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Abstract .  A non-Gaussian state-space model is proposed to estimate a 
switching trend from serial data taken at equally spaced intervals. A pro- 
cedure to detect structural changes in a linear trend is also proposed. The 
results of a simulation study conducted to check the performance of the detec- 
tion procedure are shown. A numerical illustration is provided using economic 
time series data. 

Key words and phrases: Akaike information criterion, edge detection, non- 
Gaussian state-space model, smoothing, structural change, switching trend. 

1. Introduction 

We consider the problem of fitting polygonal line regression (PLR) to serial 
data taken at equally spaced intervals. PLR enables us to estimate a switching 
linear trend. Therefore, PLR is useful for the trend analysis of data predicted to 
involve structural changes in a linear trend. Structural changes in a linear trend 
are often discussed in the analysis of econometric time series (see, for example, 
Tsurumi (1988)). Another application of PLR can be found in one-dimensional 
edge detection in image analysis. In this paper, we suggest a non-Gaussian state- 
space approach for PLR. 

The most traditional way of estimating a switching linear trend may be to 
detect structural changes in a linear model. Actually, in the single change case, 
this way has attracted much attention since Quandt (1958), and has been stud- 
ied in detail as two-phase regression (see, for example, Broemeling and Tsurunfi 
(1986)). However, when the number of structural changes is unknown, this ap- 
proach sometimes faces statistical and computational difficulties, which are mainly 
caused by the fact that the detection of an unknown number of structural changes 
in a linear model is basically a problem of non-nested model selection, and that  
the number of alternative models, that is, the number of combinations of possible 
change points increases exponentially with the size of data. To decrease such dif- 
ficulties, Kashiwagi (1991) suggested to make inference about structural changes 
based on the posterior probabilities of possible change points, and proposed an ap- 
proximation procedure to calculate the posterior probabilities. However, even his 
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procedure becomes infeasible, especially when given data involve many structural 
changes. 

The state-space approach offers an attractive way to avoid the difficulties of 
the traditional linear model approach. Actually, the recent innovation of the state- 
space approach has shown that dynamics of structural changes can be modeled 
explicitly and recursive formulas are available to identify the model parameters 
and the model itself. For example, Harrison and Stevens (1976) proposed multi- 
process models associated with dynamic linear models based on the state-space 
representation to handle model uncertainty including sudden changes in an under- 
lying model, and they gave Kalman-filter-like recursive formulas for forecasting. 
This work was extended to those of monitoring biomedical time series (Gordon 
and Smith (1990)) and of tracking multiple targets (Shumway and Stoffer (1991)), 
for example. However, these works are not concerned with smoothing. In the 
case of on-line analysis, smoothing is not always necessary. But, in retrospective 
analysis, it is desirable to consider smoothing. A state-space approach including 
smoothing which can handle structural changes can be seen in Kitagawa (1987), 
who discussed non-Gaussian modeling of nonstationary time series and suggested 
to execute the recursive formulas numerically to ensure the feasibility. 

The purpose of this paper is to propose, following Kitagawa (1987), a non- 
Gaussian state-space model which can achieve the purpose of PLR approximately, 
even when given data involve many structural changes in a linear trend. To avoid 
the combinatorial problem of possible change points, we seek to provide a switching 
linear trend by assuming a special non-Gaussian distribution for the system noise 
instead of detecting structural changes in a linear model directly. However, as 
a natural consequence of the state-space approach, the estimated trend is only a 
predictor that is induced from a posterior density, and therefore, it is not always 
possible to detect structural changes, especially delicate ones by observing the 
estimated trend. Accordingly, we also propose a procedure based on the AIC 
(Akaike (1973)) to detect structural changes statistically. 

In Section 2, a non-Gaussian state-space model for PLR is proposed. In Sec- 
tion 3, an estimation procedure is presented, and some remarks for the numerical 
computation are given. In Section 4, a procedure to detect structural changes in a 
linear trend is proposed, and the results of a simulation study conducted to check 
the performance of the proposed procedure are shown. In Section 5, examples of 
application are provided. 

