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Abstract .  A theorem of this paper proves that if the size distribution of ran- 
dom spheres is generalized gamma, its Wicksell transform and other related 
distributions belong to the domain of attraction of the Gumbel distribution. 
The theorem also shows the attraction coefficients of the distributions. The 
fatigue strength of high-strength steel is closely related to the maximum size of 
nonmetallic inclusions in the region of maximum stress of the steel. Murakami 
and others developed a method, making use of the Gumbel QQ-plot, for pre- 
dicting the maximum size from the size distribution of inclusion circles in mi- 
croscopic view-fields. Based on the Gumbel approximation of the maximum of 
Wicksetl transforms, a modified and extended version of Muralmmi's method 
is justified, and its performance is evaluated by simulation. 
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1. Introduction 

MetM fatigue of high-strength steel starts from defects due to nonmetallic 
inclusions. It is known by experience that  the fatigue strength is strongly related 
to the maximum size of inclusions in a high stress region of the steel. Hence, 
it is necessary to predict the maximum size based on the size data measured in 
microscopic view-fields of planar sections of a specimen. 

In a series of papers and a book, Yukitalm Murakami and his coauthors devel- 
oped a prediction method to control the quality of high-strength steel. See, e.g., 
Murakami and Usuki (1989), Muralmmi (1993, 1994) and Uemura and Murakami 
(1990). In his problem, nonmetallic inclusions are round and scattered within 
the steel. To estimate the size distribution and the spatial density of random 
spheres from those of circles on the sectional plane is Wicksell's corpuscle problem 
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(Wicksell (1925)). See, for example, Ripley (1981), Stoyan et al. (1987) or Reiss 
(1993). 

A characteristic of Murakami's method is to use only the maximum sectional 
sizes of nonmetallic inclusions in microscopic view-fields. Relying on the extreme- 
value theory, he uses the Gumbel QQ-plot (probability paper) of the sectional 
maximum data for the prediction of, or the extrapolation to, the maximum size of 
spheres in the specific part of a test piece. For tension and compression, narrow 
sections of metallic pieces are critical. For bending and torsion, central surface 
parts are critical. The former case is more complicated and is of main concern, 
but the latter case will also be studied. 

Murakami's method was developed based on metallurgic research, experiments 
and simulations. In this paper, a modified and extended version of Murakami's 
method is justified based on a statistical parametric model, and its performance is 
examined mainly by simulation. The examination and analysis of available data 
reveal that the current engineering practice is reasonable but not sufficiently ac- 
curate. In the concluding discussions, a way to improve the situation is suggested. 

In Section 2, Wicksell transform in terms of the areas, rather than diameters, 
and its power transformations are mentioned. In Section 3, a general result by 
Drees and Reiss (1992) on the maximum of Wicksell transforms is restated to give 
a theoretical overview of the problem. 

In Section 4, the generalized gamma distribution is assumed as the distri- 
bution of the size of inclusions. Under the assumption, the main theorem and 
its corollaries prove that all the related size distributions belong to the domain 
of attraction of the Gumbel distribution, and show the attraction coefficients of 
the distributions. In Section 5, a generalized and modified version of Murakami's 
method for prediction is proposed. 

In Section 6, a main source of the biases of the estimates is discussed, and 
the asymptotic variances of the estimates are evaluated. In Section 7, datasets 
by Murakami (1993) are analyzed, and the results of Section 6 are checked by 
simulations. The results of this section show that the method of the current use 
is unsatisfactory, and some alternatives are suggested for a sequel work. 

The final Section 8 is supplementary. In the Subsection 8.1, reports on the 
size distribution of inclusions are surveyed. In the Subsection 8.2, the proofs of the 
Theorem 4.1 and its Corollary 4.2 of Section 4 are given, and in the Subsection 
8.3, a mathematical aspect of our Gumbet approximation is discussed. In the 
Subsection 8.4, the original version of Murakami's method is examined. 

