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A b s t r a c t .  A subset of Bernard's RD-model (replenishment-depletion) is con- 
sidered from the viewpoint of the calculus of finite differences. The most gen- 
eral case is considered and includes an urn with balls of many colors, each 
color being replenished either deterministically or stochastically. Factorial mo- 
ment generating functions (fmgfs) are employed to define probability generating 
functions. A new result is given for the two color case defining the fmgf and 
probability generating function (with probabilities) when the replenishments 
are positive valued random variables with given factorial moments. This result 
involves beta integral transforms defining a manifold of discrete distributions. 
Particular cases relate to hypergeometric discrete distributions. 

Key words and phrases: Bernard's urn, beta  integral transforms, finite differ- 
ence calculus, generating function, hypergeometric distributions, hypergeomet- 
ric functions, moments, replenishment-depletion urn. 

1. Introduction 

An urn contains cj balls of color Cj,  j = 1 , 2 , . . . , s .  There are m cycles 
of replenishment (R) and depletion (D). Thus at the i-th cycle, the j - th  color 

8 (j = 1, 2 , . . . ,  s) is replenished by rji  balls (~ , j= l  rji  = Ri); the cycle is completed 
by randomly removing Di balls, which may be of different colors; the depletion at 
any cycle can not in general exceed the urn content at that  cycle. This urn model 
was basically introduced by Bernard (1977). The scheme is displayed in Table 1. 

The basic notion of relating a problem in health physics to classical probability 
urn models is due to Bernard (1977). Bernard's urn was assumed to contain n 
red balls (representing dangerous material) of radioactive atoms and b white balls 
of stable structure. This state of the urn is modified by adding r white balls 
and then randomly removing r balls. The routine of replenishment-depletion is 
called a cycle and is repeated several times. The obvious question is the decay 

* This research was partly supported by Martin Marietta Energy Systems, Inc., under con- 
tract DE-AC05-84OR21400 with the U.S. Department of Energy. 
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Table 1. Urn Schemata. 

Color C1 C2 " Cs R D R* Accumulation 

cycle 0 Cl c2 
cycle 1 r l l  r21 

cycle 2 r12 r22 
cycle 3 r13 r23 
cycle - 

cycle i r l i  r2i 

cycle. 

cycle m r i m  r2m r~m t ~  R m  - r~,~ = R ~  

Cq C~ 2 

Cs 

r~l R1 D1 R1 - r~l = R~ dl = 0 

rs2 R2 D2 R2 - rs2 = R~ d2 = dl + R1 - D1 

rs3 R3 D3 R3 - rs3 = R E d3 = d2 + R2 - D2 

. i - - 1  
rsi Ri  Di  Ri  - rsi -~ R i di -- Z ~ = I ( R ; ~  - D;~) 

D m  dm 

(i) R~ refers to the total replenishment at the $-th cycle excepting the replenishment (rs~) 

to the s-th color. 
(ii) The accumulation symbol d), at the $-th cycle represents the excess of input over 

depletion. Traditionally it is taken to be zero. 
(iii) The colors may be arranged in any order in the schemata, but the last one (s) will 

not be associated with a corresponding parameter in the factorial moment generating function 
(fmgf). Moreover, in general, the total number of balls in the urn is a constant and this constraint 
may be used as a check on low-order moments, in particular means. 

(iv) The replacement of a particular color at a cycle may be an integer valued random 
variable relating to event occurrences of 0, 1, 2,. . .  events. 

(v) In the sequel fmgf is used and parameters involved are taken to be a l ,  a2 , . . . ,  ~ - 1 .  

of radioact iv i ty  (red balls). In this s i tuat ion,  since a toms  are being considered, 

very large numbers  of balls are involved, and  cycles when referred to the  h u m a n  
condit ion of one or three  a day  may  be as large 20 × 365 (30 years) or 90 × 365. 
Reference may  be made  to Shenton (1983). 