2. Proposed model 

In this section, we propose a non-Gaussian state-space model for PLR. Let 
Yl , . . . ,  Yn be a sequence of observations taken at equally spaced intervals. The 
proposed model is: 

Yt = #t + vt 

Pt =- 2pt-1 - / t t - 2  -t- w$ 

t = l  . . . . .  n 
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where #t is a trend component, vt and wt are noise components, and it is assumed 
that vt "~ i.i.d.N(0,cr~). If a Gaussian distribution is assumed also for wt, this 
model becomes a standard one (see, for example, Akaike (1980) and Wecker and 
Ansley (1983)). Instead of a Gaussian distribution, we assume a non-Gaussian 
distribution for wt, which is derived by using the property of the second difference 
on local linearity such that the following proposition holds only for k = 2. 

Ak#t = 0 ¢:~ the consecutive k + 1 components #t, • . . ,  # t - k  are on a line 

where A is the difference operator. This property suggests that, if we set a con- 
straint of increasing the possibility that  the second difference #t - 2#t-1 + # t -2  
is equal to zero, the three components ttt, Pt-x and Pt-~ will show a tendency to 
lie on a line. On the other hand, when the three components are not on a line in 
practice, to achieve the purpose of PLR, it is not always necessary to bring the 
value of the second difference close to zero, for example, by assuming a Gaussian 
distribution for wt as attempted in standard smoothing methods. Accordingly, we 
assume a mixture distribution having the following density for wt. 

p(wt  I a t )  = a tS (wt )  + (1 - a t ) f ( w t )  

where at is a mixing proportion, 5(wt) is Dirac's delta, and f ( w t )  is a density of 
a certain distribution. In the estimation of trend, it is assumed that  at  -= a. For 
f ( w t ) ,  most of existing distributions are acceptable, and in this paper, we employ 
the following symmetric continuous distributions as representative examples. 

Gaussian distribution (G) 

f(wt 

Mixture of P distribution (F) 

f ( w t  I ~, b) = Iw l exp{-Iwtl/b}/{2b~P(a)}, a > 1, b > O. 

Mixture of uniform distribution (U) 

f ( w t  I g, h) = { O1/{2(h - g)} otherwise.Wt C I - h , - g ]  U It, hi, 0 < g < h 

Corresponding to these distributions, we denote the proposed model by Ha,0, 
Hr,0 and Hu, o, respectively. Model He,0 contains a standard smoothing model 
as a special case, Hr,o involves a prior which can have non-zero peaks, and H~,0 
corresponds to a kind of flat prior model. The unknown parameters involved 

2 2 ( ~ , a ,  = in these models, 0a = (c%, a, ~w), Or = a, b) and 0u (Cry2 , a ,g ,  h), are 
estimated using likelihood, and the best fit model among the three is selected by 
the AIC. These will be discussed in the next section, where the observation and 
system models in the proposed model are denoted in the density form as P(yt I #t)  
and p(#t  I ~tt-1, #t -2) ,  respectively. 
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In the state-space approach, the treatment of the initial state, (#0, #-i), some- 
times becomes a subject of study. Actually, several authors have discussed this 
from various viewpoints (for example, Kohn and Ansley (1987) and Kashiwagi 
and Yanagimoto (1992)). However, we assume a conventional distribution for the 
initial state as P(#0, P--l)  O( 1, because an exact treatment of the initial state re- 
quires an inordinate amount of computation, and because the main effect of this 
assumption is limited in many cases to the first part of the series. 

3. Estimation procedure 

In this section, we present an estimation procedure for the proposed model. 
The procedure consists of recursive formulas in the state-space approach and of 
the AIC. 