2. Wicksell's corpuscle problem 

Let {[xn, yn, zn; sy~]} be a marked Poisson process in the xyz-space. (xn, y,~, 
zn) is the center of a sphere with the corresponding intensity Av. sv~ is the 
size of the sphere at (Xn, Yn, zn) with the p.d.f. (probability density function) fy ,  
which is independent of (xn, y~, z~). We assume that the mean of f v  is finite 
and small enough compared with Av, and the spheres are actually disjoint. The 
spheres are cut by a sectional plane, say, the xy-plane. Let the point process 
{[xn, yn; san]) describe the sectional circles. (xn, y,~) is the center of circles with 
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the corresponding intensity hA, and SAn is the size of the circle at (xn,y~) with 
the p.d.f, fA, which is independent of (xn, yn). 

As the sizes syn and SAn the diameter is usually considered. Here, we adopt 
the area of the great circle of spheres as sy~ and the area of sectional circles 
as SA~, and let Sv  and SA denote the areas as random variables. We need, for 
the theory and practice, to consider the area Sc  of great circle of spheres which 
cross the sectional plane. Thus, there are three random variables S~, w = V, 
C and A, with p.d.f, f~(s), d.f. (distribution function) F~ and survival function 
F~(s) = 1 - F~(s). It is known that  

(2.1) 

(2.2) 

(2.3) 

(2.4) 

and 

(2.5) 

~v  = v ~ A / ( 2 ~ o ) ,  .o  = E ( v ~ ) ,  

f c (8)  : v ~  f . ( 8 ) ,  o < ~ < ~ ,  
#o 

SA = Sc(I - U2), 
1 f o o  1 - 

FA(s)  ---- ~ Js v~/-~:-~- sFV(v)dv' 

fA(S) = ~ fy(v)dv.  

In (2.3), U is the uniform random variable on (0, 1) and independent of Sc.  Note 
that  1 - U 2 has the beta distribution Be(l, 1/2). The p.d.f. (2.5) (or the proba- 
bility distribution of SA) is called 'Wicksell transform of the p.d.f, f y '  (or of the 
probability distribution of Sv). 

PROPOSITION 2.1. From (2.2) and (2.3), 

E(SS) = E(S[~+I/2)/.o, an~ E ( S ~ )  = 
v~ r(r + 1) E(Sv +1/2) 
2 r(r + 3/2) ~0 

PROPOSITION 2.2. The d.]. 's Fv, Fc and FA, defined above, are equivariant 
with respect to their scales. That is, for any positive ~, the d.f. 's Fy(s/~),  Fc(s/~) 
and FA (s/~), are the triple of a WickseU transformation. 

PROPOSITION 2.3. If  Fv is an exponential distribution, or if FA is expo- 
nential, then F y = FA, and vice versa. This is the unique invariant d.f. of the 
Wicksell transformation. 

We prefer areas S~, w -= V, C and A, to diameters because the original data  
are areas: they are numbers of pixels of digital microscopic images with gray levels 
within some limits. Another reason is that  (2.5) (or (2.4)) is simpler than the more 
popular transform for the diameter distributions. This fact was utilized by Hall 
and Smith (1988) in the nonparametric estimation of Fv by a random sample from 
FA. Other than these, there is no reason to choose length or area as the size of 
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spheres. Even a size without geometric meaning will work, and we shall use later 
T~ = S ~ , / 3 > O , x = V ,  C and A. 

PROPOSITION 2.4. Let ¢~ and ~,~ denote the p.d.f, and d.f. of T~ = S ~ u 3 ~  

respectively. Corresponding to (2.2)-(2.5), the WickseU transformation in terms 
of them is as follows. 

(2.6) 
(2.7) 

(2.8) 

and 

(2.9) 

¢c( t )  = tl/2~¢v(t)/E(Tv/2~), (E(T~/2f~) = E(V/~V)), 

TA = (1 - U2)ZTc, 

1 ~ ;  1 (~v(vZ)dv, 
(hA(t) -- 2E(T~/2~ ) /~ x/v 2 tl/~ 

CA(t) - t~/Z-1 /t~ 1 2/3E(T1/2~ ) /~ ~ f y ( v ) d v .  

These return to popular expressions for diameters if/3 = 1/2. 