The  first advance was to relate the  probabi l i ty  of the s ta te  of the  sys tem 
to factorial  m o m e n t  generat ing functions coupled with  finite difference calculus. 
The  use of fmgfs has  proved its power historically for m a n y  discrete d is t r ibut ions  
(Poisson, Binomial,  hypergeomet r ic  for example) .  Firs t  and  second factorial  mo- 

ment  thus  became available using compu te r  facilities. However the evaluat ion of 
probabil i t ies,  seemed out  of reach in general. We now develop a recursive scheme 
for the  fmgf  at  the  m - t h  cycle in t e rms  of t h a t  for the  (m - 1)-th cycle, for the  

case of an urn containing balls of s colors for which deplet ion may  not  necessari ly 
equal replenishment .  

The  question of recursions for m om en t s  is resolved by the  relat ion implied in 
the  recursive scheme for fmgfs. 

General ized urn models  m a y  have appl icat ions in branches  of heal th  physics 
(including the pa tho logy  of dietetics);  they  m a y  also be  of interest  as games  wi th  
urns involving r a n d o m  replenishment  or  determinis t ic  replenishment .  
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2. The factorial moment generating function 

This relates to (s - 1) colors and uses multivariate finite difference calculus. 
In fact at the m-th cycle 

(2.1) 

where 

(a) 

m i f m ( a l , a 2 , . . .  , a ~ - l )  = KSnlgm(E)A~,m(a .E)  H xlD') 
- -  - -  - -  x i - - - - - C s  + r s i  +di 

i=1 i=1 to m 

m 

K~ = H ( c  + P~ + d,)(',), 
i=1 

c = c~ + c2 + . . .  + c~, z (k) = z ( x  - 1). . .  (x - k + 1), 

(b) gm(_E) = i=2 "'i , m > 2, 

1, otherwise. 

Here Ex~ is the incremental operator: E u f ( u ,  v, w, . . . )  = f(1 + u, v, w, . . . ) .  (g to 
denote mathematical expectation.) 

(c) A~,~(~_,_E) = ~j + E ~  
j=l i=0 A=m--i 

where 
f r j i, i # 1 r;, 
(. rj~ + cj, i = 1 .  

In previous studies of Shenton (1981, 1983), formula (2.1) is relegated to fine 
print and its symbolic form obscures its mathematical base in the finite-difference 
calculus; there is also an error in one of the symbols (Shenton (1983), p. 8, Rj). 
The new version provides the multivariate probability function at any cycle, along 
with moments. However, it is difficult to handle in some limiting asymptotic 
cases. Other references are Berg (1974, 1977, 1985), Bowman and Shenton (1985), 
Johnson and Kotz (1969, 1970, 1977). 

We note that (2.1) has an alternative form, derived by extracting all operator 
terms Era, E r a - I , . . . ,  El .  Thus there is the user friendly formula 

m :xlD~)~ x,=S, (2.2) 

where 

(i) 7-/8,,~(a, E ) _  _ = 1-Ij=18-1 m-l(l-L=0 1 + ~1-1 '~=.,_,~ ~x~ ) r;,,~_~ 

(ii) r~, i = rj,i, i ¢ 1; r~# = rj,i + c5.i = 1; 
8 (iii) Di is the depletion at the i-th stage; Di _< ~-~j=l rj# 

(iv) Si = c + Ri + di. 
We now consider low-order moments. 
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3. Low order moments 

Factorial moments are set up by partial differentiation with respect to the ap- 
propriate set of a's.  To avoid further complicating notation we consider moments 
for the colors C1 and C2 (see (iii) of Section 1). 

3.1 Mean number of balls of color C1 at the m-th cycle 
For C1, the first factorial moment  at the m-th  cycle is, using N1 to denote the 

number of balls of color C1 at the end of the m-th  cycle, 

.~-1 ~+~ (c + R .  + d.  - D , )  
gm(gl) = ~ r~,m_), H (c + R~ + -d~ ' 

)~=0 ~ = 1  

with similar expressions for the remaining s - 1 colors. In this connection note 
that  the number of balls in the urn at the m-th  cycle is 

m 

c + Z ( R ~  - D~). 