To define the likelihood of the model, we first present the prediction and 
filtering formulas, which are given, respectively, as 

I y -l) = f p(~, I#t-1, #t-2)P(Pt-1, #t-21 yt-1)dpt-2 P(#t, Pt-1 
dR 

where Yt = (Yl . . . .  , Yt)', R(#) is the support of # and 

P(Yt I Yt--1) ~- f P(Yt I ~t)P(~t, #t--1 I Yt-1)d#tdpt-1. 
JR ( ttt ,~t- 1) 

The initial condition in these formulas is P(#o, #-1 ] Yo) = P(#o, #-1)  and the 
suffix t runs from 1 to n. The likelihood of the model is defined by 

n 

LD,O(OD ] Yn) = H P(Yt ]Y t - l )  
t:l  

where D E (G, F, U). The estimates 0D of 0D can be obtained by maximizing 
the likelihood. The best fit model among HG,0, Hr,0 and Hv,o can be selected by 
using the AIC. The AIC's for these models are defined by 

AICc,0 = - 2  × log Lc,0(0v I Yn) + 6 

AICr,o = - 2  × logLr,o(0r ] y~) + 8 

AICu,0 = - 2  × log Lv, o(~u I Yn) + 8. 

We may select the model which gives the minimum of AIC. The selected model is 
denoted by HD, 0. 

On the other hand, we estimate the trend component #t by the smoothing 
density P(Pt, #t-1 I Yn), which can be obtained by using the following recursive 
formula. 

P(#t, #t--i l Yn) 
~- P(#t, ~t--1 I y~) 

• [ P(# t+l l# t ,  #t-1)P(Pt+l, Pt l Yn)/P(Pt+I, #t l yt)d#t+l 
JR (t~t+l) 
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where the suffix t runs from n - 1 to I .  
The above procedure can be implemented by using s tandard numerical meth- 

ods. An example of the implementat ion is to approximate each function in the 
formulas by a piecewise linear function with equally spaced knots, and then to use 
the trapezoidal rule for integration and a variable metric method (see, for exam- 
ple, Jacoby et al. (1972)) to maximize the log likelihood. Although the proposed 
model involves Dirac's delta, this causes no problem in the implementation,  be- 
cause Dirac's delta appears only as an integrand in the recursive formulas. As the 
interval of definition of #t, one may take a sufficiently long finite interval. Ac- 
cording to our experience, it is preferable to take the interval so that ,  at least, it 
can cover the interval [fit - 3h,,/~t + 3~t], where fit is the posterior mean of #t with 
respect to the smoothing density and ]z is the est imate of h in Hv, o. On the other 
hand, in maximizing the likelihood, we need to expect the existence of local max- 
ima. A practical solution to this problem may be to use various initial values in 
the iterative maximization method.  Finally note tha t  the computer  memory size 
required in smoothing can be reduced by using the split algori thm in Kashiwagi 
(1993). 

4 Detection of structural changes 

4.1 Proposed procedure 
Except when & = 1, given da ta  are predicted to involve s tructural  changes 

in a linear trend. However, it is not always possible to detect s t ructural  changes 
by observing the est imated trend. In this section, we propose a procedure for 
detecting them statistically. 

To detect s t ructural  changes in a linear trend, we assume the following hy- 
pothesis against HD, 0. 

1 t = k + l  
HD, k : at = 

(~ otherwise 

where 2 ~ k ~ n - 1. This hypothesis indicates tha t  the density of the system 
noise wk+i is given by p(wk+i) = 5(Wk+l), suggesting tha t  Wk+l = 0, tha t  is, the 
consecutive three components whose center is #k are always on a line. Therefore, 
in the comparison of HD, k with HD,0, if HD, ~ is selected, it can be judged tha t  no 
structural  change in a linear trend has occurred at t = k. On the contrary, if H/5,0 
is selected, it can be judged tha t  there is a possibility tha t  a s tructural  change in 
a linear t rend has occurred at t = k, because H/5,0 suggests tha t  the system noise 
wk+i is not always equal to zero but is distr ibuted stochastically. Based on these 
facts, we detect s tructural  changes in a linear t rend by selecting the better  one for 
every k among Hb, o and HD, k. To select it, we use the AIC. The AIC for HD.k 
is given by 

AICa,k = - 2  x logLc ,k(~a  I yn) + 6 

AICr,k = - 2  x logLr ,k(0r  I y , ) +  8 

AICu.k = - 2  x log Lu, k(~u I Y~) + 8 
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Frequency t h a t  Hu, o was selected in 20 trials. 

