g _  1 - 7}g_1)q- p(Trg_ 1 - ~g-1)}} 
k=l ~=k+l 

o o  o o  

A~t ----- E E g[~t' ~ el[T* = ]g] {c~'g_l -- V(1--  7rg_l) }. 
k=l g=k+l 

Since &g-1 = dre_l - p ( 1  -~re-1) < 0 on the event {~. _> g}, we see that the term 
A'" given by (4.17) is nonpositive for all u, i.e., A'" < 0 for all ~. It now remains /2  - - V  - -  

to study the asymptotic behavior of A~ given by (4.16). Using Lemma 4.2, we 
can bound A~ as follows: 

O O  c x )  

(4.18) IA'.'I _< (c + p) E E 
k=l £=k+l 

E[,~ > eli7. = k] ,~_< { 4 3 }  
- ~--(i-7-n-n) + (1 7rl----~ " 
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Now using P(r*  < oo) = 1 followed by applying the Cauchy-Schwarz inequality, 

(4.19) ~ ~ E[~. _> .;][r* 
k=l g=k+l 

o o  o o  

k=l t~=l 

: E{*.I~ - ~1} 
<_ E 1 / 2 ( ~ ) E 1 / 2 ( ~  _ ~)2 

Thus, if l i m s u p . _ ~ E ( ¢ ~ )  < co, then from (4.18) and (4.19) one obtains 
lim,~o~ A~ = 0, since E ( T r -  #)2 __+ 0 as u + oc. This completes the proof 
of Theorem 3.1. [] 

PROOF OF THEOREM 3.2. The difference R(rr, r . ) -  R(rr, 7") is equal to (cf. 
(4.1)) 

(4.20) 
^ 

m ~ , * . )  - m~,  ~*) = w .  + w ;  

where 

(4.21) 

and 

(4.22) 

(X3 OO 

k : l  e : k + l  
= k][}. : el { (TFk --Trg)'~-C (i~=1 7(i - ET(jj=I 

c ~  8 - - ]  

<:EE I< 
8=2 r:l 

{ 1 )} 

Following the same lines of the proof lim.-.oo A" = 0, it can be shown that  
lim.-~oo W" = 0. Further, using similar steps that  we used to obtain (4.14), 
we can show that  W. = W" + W " ,  where 

(4.23) w~' : ~ ~ E[~. > g][7* 
k=l g=k+l 

and 

(4.24) 

= k]{(C ~- P)(~/--1 -- ~g.--1)} 

o o  0(3 

W ; " =  E E E[~-v > el[T* = kl{c~rg_l - p(1 - ~rg-1)}. 
k=l  £=k+1 

Again, it follows that  W "  < 0 for all u. So, it remains to study the asymptotic 
behavior of W". We shall show that  lim._+~ W" = 0. Using Lemma 4.3, we can 
bound WJ as follows: 

8 4 3 } 
(4.25) Iw"l _< (c+p) 7r(l~_Tr ) + p ( 1 - T r ~  + (1-Ir-----~ 

• Z Z E[~v _> e][< : k ] l~ -  ~l 
k=l g=k+l 
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(8 8) 
+ ( c + p )  zr( l : -p)  + p 2 ( 1 - T r )  

(30 

Z ~ E[~  > e][~* = k]l; - 15[ 
k = l  g=k-I-1 

4 ( c + p )  ~ .  ~ 1 
+ pv(i - ; )  Z E[~. _> e][~* = k] l ; -  151 (1 - p / -~  

k = l  g = k + l  

E[~  > eli,* kl 
-~- -(l-----Tr-) k = l e = k + l  

1 
• ](1 _ p ) e - 1  _ (1 - 15)~-11 ( 1 _ p ) g - l "  

The first two terms on the right side of (4.25) are similar to the right-side of (4.18). 
So, it is easy to show that 

E E El@ > e][7* : k]lTr- ~l -< EU2(~ '~ )EI /2 (  7r - £r) 2 

(4.26) k=l e=k+l 
(DO (:X> 

E E E[T, > g][7* = k ] [ p -  !5l < E W 2 ( T ~ ) E 1 / 2 ( p  - 15) 2. 
k = l  ~ = k + l  

The third term on the right-side of (4.25) can be bounded by 

(3O 

(4.27) J E E[T, _> e][p -- 15[ 1 (1 __ p)~--l' 

since P(T*  < eC) = 1, where J = 4(c + p) /p2(1  - ~r). We can rewrite and bound 
(4.27) as follows: 

(4.28) J E E [ @  > g][P -151 (1 _ p)~-I 
g = l  

j 
1 

= g ~ E E['~, = J]IP - 151 (1 - p)/-1 
j = l  ~=1 

(9O 

< Jp(1  - p ) - I E E [ @  = j l [p - / ] [  1 
(1 _ p)~-I 

j = l  

2 (1) 
<_ Jp(1  - p ) - t E 1 / 2 ( p  - ~)2E1/2 (1 - p)~-- 

Using the identity a n - b n = (a - b) ~-~inl a i - l b  '~-i, the fourth term on the right 
side of (4.25) can be bounded by 

oc ~--1 

(4.29) K E E [ @ > - - e ] [ T * = k ] I P - - 1 5 1 E ( 1 - - P ) i - - l ( 1 - - P ) ~ - - l - - i  1 
k=l e=k+l i=1 (1 -- p)e-1, 
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where K is a positive constant. By re-arranging terms (with the help of Fubini's 
theorem), (4.29) can be again bounded by 

(4.30) KE {p-/51 

" E E E [@ = j](1 - p)i-'(1 -/5) ~-1-i 1 
~=2 j=e i = l  (1 _p)e-1 

< K E [ P - / 5 1  ~ ~ E[~-~ = j] ~-~(1 - p)~-t 1 
j=2 e=2 i=z (1 - p)e-1 

= K E  IP-/51Y~[~-. = J] Y~ ~ ( 1  - p)i-i 1 
j=2 e=2 i=1 (1 - -  p ) ~ - i  

<- K p - I E  [ P - / 5 1 E  [@ = J] E (1 - p)g-1 
j=2 ~=2 

< Kp-2E [p -/3[ E [ ~ - .  = j] (1 - p)j-1 
j=2 

{ ( < KP -2E [P-/SI 1+(1_p)~_ ._1  

{ ( < kp -2 EIP - !~1 + E1/2(P-/5) 2E (1 - p )  L " 

Thus, if l i m s u p , _ ~ E ( ~ )  < cc and l imsup,_.o~E(1/(1- p)4~)2 < oc, then 
from (4.25) to (4.30) it follows that lim,__,~ W~ ~ = 0, since E(Tr - ~r) 2 --+ 0 and 
E(p -/5)2 _~ 0 as ~ ~ cc by assumptions. This completes the proof. [] 
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