3. Limit distribution of the maximum of Wicksell transforms 

Let (Zj)~°=l be a sequence of i.i.d. (independent and identically distributed) 
n random variables with a common d . f . H .  If a normalized maximum of (Xj)j= 1 

has a limit distribution, that is, if there exists a sequence of pairs of coefficients 
((an, bn), an > 0)n°°= 1 and a nondegenerate d.f. L such that 

lim Hn(anX + bn) ~- L(x), 
Tt  - -+  O 0  

then 'H belongs to the domain of attraction of L' (H E 7)(L), by symbol), and 
(an, bn)'S are 'the attraction coefficients of H' .  In fact, L is limited to the following 
d.f.'s. 

{ exp( -x -~) ,  x_>0, c > 0 ,  i = l ,  

Lie(x) = exp( - ( -x )C) ,  x ~ 0, c > 0, i = 2, 

e x p ( - e x p ( - x ) ) ,  - c o  < x < oc, c = 1, i = 3. 

LI~, L2c and L31 are called Fr4chet, Weibull and Gumbel distributions, respec- 
tively. See, for example, Galambos (1987), Castillo (1988) or Reiss (1993) for the 
statistical extreme-value theory. 

For the maximum of Wicksell transforms, a general result was obtained by 
Drees and Reiss (1992). They gave their result in terms of the d.f.'s of the diame- 
ters. Here, it is restated in terms of the d.f. (I)~ of T~ - S~,/3 > 0, w = V and A, 
which are introduced at the end of Section 2. 

PROPOSITION 3.1. 

(I)A 6 D(LI,c-1/2~) 

CA C ~)(L2,~+1/2) 
and 

1 
if ¢~v c ~)(Llc), c > 2---~' 

if ~v  c T)(L2c), c > 0 ,  
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¢A C T)(L31) if Oy E 2P(L31). 
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PROOF. In the case of L31, use Theorem 1 of Drees and Reiss (1992) and 
Theorem 1.5.6 of de Haan (1970), to obtain the proposition. The proofs of the 
other cases are similar. [] 

Note that these are for F~ if ~ = 1 and for diameters if fl = 1/2. Drees and 
Reiss (1992) gave, for 3 = 1/2, a condition on ~A such as ~ y  C :D(Lic), and 
discussed the case where ~ y  is the generalized Pareto distribution. 

In the following, we shall discuss only the case of L31. Instead of L31, the d.f. 
of the Gumbel distribution is denoted by 

A(x) = e x p ( - e x p ( - x ) ) ,  - c ~  < x < ~ .  

We observe the maximum area of circles in a view-field. The number N of 
the circles is the Poisson variable with mean AAA, where A is the area of the 
view-field. 

In general, let (Xj)~= 1 be a sequence of i.i.d, random variables with d.f. H, 
and let N be the Poisson variable with mean 8 and independent of Xj's. Under 
the condition N > 0, Y = max(X1, . . . ,  XN) has the d.f. 

1 (e_efi(y) e_0) ~ e_0~(~), 
H(y;O) . -  1 - e  -e 0 ~ c c ,  

where/~(y) = 1 - H(y). Further if H E T)(A) with attraction coefficients (an, bn), 
then 

H(aey + be; 8) ---+ A(y), 0 --+ c~. 

See, for example, Corollary 2.4.1 of de Haan (1970). This is a special case of a 
more general result in Section 6.2 of Galambos (1987). 

4. Generalized gamma model 

A distribution with the p.d.f. 

1 ~.yxa'~-le-(X/~)~l[O < x < oc], a , 7  > 0, (4.1) h(x; a, 7, ~) - F(a) 

is denoted by Ga(a, 7, ~) and called the generalized gamma distribution. See, e.g., 
Bain (1983). It is one of the most general families of distributions of positive 
random variables, and covers typical distributions except for those with shorter 
or longer tails. Ga(a, 1, ~) is the gamma distribution, Ga(1, V, ~) is the Weibull 
distribution, and Ga(1, 1,~) is the exponential distribution. Ga is a limit of the 
generalized F distribution, and the log-normal distribution is its limit. 