The  first a l te rna t ive  The  second a l te rna t ive  

k 0.125 0.25 0.5 1 k 0.125 0.25 0.5 1 

2 0 4 4 9 2 0 0 6 2 

3 0 1 1 3 3 0 0 1 3 

4 0 0 0 2 4 0 0 2 2 

5 0 0 0 0 5 0 0 0 2 

6 0 0 0 0 6 0 0 2 1 

7 0 0 0 0 7 0 0 1 0 

8 0 0 0 0 8 0 0 2 1 

9 0 0 0 1 9 0 0 1 1 

10 0 0 0 1 10 0 0 1 0 

11 0 0 1 1 11 0 0 1 1 

12 0 0 1 2 12 0 0 2 2 

13 0 1 0 6 13 0 2 5 2 

14 0 0 7 13 14 0 1 7 1 

15 20 19 18 17 15 20 18 13 3 

16 0 1 6 16 16 20 17 9 2 

17 0 1 2 6 17 0 1 4 1 

18 0 0 1 5 18 0 1 6 3 

19 0 0 0 2 19 0 1 5 2 

20 0 1 0 1 20 0 0 1 1 

21 0 1 0 1 21 0 0 1 1 

22 0 1 0 0 22 0 0 1 1 

23 0 0 0 0 23 0 0 2 1 

24 0 0 0 0 24 0 0 1 0 

25 0 0 0 0 25 0 0 1 0 

26 0 2 0 2 26 0 0 0 0 

27 0 2 0 3 27 0 0 0 2 

28 0 0 3 4 28 0 0 1 2 

29 0 0 5 2 

w h e r e  LD,k(OD ] Yn) is t h e  m a x i m u m  l i k e l i h o o d  for  HD,k. 
T h e  p r o c e d u r e  p r o p o s e d  a b o v e  is a m e t h o d  o f  t e s t i n g  l i n e a r i t y  o f  c o n s e c u t i v e  

t h r e e  c o m p o n e n t s  i n d i v i d u a l l y ,  b u t  n o t  a m e t h o d  o f  d e t e c t i n g  a n  u n k n o w n  n u m b e r  

o f  s t r u c t u r a l  c h a n g e s  i n  a l i n e a r  t r e n d  s i m u l t a n e o u s l y .  H o w e v e r ,  t h e  s i m u l t a n e o u s  

d e t e c t i o n  o f  a n  u n k n o w n  n u m b e r  o f  s t r u c t u r a l  c h a n g e s  c a u s e s  t h e  c o m b i n a t o r i a l  

p r o b l e m  o f  p o s s i b l e  c h a n g e  p o i n t s .  S i n c e  t h e  p r o p o s e d  m o d e l  c a n  f o l l o w  v a r i o u s  

t y p e s  o f  c h a n g e  o f  a t r e n d ,  w e  t h i n k  t h a t  t h e  p r o p o s e d  p r o c e d u r e  is p r a c t i c a l  

e n o u g h .  
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Fig. 1. 

X X 

o 

X 

X 
X 

X X 

X X 

X 

X 
X 

X 

X 

x × 
x 

x 
x 

x x 

I i I 1 I 

8 11 16 21 2B 

T 

X 
X 

X 

Z 
X 

A sample of the data  generated using the second alternative with )~ = 0.5. 

4.2 S i m u l a t i o n  

To check the performance of the procedure proposed in the previous section, 
we conducted a simulation study. The alternatives we used for generating data are: 

x t =  15 t 15 , . . . , 29  and x t =  = + 2  t = 1 6 , . . . , 3 0 .  