3.2 Second order factorial moments 
For the second factorial moment,  we have for C1 

Cm(N1)(N1 - 1) = 02fm(a)/Ov~ 2 [a=0 

: 

~=1 ~___~ (c + R~ + d~) (2) 

m m 

A = I  # = 1  
(~#,) 

x H ( c + R o + d o - O o ) ( c + R ¢ + d ¢ -  ¢). 

For a cross-product moment,  for C1 and C~ 

m m  

Cm(N1N2) = ~ YI  r~r~, Y I  (c + Ro + do - Da) (c + Re, + de - ¢). 
~=1,=1 o=x ¢=~ (c + Re +--d~ ( c + R ¢ +  
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4. Numerical examples 

4.1 Example 1: three colors (Table 2) 
First cycle fmgf, 

f l (a l ,  a2) = K~I(E=I + a1)4(E=l + a2)4x~ 5) 1=1=4 

rvs ~(5) ]=1=4= 12(5) K1 -: ~=1~1 

Third cycle fmgf, 

- 5  = K3 E; 2 E[~ a (~1 + E=a)T(al + E:3Ez:)4(al + E=3E=:E=,) 4 

× (a2 + E=a)S(a2 + E=aE:2) 5 

x2:10 
=3-----15 

K3 : 12 (15) • 22 (13) • 30 (23). 

Table 2. Three colors example. 

Cycles C~ C2 C3 R D R* 

cycle0 Cl = 1  c 2 = 2  c 3 = 3  

cycle 1 3 2 1 6 5 5 dl = 0 

cycle 2 4 5 6 15 13 9 d2 -- 1 

cycle 3 7 8 9 24 23 15 d3 = 3 

~1 ct2 

4.2 Example 2 
4.2.1 Two colors-random replenishment (Table 3) 

The factorial moment generating function is 

(4.1) E=mE=  1 E - " x t  ] ~ 1  ~ 2  " 
i=l,2,...,m 

Km = (c+rl)(~l)(c+r2)(~2). . .(C+rm) (~"0 ( c=c l  +c2). 

Mean number of C1 balls at the m-th cycle 

m 

Cm(N1) = ci 
~=i c -}- ri 

General factorial moment is 

£m(g} Z)) : c~ ') IT[ c(I) 
i=, (e + ri)(') 

(l = 1,2, . . . ,Cl) .  
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Table 3. Two colors example. 

Cycles C1 C2 R D R* Accumulation 

cycle 0 cl c2 

cycle 1 0 r l  r l  r l  0 0 

cycle 2 0 r2 r2 r2 0 0 

cycle .  

cycle • 

cycle • 

cycle m 0 rm rm rm 0 0 

(Accumulation di = d i -1  + (R4-1 - D i -1 ) ,  i = 1 , 2 , . . .  ,m,  dl = 0.) 

For independent random replenishments at the i-th cycle, let ri have fmgf 
Gi(a), so that (with k-th factorial moment uik) 

o ~  

~(~) = ~ "~ka~/k!, 
k=0 

with probability generating function (pgf), Pi(t) = ~=oP~kt  k, and ri takes on 
non-negative integer values. Then 

f i ( p  c(0 (4.2) gm(N~ O) = c~ t) ,o + (c + 1)q) p'I + 
i----1 

c(Z) 
( c+  2)q)Pi2 + ' . . )  . 

But the component in the product is 

c(t) Ep~k(1  + A c ) k ~  = E ( _ I ) ~  A + l -  1 k(~)p,k 
1 - 1 (c + )~)(a) 

k=O ,k=O k=O 

r(c + 1) f01 = F(/)~(c - l~- 1) Gi ( -a )a l - l (1  - °OC-tda 
(l = 1 ,2 , . . . , c l ) .  

(Note that A~(1/x (8)) = (-1)~(8+r-1)¢~) (x+r)(~+~) , an analogue to A~(x (~)) = s(~)x(~-~).) 
Finally then, 

(4.3) m [ ½ ± 1 )  jo 1 
Era(N}')) = c~')l-I [ r ( z ) r ( c - l +  1) 

i=1 

Gi( -a)a  z- 1 (1 - a)C-lda] 

(1 < l < cl). 