We assume, in Wicksell's corpuscle problem, that the area Sv of the great 
circle of the sphere follows Ga(a, V, ~)- Some engineering reports justifying the 
assumption are reviewed in the Subsection 8.1. This model has the following 
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nice properties. One is that if the distribution of any size of spheres, diameter, 
area of great circle or volume, is generalized gamma then that of another size is 
also generalized gamma. Sc follows Ca(a + (27) -1, ?, ~) and Tc = S~c follows 
Ga(a + (27) -1, 7//3, ~Z). Another is that under the assumption, all Fv, Fc and 
FA belong to D(A) as will be shown soon. Moreover, the random numbers with 
d.f. Fc are easily generated, and they are converted to those with FA by (2.3). 

PROPOSITION 4.1.  

(4.2) 

and 

(4.3) 

If Sv follows Ga(c~, % ~). 

Moreover, all the moments of Sv, Sc and SA are expressed in terms of the 
gamma function, and this is another merit of adopting the generalized gamma 
distribution. 

THEOREM 4.1. Wicksell transforms FA of the d.f. Fv, and fA of the p.d.f. 
f y ,  have the following asymptotic expressions if Fv follows Ga((~, 7, 1). 

(4.4) 1 - FA(S) ~ v/lrI? s (~-3/~)'~+1/2 exp(--s~), s ~ oc, 
2I" c~+ 

and 

(4.5) f A ( 8 )  "~ 8(c~-1/2)'y--1/2 exp(--S~), 8 ----+ OO. 

The proof is given in Subsection 8.2. If (a, 7) = (1, 1) the asymptotic expres- 
sions are the exponential survival function and p.d.f., and these are exact ones. 
See, Proposition 2.3. 

COROLLARY 4.1. If SV follows Ga(a,7,~), all Fv, Fc and FA belong to 
D(A), and their attraction coefficients are as follows. The scale coefficient is corn- 
mon for all Fv, Fc and FA, and 

(4.6) an = ~ (log n) x/,~- 1. 
V 

Their location coefficients are 

(4.7) bvn = ~(logn) 1/ ' /+ an{(a - 1)loglogn - l o g F ( a ) } ,  

1 - 1 )  l o g l o g n - l o g F ( o ~  (4.8) bcn = ~(logn)l/~ + an { ( a  + -~ 

and 

÷ 
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(4.9) bAn = ~(log n) 1/~ 

+ an { (c~ m _ _ 1 ~ ) l o g l o g n - l o g  
27 

PROOF. This is based on the Theorem 4.1 and Proposition 1 in Takahashi 
(1987). (There is a typographical error in Takahashi's proposition; the term log a 
in b~ should read log a.) [] 

COROLLARY 4.2. Under the condition of Corollary 4.1, the d.f. 's ~ of T~ = 
S~, w = V,  C and A, also belong to D(A), and their attraction coefficients are as 
follows. The scale coefficient an is common and independent of n. 

(4.10) an = ~ ,  

(4.11) bvn = ~7{logn + ((~ - 1)loglogn - logF(a)}, { ( 1 )  
(4.12) b c ~ = ~  ~ l o g n +  a + ~ - : - - 1  l o g l o g n - l o g F  a +  

and 

{ ( 1 ~ )  l°gl°gn - l°g (4.13) bA~=~'Y l o g n +  c~+2---~- 

( 1)} 
2F a + ~  

The proof is given in Subsection 8.2. The coincidence of an in Corollary 4.2, 
that is, the parallelism of the QQ-plots of the maximums of S~, w = V, C and 
A, was conjectured by Vemura and Murakami (1990), in the case (a, 7)=(1, 1/2), 
based on simulation. They did not notice that an is independent of n. 

5. Murakami's method for predicting the maximum size 

The Theorem of the previous section is the basis of our prediction. However, 
there are two drawbacks in the practical application of Corollary 4.1. First, the 
attraction coefficients (4.6)-(4.9) are rather complicated for our purpose. Second, 
the convergence to the Gumbel distribution in the corollary is not fast enough if 
7 ¢ 1. See, the beginning of Section 6. 

To overcome the drawbacks, we deal with T~ = S~, w = V, C and A, instead 
of S~, in Corollary 4.2. The effect of the transformation will be mentioned in the 
next Section 6. We suppose that the Gumbel approximation of the maximum of 
T~ in Corollary 4.2 is good enough. 