The first alternative involves a change in slope just at t = 15, and the second 
involves a shift in level between t = 15 and 16. We generated data by Yt = x t  -~- et ,  

where et is a Gaussian random number with mean 0 and variance A2. Then we 
applied the proposed procedure to the data assuming D = U, because Hv,o  was 
always selected as the best fit one among He,0, Hr,0 and H v ,  o in the preliminary 
analysis. The values assumed for )~ are 0.125, 0.25, 0.5 and 1, and the number of 
trials is 20 for each value of A. 

The results are summarized in Table i, which shows the frequency that Hu, o 
was selected at each k for each value of A in each alternative. As seen in this 
table, when A -- 0.125, the procedure perfectly detected the structural changes. 

However, with the increase of A, the procedure became unable to detect them 
correctly, and a kind of edge effect began to appear near the change and end 
points. Such tendency was remarkable in the second alternative. Especially, in 
the second alternative with )~ = i, the procedure showed a tendency to select a 
simple straight line. However, these results may be reasonable, because it is usual 
that signal disappears with the increase of noise. We show a sample of the data 
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Fig. 2. Logs of the nominal  wages in U.S. during 1900-1970 (cross)~ and the mean 
(straight line) and a ±3 sigma interval (dotted line) of the t read component estimated 
by using Hu,o. 

generated using the second alternative with A -- 0.5 in Fig. 1. The detection of 
the structural change may be difficult even by professional eye. 

5. Examples 

In this section, we show the results of application of the proposed method to 
economic time series data. 

Example 1. The first data set we analyze is the series of the logs of the 
nominal wages in U.S. during 1900-1970. This data set has been analyzed by 
Nelson and Plosser (1982), Perron (1989) and Bianchi (1993). Nelson and Plosser 
(1982) applied unit root models, and Perron (1989) made an intervention analysis. 
However, their works were not concerned with the detection of an unknown number 
of structural changes. On the other hand, Bianchi (1993) applied a Bayesian 
method based on Kashiwagi (1991) to detect an unknown number of shifts in 
level in the series of the first differences of the data splitting the data into two 
subsamples. Our purpose is to detect an unknown number of structural changes 
in a linear trend using all of the data. 

The obtained values of AICG,0, AICr,0 and AICu,0 are -170.67, -169.26 
and -171.66, respectively. Therefore, the best fit model is Hu,o. The maximum 
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Fig. 3. Logs of the nominal wages in U.S. during 1900-1970 (cross), and the mean 
(straight line) and a 4-3 sigma interval (dotted line) of the trend component estimated 
by using the standard smoothing model. 

^2 0.03042, & 0.796, ~) 0.126 likelihood estimate of Ou was obtained as av = = = 
and ]~ = 0.128. Figure 2 shows the mean (straight line) and a ±3 sigma interval 
(dotted line) of the trend component estimated by using Hu,o as well as the data 
(cross) plotted against time. The estimated mean changes linearly and turns round 
clearly at 1907, 1908, 1913, 1914, 1915, 1919, 1920, 1921, 1929, 1933, 1941, 1943, 
1946 and 1947. For the comparison, we show the results estimated by using the 
standard smoothing model, that  is, HG,0 with ct = 0 in Fig. 3. The estimated 
mean changes gradually and many turns are observed other than those mentioned 
above. Table 2 gives the values of AICu, k's. The value of AICu,0 is less than that  
of AICu, k at 14 time periods. These time periods agree with those detected by 
observing Fig. 2. It can be considered that  structural changes in a linear trend 
had occurred at these time periods. 

Example 2. The second data set is the series of the logs of the wholesale 
price index in U.S. during 1890-1970. For this data set, the values of AIC's 
were obtained as AICG,0 = -160.85, AICr,0 = -160.29 and AICu,0 = -152.64. 
Therefore, the best fit model is H~,0. The maximum likelihood estimate of 0c was 

2 = 0.2042. Figure 4 shows the results ^2 = 0.03022, & = 0.792 and cr w obtained as ~r v 
estimated by using Ha,0. The estimated mean clearly turns round at 1896, 1897, 
1915, 1920, 1921, 1929, 1932, 1937, 1939, 1945 and 1948. In addition to these, 
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Table 2. The values of AICu,k's in the nominal wages data. 