Since the random variables involved cannot be negative, gm(N~ z)) <_ c~ O. 
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4.2.2 Probability generating function 
We go to equation (4.1) written in the pgf form 

Cl c1 

E tkPk = E tkPr(N1 = k lm) 
k=O k=O 

f i  _(r~) = (t + Ex~Ex2"'" Ex~ - 1) ~1 (c + ri) (r') 
i----1 

SO 

Pk(cl,c2;m) = (E= 1 ...E= m - 1)~l:k H (c+ri)~ . 
i = l  

This consists of terms such as 

x i 

i----1 

m _ ( r i )  m 
~i (c2 + r~) (~') 

i=1 i=1 

H Pi0+  ( c2+w+1) (1 )  ( c2+w+2) (2 )  
i----1 (C + 1)(1) Nil + (c ÷ 2)(2) P~2 + " "  

and from (4.2) 

CmN~Cl-~) 

which equals the integral form in (4.3). Hence finally, 

(4.4) er(N1 = k fro) = ~ ( _ l ) r  cl - k 
r=O r 

r(c  + 1) 
× H r (k  + r ) r ( c -  k - r + 1) 

i----1 

x Gi(-a)ak+~-l(1 - a)~-k-rdc~ 

and the probability of N1 0 derived from cl = ~'-k=0 Pr(N1 = k) ~- 1. The compo- 
nents in the product term may be regarded as beta integral transform types. 

Specifically 
Cl (i) Gi(a) = 1 leads to ~k=l Pk = 0, so P0 = 1. 

(ii) Gi(a) = (1 + a) ~', i = 1 ,2 , . . . ,  leads to 

( )clk ( Pr(N1 = k I m) = E ( -1 ) r  el - -  k (C -- k - r + w~) (~') 

i = 1  

(k = 1 ,2 , . . . , c l ) .  
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(iii) Defining the product  term in (4.4) as l-Iim__l H(Gi; k; r), the i-th component 
turns out to be a hypergeometric function in cases where the replacement fmgf 
refers to a classical form. Thus 

(a) Binomial: (1 + pia) ~ 

(b) Poisson: exp(a~)  

(c) Negative Binomial: (1 - p~a) - ~  

H(Gi; k; r) 

F ( - n i ,  k + r ; c +  1;pi) 

M(k  + r; c + 1; -0~) 

F(tg, k + r;c + 1;pi). 

Here we use the notation F(a, b; c; z) for the hypergeometric function, and 
M(a; b; z) for the confluent form; see National Bureau of Standard, Applied Maths 
Series 55, Chapters 13 and 15 (1964), i.e., 

r(c) ~ r ( a + n ) r ( b + n ) z  ~ 
F(a, b; c; z) - r (a ) r (b)  ~ F(c + n) n! 

n=O 

az (a)2z 2 (a)n zn 
M(a,b ,z)  = 1 +  ~-  + (b)22! + " "  + (b)~n! + " "  

where 
(a)n = a(a + 1)(a + 2 ) . . .  (a + n -  1), (a)0 = 1. 

No simplification is possible for the Neyman Type A distribution when G(a) = 
exp[-81(1 -exp(02a)) ] ,  or for the logarithmic series distribution when G(a) = 
ln(1 - pa)/ ln(1 - p). 

For the case, cl = 2, c2 = 4, Gi(a) = exp(a0), 0 = 1 and m = 5, we have 
° 

Pr(N1 = 2 1 5 ) =  E ( - - 1 )  r 30 e-aea(1  - a)4da 
r = 0  

Pr(Yl  = 1 I 5) = 2 ( -1 )  r 6! 1 
r ( r  + 1 ) r (6  - r) - a)5- da 

 0,1 f 0/01  o,  ol } 
giVing 

P2 = 0.25491352, P1 = 0.50546918, P0 = 0.23961730. 