Let us repeat formally our prediction problem. Assume the area S v  of the 
great circle of inclusion sphere in steel to follow the generalized gamma distribution 
Ga(a, % ~1/~) with the p.d.f. 

(5.1) 1 7 s~ ; - l e - s~ /~ l [  0 < s < ~],  
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with known a > 0 and 7 > 0. (The choice of the scale parameter is not essential 
as remarked in Proposition 2.2. The choice ~1/~ is just to be cautious of the 
relationship between T~ and S~.) The intensity of the sphere in steel is £v. The 
parameters ~ and Av are unknown. The observation is the maximum area WA of 
the inclusion circles in a microscopic view-field of area A. The expected number 
of circles in the view-field is AAA, which should be large enough for the Gumbel 
approximation of WA in the following Proposition. 

There are two cases (V) and (C) in the problem. 
(V) Predict the maximum area, Wv, of the great circles of the spheres in a 

part of volume V, where the stress of tension or compression of a test piece is 
maximum. The expected number of spheres in the part is AvV. 

(C) Predict the maximum area, Wc, of the great circles of the spheres which 
intersect with the surface part of steel of area Ac, where the stress of bending and 
torsion is maximum. The expected number of spheres in the part is ~ A A c  . We 
are interested, in fact, in the inclusion spheres near the surface. We can modify, 
accordingly, the parameter )~AAc, slightly. However, the modification does not 
affect the results much. 

PROPOSITION 5.1. The distribution of the power transformation W•, of the 
maximum area, is approximated by the Gumbel distribution A((t - ~7~)/~), w = V, 
C and A, where the scale parameter ~ is common and equal to that of Tv = S~/, 
and the location parameter is determined as follows. 

(5.2) ~/v/~ = "rv + (a - 1) log Tv - log F(a), ( 1 )  
(5.3) r l c / ~ = r c +  ~ + ~ - 1  logTc 

and 

(5.4) 

Tv -- log(AvV), 

Tc = log(AAAc), 

( 1 
~A/~ = TA + C~ + 2~ 

2 r  

- l o g  ,  -A=log(aAA)- 

The two intensities are related by (2.1), in which tto is given by (4.2) or (8.2) with 
replaced by ~1/~. 

PROOF. Insert the expected number of spheres or circles into n of (4.11)- 
(4.13), and change ~ in these expressions to ~. [] 

Note that 
V 

~'v = rA + tog ~ -- 5, 

(5.5) 2 F c~ + 

6 = log E(v /~v )  = ~ log(  + log v~r(c~) 
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and 

(5.6) T C = T A q'- log(At~A).  

The units of A, Ac,  V, /~A, /~V and S~ must be consistent. For example, area and 
volume must be measured in # m 2 and # m 3, respectively. 

Now, we are ready to state a modified and extended version of Murakami's 
prediction method. His original version is explained in Subsection 8.4. For conve- 
nience, we drop the subscript A in WA, ~A and ~-A. 

Prediction procedure. The maximum areas (W1,. . . ,  Wk) in k view-fields are 
the available data. We fit A( ( t -~) /~)  to (W~, . . . ,  W~) by the maximum likelihood 

method. Let (~, ~) denote the estimate, from which we estimate some functions of 
(7/, ~). Firstly, 

1 l o g ~ + l o g  2 (5.7) = r ( . )  

Secondly, solve the equation 

(5.8) ~ +  a + 2 - 7  l o g ~ = - ~ + l o g  

to obtain #. The solution to the equation is discussed below, in the final paragraph 
of this section. 

For the case (V), 

(5.9) 

and 

(5.10) 

A V 
TV = ? + log  ~ -- 6, 

~'Y/~ = ~V + (a -- 1) 1Og~VV -- logF(a) .  

Finally, the mean and quantiles of Wv ~ are estimated by linear expressions ~'~ + c~. 
For the mean c = "YE, Euler's constant, and for the quantile c = wp, A(wp) = p or 

. 1/2 Wp = - log(-  logp). We may need the corresponding values of W v  or w y . 

For the case (C), 5 is not necessary, and ~c and r/'~ are estimated by 

and 

~c = ~ + log(Ac/A) ,  

( 1 )  ( 
log -logr . 