AICu, k -  AICu, k -  

k (year) AICu, k AICu,o k (year) AICu, k AICu, o 

2 (1901) -172.12 -0.459 37 (1936) -172.12 -0.461 

3 (1902) -172.12 -0.459 38 (1937) -172.12 -0.460 

4 (1903) -172.11 -0.444 39 (1938) -172.12 -0.459 

5 (1904) -172.11 -0.446 40 (1939) -172.12 -0.460 

6 (1905) -172.12 -0.461 41 (1940) -172.12 -0.460 

7 (1906) -172.11 -0.451 42 (1941) --168.62 3.044 

8 (1907) -166.67 4.995 43 (1942) -172.12 -0.460 

9 (1908) -166.67 4.990 44 (1943) -166.78 4.883 

10 (1909) -172.12 -0.461 45 (1944) -172.12 -0.456 

11 (1910) -172.12 -0.461 46 (1945) -171.98 -0.313 

12 (1911) -172.12 -0.461 47 (1946) -164.83 6.833 

13 (1912) -172.12 -0.460 48 (1947) -167.03 4.628 

14 (1913) -166.04 5.625 49 (1948) -172.08 -0.418 

15 (1914) -166.05 5.609 50 (1949) -172.12 -0.461 

16 (1915) -162.11 9.552 51 (1950) -172.12 -0.461 

17 (1916) -172.11 -0.448 52 (1951) -172.12 -0.461 

18 (1917) -172.11 -0.449 53 (1952) -172.12 -0.461 

19 (1918) -172.11 -0.449 54 (1953) -172.12 -0.461 

20 (1919) -152.13 19.536 55 (1954) -172.12 -0.461 

21 (1920) -164.66 7.002 56 (1955) -172.12 -0.461 

22 (1921) -164.66 7.000 57 (1956) -172.12 -0.461 

23 (1922) -172.12 -0.461 58 (1957) -172.12 -0.461 

24 (1923) -172.12 -0.461 59 (1958) -172.12 --0.461 

25 (1924) -172.12 -0.461 60 (1959) -172.12 -0.461 

26 (1925) -172.12 -0.461 61 (1960) -172.12 -0.461 

27 (1926) -172.12 -0.453 62 (1961) -172.12 -0.461 

28 (1927) -172.06 -0.398 63 (1962) -172.12 -0.461 

29 (1928) -172.06 -0.400 64 (1963) -172.12 -0.461 

30 (1929) -168.38 3.281 65 (1964) -172.12 -0.461 

31 (1930) -172.06 -0.396 66 (1965) -172.12 -0.461 

32 (1931) -172.12 -0.461 67 (1966) -172.12 -0.461 

33 (1932) -172.12 -0.461 68 (1967) -172.12 -0.461 

34 (1933) -158.78 12.888 69 (1968) -172.12 -0.461 

35 (1934) -172.12 -0.461 70 (1969) -172.11 -0.444 
36 (1935) -172.12 -0.461 
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Table 3. The values of AICG,k's in the wholesale price index data. 