4.2.3 Further illustration 
In Table 4 we give illustrations of the four moments of N1 (mean, standard 

deviation, skewness and kurtosis) when the random replenishments have Poisson, 
binomial, and negative binomial forms. (It is fairly obvious that  when replenish- 
ments are deterministic with a constant amount the mean (when an integer) of 
the stochastic case, there will be a tendency to less variability. Here 

E ( N ~ Z ) ) = c ~ / /  c(0 }m 
(c + r)(t) " 
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Table 4(a). Two color urn model with Poisson random replenishments. 

cl  c2 m g in(N, )  Crm(N1) V/~I(N1)  j32(N1) 0 

0.1 100 1 100 90.67 2.91 -0 .28  1.81 

1.0 100 1 100 37.69 4.83 0.05 2.98 

5.0 50 5 30 3.83 1.87 0.44 3.15 

(The r - th  factorial moment  of the Poisson is Or). 

177 

Table 4(b). Two color urn model with binomial random replenishments. 

n p cl c2 m gin(N1) O'm(N1) V/~I(N1)  ~2(N1) 

5 0.20 100 1 100 37.62 4.55 0.04 2.98 

10 0.10 100 1 100 37.66 4.69 0.05 2.98 

20 0.05 100 1 100 37.67 4.76 0.05 2.98 

25 0.20 50 5 30 3.80 1.83 0.42 3.12 

50 0.10 50 5 30 3.81 1.85 0.43 3.14 

100 0.05 50 5 30 3.82 1.86 0.44 3.14 

Table 4(c). Two color urn model with negative binomial random replenishments. 

p ~ Cl C2 m gin(N1) am(N1) V/~I(N1)  j32(N1) 

0.1 10.0 100 1 100 37.73 4.97 0.05 2.98 

1.0 1.0 100 1 100 38.04 6.03 0.09 2.96 

10.0 0.1 100 1 100 40.81 11.85 0.21 2.79 

In particular for the third example in Table 4(a) (8 = 5, Cl = 50, c2 = 5, m = 30) 
we have 3.8298 for the mean and 1.8669 for the s.d. Also see Fig. 1 which illustrate 
decay of the mean as number of cycles increases.) 

In view of the ramifications of the possible forms involved we can only outline 
general tendencies. 

(a) The mean number of C1 balls tends to zero as m ~ oc. For from (4.3) with 
l = 1, note that 0 < G~(a) _< 1, equality being rejected since here it would require 
G(a) = 1 entailing zero input. That  the inequality holds stems from g(1 - a)x < 1 
for non-negative random variables, and 0 < a < 1. Hence components in the 
product in (4.3) ensure a convergence to zero. 

(b) A similar property for the variance does not in general hold. An illustra- 
tion is given in Fig. 2. 

(c) All examples in Table 4 from the skewness and kurtosis values are of 
beta-type (Pearson type 1) and may be J-shaped. Note that since at any cycle 
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i 

O "  

Fig. 1. 

" " "  2 '  ' "  

Mean when  Cl = 50, c2 = 5, 8 = 5 and  vary ing  m. 

m > 

50 100 
rn 

Fig. 2. Variance when  cl ---- 50, c2 --- 5, ~ --- 5 and vary ing  rn 
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N1 + N2 = c, Var(N2) = Var(N1), x/~l(N~) = -x/-~I(N1), and &(N1) = &(N2).  
(d) When the number of balls in the urn is large, we may approximate the 

distribution of Cl balls by fitting a binomial (1 + p ' a )  c' = ~o*t + ( 1 -  p*)]cl, where 
at the m-th  cycle 

p,= ( )m 
\ c +  l + n p  ' 

with moments 

#~(N1)  ~ Clp*, a ( N 1 )  ~ V / ( C l p * ( 1 - p * ) ) ,  

( 1  - 6p* + 6p .2) 
X/~I(N1) ,,, (1 - 2p*)/a(N1) , f~2(N1) ~ 3 + o2(N1) 

For the Poisson replenishment, np is taken to be 0, and for the negative bino- 
mial replenishments np is taken to be ap. Comparisons for the cases in Table 4(a) 
are given in Table 5. 

Table 5. Comparisons. 