The last step for predicting We is the same as for Wv.  
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The estimation of the scale and location parameters of the Gumbel distribution 
has been studied by many authors. See, for example, Tiago de Oliveira (1983). 
The maximum likelihood method is good enough if the sample size is not small. 

The equation (5.8) has a unique solution for any value of ~)/~ provided that 
d = a + 1/(2~/) - 3/2 > 0. If d < 0, the 1.h.s. of the equation is a convex function 
with the minimum at 7 = -d ,  which is very small compared with the ordinary 
value of ~- = log()~AA) or that of £}/~. Near these ordinary values, the 1.h.s. is 

almost linear in T and the Newton process starting from ~ = 7)/~ will converge 
fast. 

6. Performance of Murakami's method 

By simulations it turned out that the power transformation T~ = S~ is mean- 
ingful. The Gumbel approximation of (W~, . . . ,  W~) is justified by fitting the 
generalized extreme-value distribution F((t -~})/~; c) defined by 

(6.1) F(x; c) = { 
exp(-(1 - cx)l /C)l[c  -1 ( x], c ( O, 

exp ( -  exp(-x)) ,  c = 0, 

exp(-(1  - cx)U~)l[x < c-1], c > O, 

and by comparing ~, under the assumption c = 0, to the normal approxima- 
tion with the asymptotic variance. See Hosking et at. (1985) for the method of 
probability-weighted moments for the estimation and for testing the hypothesis 
c = 0. Without the power transformation, the Gumbel approximation of the max- 
imum of SA is unsatisfactory for the case, e.g. (a, ~/) = (1, 1/2). We tried to justify 
the power transform, but were not successful. See the discussion in Subsection 8.3. 

A problem is that the parameter (z/, ~) of (5.4) in the approximation A((t - 
r/)/~) of W~ is not satisfactory. The main reason is the asymptotic approximation 
(8.3), which is shown to be an underestimate (or overestimate) of 1 - ~A if a < 1 
and V < 1 (or a > 1 and ~/ > 1). Further, it is conjectured that  the asymptotic 
expression underestimates (or overestimates) 1 - CA if d = a + 1/(27) - 3/2 > 0 
(or d < 0). This causes the positive (or negative) bias of both 7) and 4. The biases 
reflect the actual distribution. Since the Gumbel approximation of Wv is better, 
the positive biases of ~) and 4, which will occur in practice, cause the overestimation 
of the mean or quantiles of Wv, namely bias of the estimate to the safe side. The 
effect of the magnifying factor VIA or Ac/A on the final bias is discussed later. 

The biases decrease if the area A of view-fields increases, but their analytic 
evaluation seems difficult. We shall discuss the improvement elsewhere. 

If (a, "y) = (1, 1), Fv and FA is the exponential distribution Ga(1, 1, ~) (Propo- 
sition 2.3), the power transformation is unnecessary, and Wv and (wj)k=l are 
lower-truncated Gumbel variables. The attraction coefficients (4.11)-(4.13) turn 
to 

bv~ = bAn = ~ log n, 

b c n =  ~{log n + 2 -1 log log n - log(v/-~/2)}, 
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and the prediction method is much simpler. This is the ideal case for Murakami's 
method. If (a, 7) is close to (1, 1) the prediction works very well. 

The maximum likelihood estimate (~,~) of the parameters of A((x - r/)/~), 
based on its random sample of size k, has the asymptotic variance 

~2 [ l +6(1-TE)2/Tr2 6(1-TE)/Tr2] ( k )  
(6.2) Var(r),~)= -~- 6(1_7E)/~.  2 6/7r 2 + o  , k --, c~. 