AICG,k- AICG,k- 

k (year) AICG,k AICG,o k (year) AICG,k AICG,o 

2 (1891) -161.20 -0.348 42 (1931) -161.16 -0.307 

3 (1892) -161.25 -0.395 43 (1932) -152.93 7.925 

4 (1893) -161.25 -0.395 44 (1933) -161.09 -0.235 

5 (1894) -161.23 -0.382 45 (1934) -161.16 -0.310 

6 (1895) -161.20 -0.343 46 (1935) -160.86 -0.009 

7 (1896) --160.08 0.770 47 (1936) -160.64 0.215 

8 (1897) --159.81 1.041 48 (1937) -159.34 1.510 

9 (1898) --161.10 -0.244 49 (1938) -160.94 --0.084 

10 (1899) --160.90 -0.051 50 (1939) -159.77 1.083 

11 (1900) -160.80 0.050 51 (1940) -160.01 0.837 

12 (1901) -161.05 -0.198 52 (1941) -161.08 --0.225 

13 (1902) -160.84 0.016 53 (1942) -160.26 0.596 

14 (1903) -161.03 -0.180 54 (1943) --160.60 0.257 

15 (1904) -161.10 -0.253 55 (1944) --161.06 -0.203 

16 (1905) -161.07 -0.220 56 (1945) --158.44 2.413 

17 (1906) -161.19 -0.338 57 (1946) --160.69 0.165 

18 (1907) -161.18 -0.330 58 (1947) --160.19 0.661 

19 (1908) -161.20 -0.348 59 (1948) --158.73 2.124 

20 (1909) -161.12 -0.266 60 (1949) -161.16 --0.307 

21 (1910) -160.95 -0.096 61 (1950) --161.21 0.353 

22 (1911) -161.17 0.322 62 (1951) --161.19 -0.337 

23 (1912) -161.21 -0.354 63 (1952) -161.25 -0.403 

24 (1913) -161.23 -0.376 64 (1953) --161.28 --0.430 

25 (1914) -161.22 -0.364 65 (1954) -161.29 --0.443 

26 (1915) -148.61 12.241 66 (1955) --161.30 --0.448 

27 (1916) -160.77 0.085 67 (1956) -161.31 0.453 

28 (1917) 157.00 3.857 68 (1957) --161.31 -0.455 

29 (1918) -160.85 0.000 69 (1958) -161.30 --0.449 

30 (1919) --161.14 -0.292 70 (1959) --161.30 --0.446 

31 (1920) --134.78 26.074 71 (1960) -161.29 --0.442 

32 (1921) -139.52 21.334 72 (1961) -161.29 -0.440 

33 (1922) -161.20 -0.344 73 (1962) -161.29 -0.436 

34 (1923) 161.23 -0.382 74 (1963) -161.28 -0.433 

35 (1924) -161.24 -0.384 75 (1964) -161.28 -0.430 

36 (1925) -161.19 -0.335 76 (1965) -161.28 -0.428 

37 (1926) -161.21 -0.354 77 (1966) -161.27 -0.417 

38 (1927) -161.22 -0.369 78 (1967) -161.24 -0.383 

39 (1928) 161.12 -0.265 79 (1968) -161.17 -0.317 

40 (1929) -156.45 4.406 80 (1969) -161.09 --0.243 

41 (1930) -161.05 -0.201 
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Fig. 4. Logs of the wholesale price index in U.S. during 1890-1970 (cross), and the 
mean (straight line) and a ±3 sigma interval (dotted line) of the trend component 
estimated by using HG, O. 

several turns including gradual changes are observed. However, it seems difficult to 
detect structural changes exactly only by observing the estimated mean, because 
some of the turns lie within the range of the sigma interval. For the comparison, 
we show the results estimated by using the standard smoothing model in Fig. 5. 
The estimated mean seems to follow the data excessively, and the sigma interval 
is relatively wide. Table 3 gives the values of AICa,k's. The value of AICa,0 is 
less than that of AICa,k at 22 time periods, that is, at 1896, 1897, 1900, 1902, 
1915, 1916, 1917, 1918, 1920, 1921, 1929, 1932, 1936, 1937, 1939, 1940, 1942, 
1943, 1945, 1946, 1947 and 1948. If we apply the proposed procedure strictly, 
these time periods are regarded as change points. However, some of the values of 
AICG,k - AICc,0 are very close to 0, for example, at 1902, 1918 and 1935. It may 
be inappropriate to conclude about these time periods hastily. One of causes of 
such values being obtained may be the assumption that the observation noise is 
independent. Additionally, in the analysis of econometric time series, it is usual to 
assume an autocorrelated observation noise. An autocorrelated observation noise 
is assumable in our framework, though it is necessary to solve some computational 
difficulties. 
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Fig. 5. Logs of the wholesale price index in U.S. during 189(~1970 (cross), and the 
mean (straight line) and a +3 sigma interval (dotted line) of the trend component 
estimated by using the standard smoothing model. 
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