Distribution ~u~(N1) a(N1) V/-~I(N1) ~2(N1) 

(1) 90.67 2.91 0.28 3.06 

Poisson (2) 37.70 4.85 0.05 2.98 

(3) 3.84 1.88 0.45 3.16 

Binomial (1)-(3) 37.70 4.85 0.05 2.98 

(4)-(6) 3.84 1.88 0.15 3.16 

Neg. Binomial (1)-(3) 37.70 4.85 0.05 2.98 

There is good agreement for Poisson and binomial input, but for the negative 
binomial case the standard deviation for the 2nd and 3rd entries deviate markedly; 
for the latter the input variances are 2 and 11 respectively. 

In general one should use formula (4.3) for the factorial moments,  and reach 
some idea of the shape and type of distribution of Cl balls using the first four 
moments.  

5. Recursive schemes for fmgf and factorial moments 

5.1 

(5.i) 

General 
From (2.2) and Table 1, we have for the fmgfs 

f m ( a l , a 2 , . . . ,  a~_,)  

- -  1 +  . . .  1 +  E , , , /  

x fro-1 E~-~ 'Ex----~''"'Ex,~ ~ 
Xm ~" M 
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Defining fro(a1, a 2 , . . . ,  a s - i )  as a multivariate polynomial in al ,  a2,. • •, as-1 
and equating coefficients in (5.1) leads to complete factorial moment information. 
Note that if,/2(8) denotes an s-th factorial moments, then for example 

t ! 

etc., where #~ is a non-central moment. These and their generalizations involve 
Stirling numbers of the first kind. 

5.2 fmgf fea tur ing  one color (s = 2) 
Here 

a .~ r~,,~ ( (5.2) fm(~) = / t  + E--2  / 
k 

where we define 

xm=Srn 

( m - -  1 , 2 , . . . ; f 0 ( a )  -- 1) 

f,,,(a) = f~,o + af.~,l + a2 f~,2 + . . .  

with factorial moments f , m ,  2!fro,2, 3!fm,3, etc. 

Equating coefficients of powers of a, we have the relations, 

[{r~,m~. ] (Sin - 1)(~) ' 
#m,1 - =  Lk 1 )Jm-X,O + fro-l,1 

f~,2  = ~ f ~ - l , 0  + ~ fro-l ,1  + f ro- l ,2  ( S ~  - 2) (v~/  

and in general 

fro,, -= s f m - l , j  S(mD,~ ) , (m = 1, 2 , . . .  ; f0(a) ---- 1). 
j=0 

Recursive schemes, for central moments would appear to be complicated es- 
pecially in view of the non-linear forms involved. For example, for the variance, 

#2 = #(2) +/2(1) - (/2(1)) 2 

where P(1) is the mean and #(2) the 2nd factorial moment. 
Note also from (5.2) that fro(a) is of degree ~m = E~_-I r~,j in a,  so that  

factorial moments higher than Am will be zero. Hence the complete fmgf fm  (a) 
is now defined recursively, so that expressed in terms of t = 1 + a yields the 
pgf. Notwithstanding repetitions, recursive relations for probabilities would almost 
certainly be more complicated than those for factorial moments. 
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5.3 Bivariate relations 
Now take s = 3 in (5.1). Any two desired colors of balls in Table 1 can be 

translated to a 3 color urn situation. Here 

and for example, for the correlation we need fro,l,1 where 

fro(a1, a2) ---- fm,o,o + alfm,l,O + a2fm,o,1 + a2fm,2,0 

+ ala2fm,l ,1  + a fm,o,2 + " "  + .  

The relation is 

iT* r* ¢ r* r* fro,l,1 = k 1,m 2,mJm-l,O,O "1- 1,mfra-l,0,1 "[- 2,mYra-l,1,0 "1- fro-l ,1 ,1)  

(sin - 2) (Din) 
x (m = 1, 2, . . .  ; f0(otx, 0/2) = 1) 

5.4 Numerical example on the moments 
Example 1. Depletion replenishment schemata (Table 6). 
For C1 balls using the formulation in (2.1), 

Table 6. Depletion replenishment schemata. 