See, for example, Tiago de Oliveira (1983) for the Gumbel distribution. The 
estimate f(7), ~) of a parameter function f(r], ~) has 

Var(f(~,~)) = (Vf)tVar(Ch~)Vf + o(1/k), k ~ c~, 

where (V f) t = (fn, f~). For f(r/, ~) = r/v + c~, 

f , 7 = ~ ( l + a - 1 )  0 ( a - l )  0 "rv -~-~TV=~ I + - -  TV -~T,  

f (  a - l )  O f ( a - i )  
(6.3) f ~ =  + ~  1 +  zv ~--~'rv= + ¢  1 +  7y V 

0 T 0 r / 0  
Orl r -- ~('c + d)' ~-~T -- ~ orlT, and 

T - -  

1 3 
d = a +  - -  - - 

23' 2" 

Within the range of (a, 7) and T which are practically probable, d = -0.5-1.3, 
= 2-5, and T/(T "gV d) : 0.5-1.3. In this range r//~ is almost linear in T, and 

r//( = 1-7. See Tables l(b) and 2 for typical parameter values. Conversely, 

"~ -- 9//~ + log 

and log VIA is dominant among the terms of TV. Hence 1 + (a - 1)/TV is close to 
one. Finally, roughly speaking, 

(6.4) f,7 - 1 and fe - f /~  - ~/~ - TV >> 1, 

and Var(f(¢/, ~) ) - (7v)2  Var(~). 
Going back to the biases, if we find the biases/x,~ and/X~ of (~, ~), the estimate 

f(7), ~) has the bias 

f , / ~  + f ~ / ~  - rvA~. 

Simulations support the above evaluation of the variance and bias of f(7), ~). 
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Table l(a). Data of the maximum square root (#m) of the area of inclusions within the steel 
(SUP12) in microscopic view-field of area 0.0309 mm 2. 

2.015 2.387 2.651 3.045 3.205 3.206 3.303 3.371 3.374 3.426 

3.459 3.494 3.627 3.711 3.745 3.870 3.993 4.096 4.141 4.191 

4.237 4.237 4.510 4,545 4,658 4.663 4.733 4.774 4.889 5.018 

5.024 5.093 5.122 5.317 5.385 5.533 5.758 6.507 6.707 6.794 

Table l(b). Estimate (estimate of its standard deviation) for the data of Table l(a). 

~/ ~ r mag. fac. E ( x / - ~ )  Murakami 

3.764(0.166) 0.996(0,123) 3.005(0.380) 103×V/A 18.27(1.78) 16.52 

104 × VIA 20.56(2.06) 18.71 

105 × VIA 22.85(2.34) 20.89 

The parameter values are; a = 1, V = 1/2, V = 89.8 (mm3), and A = 0.0309 (mm2). 
mag. fac. and Murakami stand for the magnifying factor and the Murakami's original prediction 
method, respectively. 

7. Analysis of a dataset 

In Murakami (1993), Appendix, there are QQ-plots of 20 datasets. The orig- 
inal datasets of 18 of them are offered from Prof. Murakami, and were analyzed 
by the method of Section 5 for the case (V). The volume for prediction (see the 
beginning of Section 5) is V = 89.8 (mm3), the volume of the central narrow part 
of a test piece, times the number of test pieces N = 1, 10, and 100. Table l(a) 
shows one of the datasets, and Table l(b) shows estimates and their error esti- 
mates. In Table l(b) "mag. fac" is equal to 103 × NV/A. The predicted values are 
close to Murakami's, see Subsection 8.4. Figure 1 is the QQ-plot of the dataset 
and predicted values of Table l(b). 

Table 2 shows some results of simulations. The parameter value ~ = 1 is 
chosen close to Table l(b). The values of 7 = tog(/kAA) is changed to see the effect 
of changing A, the area of microscopic view-fields. The value of ~ is determined by 
the asymptotic formula (5.4). The values of standard deviation of the estimates 
agree with the arguments of Section 6. The values of biases of estimates agree also 
with the arguments of Section 6 starting from the biases of ~) and ~. The standard 
deviation and bias of the final estimates are unsatisfactory. 

To decrease the standard deviation and bias to a level~ say, 5%, the sample size 
must be increased substantially. Alternatively, we may change the measurement at 
the cost of more works. One is to count the number of circles in each microscopic 
view-field. The mean number is an unbiased estimate of )~AA. Another is to 
measure all the circles in each view-field. The estimation method using these will 
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Fig. 1. Gumbel-QQ-plot. location = 3.764, scale = 0.996. 

Table 2. Simulation results of estimation, assuming Ga(1,1/2,1), for k = 40, V/A = 200,000 
and some values of r = log(AAA). 1,000 replications. 