Color C1 C2 R D R* Accumulation 

cycle 0 2 6 

cyclel  0 4 4 4 r ~ = 0  d l - 0  

cycle2 0 5 5 5 r~ = 0  d 2 = 0  

fmgf 

Cycle 1. 

f l (a) = K~I(E~I + a)2x~ 4) l~,=1o (K1 = 12 (4)) 

= A10 + a A l l  + a2A12 

1.1-~ (12 ( 4 ) L ,  ~, + 2- 11(t)a + 10(a)a2). 
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Cycle 2. 

f2(a) = K21(E:c2 + a)° (E~Exl  + ~, "~1 ~2 Ixl=lO,x2=ll 

__ K 2 1 { E  0 2 ( O~ )X(25) 
g : l  ~ ~ + ~) ELf1  

1 
- 13(5)(aloE2~ + A I ~ . E ~  + .4~.~)x~ ~) 

12 (5) 11(5) 
-- 1 + O~All 1 - ~  q- a2A12 13(5) . 

(K2 = 13 (5)) 

At the  second cycle, the  mean  is 

12 (5) 11 (4) 32 
#~ = 1 - ~ ) "  2 " 1 - ~ )  - 39 - 0.8205. 

The  second factorial m o m e n t  is 

11 (5) 10 (4) 2 • 8- 7 8- 7 
#i2J = 2 .  13(57 12(4 ) -- 1 3 . 1 2  12.1--~ ---- 0.3046 

and the s tandard  deviat ion is 0.6722. 
The  pgf is (196t 2 + 664t + 427)/1287 = 0.1523t 2 + 0.5159t + 0.3318. 

Example 2. Shenton (1981) (Table 7). 
For C1 balls: 

Table 7. Replenishments exceed depletions. 

Color C1 C2 R D R* Accumulation 

cycle 0 1 5 
cycle I 1 2 3 1 r~ = 0 dl = 0 
cycle2 2 1 3 1 r~----0 d 2 = 2  

fmgf a 

Cycle 1. 

fl((~) = K~ -~ (Exl + ~)27(1) 

=6 
- - ( l + V ( ~ + ~ a 2  ) .  

(K1 -~ 9) 
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Cycle 2. 
,2 (1) (1) 

f 2 ( a )  = K21E;21(E~2 + a)2(E~2Ex~ + a )  X 1 X 2 IX l :7 ,x2=8  

1 1 + 1 + + 11 (1) 
=1"-1 ~ ~ 9E22] 

_ 1 1 + + 1 + + II (I) 
-1--1 ~ ~ ~ 9E227 

34a  48~ 2 30a  3 7a  4 ~ 11(1 ) 

= (6t 2 + 44t 3 + 49t4)/99 

as indicated in the  paper .  

Example 3. Shenton (1981), pp. 333-334 (Table 8). 
Consider  se t t ing  up the  mean  and variance for color 4 in this paper .  

(/(2 = 9 . 8 )  

Table 8. Replenishments equal deplations. 

Color C1 C2 R D R* Accumulation 

cycle 0 3 16 
cyclel 6 5 11 11 r~----0 dl----0 
cycle2 4 10 14 14 r ~ = 0  d 2 = 0  
cycle3 1 11 12 12 r ~ - - 0  d3- -0  

fmgf a 

Cycle 1. 
fl(CQ -- K11(Ex~ -[- 00921 (11) 

9" 19a 3 6 . 1 9 . 1 8 a  2 
=i+--+ 

30 3 0 . 2 9  
. . . .  

Cycle 2. 

i i+ I+--+ +. 
f2(c~) -- 33(lO) ~ 30Ex2 30 .29E22  

~ a +  6 +  - -  + . . . . . . .  = 1 +  4 +  30 ] 30 ~ + ' " "  

Cycle 3. 

= 31-i  1 +  

= 1 + 4.035875a + 7.169258a ~ + . - . .  

T h e n  the  mean  = 4.0359 and the var iance = 2 x 7.169258 + 4.035875 
4.0358752 -- 2.0861 in an agreement  wi th  previoous  work. 
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5. Conclusion 

A computer program to set up iterations for the first four moments for a 
particular color is being studied. This approach is clearly needed if cycles of 1000 
or so are being considered, and such cycles are certainly possible for health physics 
applications. 
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