A 

estimates // ~ ~//~ ~- ~ E(x/W~- ) 

True 2.073 1.000 2.073 log5 13.695 14.272 

Bias 0.330 0.153 0.039 0.034 -0.102 2.029 

S.D. 0.196 0.142 0.294 0.227 0.336 1.673 

True 2.945 1.000 2.945 log10 14.388 14.965 

Bias 0.258 0.125 -0.057 -0.043 -0.153 1.645 

S.D. 0.193 0.141 0.375 0.308 0.423 1.654 

True 3.770 1.000 3.770 log20 15.081 15.658 

Bias 0.231 0.098 -0.074 -0.060 -0.145 1.307 

S.D. 0.191 0.136 0.459 0.393 0.511 1.592 

True 4.239 1.000 4.239 log30 15.486 16.064 

Bias 0.210 0.087 -0.086 -0.071 -0.147 1.161 
S.D. 0.189 0.135 0.514 0.449 0.568 1.580 

be d iscussed in a sequel  paper .  

A diff iculty in M u r a k a m i ' s  m e t h o d  is the  a s s u m p t i o n  on  the  value of  (a , 'y ) .  

A m o n g  18 da t a se t s  ana lyzed ,  the  value (a , ' y )  = (1, 1/2)  is some t imes  doubt fu l ,  
because  o f  larger  values o f  the  e s t ima te  o f  T = log(AAA) which  are  due  t o  the  larger  

values of  ~/~.  T h e r e  are four  cases such t h a t  ~ > 5, and  it is more  r easonab le  to  
a ssume larger  values of  b o t h  a and  3' for them.  

To e s t ima te  the  p a r a m e t e r  (a ,  7) we have t o  change  the  m e a s u r e m e n t  as above  
ment ioned .  Since the  deve lopmen t  of  m o r e  efficient p red ic t ion  m e t h o d s  is f i rs t ly 
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needed, we do not discuss here the effect of misspecification of (a,-y), but it is 
surely an important problem. 

8. Supplements 

8.1 Engineering reports on the size distribution of inclusions in steel 
The following four papers report on the size distribution of nonmetallic inclu- 

sions in steel. 
Asano et al. (1968): Measuring the inclusions directly, they observe that the 

weight distribution of inclusions is exponential in the clearer part of ingots. That 
is, Fv follows Ga(1, 2/3, .). 

Ishikawa and Fujimori (1985): Discussing the usage of ultrasonic detector, 
they show the area of inclusions on sectional plane to follow the exponential dis- 
tribution, hence Fv to follow Ga(1, 1, .). 

Iwakura et al. (1988): They show a figure of the result of unfolding the distri- 
bution of diameters of sectional circles by Saltykov method. They don't mention 
what distribution fits to the figure, which looks like a p.d.f, of Ga(a, % .) with 
a v > l a n d 3 ' < l .  

Chino et al. (1991): Measuring inclusions of specific substance, they fit log- 
normal to the distribution of diameter of spheres. 

The QQ-plots in Murakami (1993) show the good fit of the Gumbel distribu- 
tion for all of the datasets. The estimated values of AAA are moderate in most 
cases. Hence, fA can be assumed to belong to /)(A), and not far away from 
Ga(1, 1/2,-). This means, because of Proposition 3.1, fy  cannot have a tonger or 
shorter tail. 

The engineers believe that the 'shape parameter' (a, ~/) may depend on the 
type of steel, and that for everyday control of the production process, the predicted 
value of the maximum size of inclusions is useful enough. 

8.2 Proofs of Theorem 4.1 and Corollary 4.2 
PROOF. (Theorem 4.1) We prove first the asymptotic expression (4.5) of fA. 

From (2.5) and Proposition 4.1, 

fA(s)  = 
~ ~ 1 

2 r  

Put u + s~ = (s + w) ~ to find 

e_s~ fo~ (u + s'r) a-1 e_Ud u 
fA(8) 

2 r  

= v~  s(~-l/2)'~-t/2e - ~  o~ 
2P ( a +  2~ ) ~ --~ h(u's)e-udu' 
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where 

1 ?/ } 1/2 

( u~ ~-I 7s7 
u 1/7 ----4 1, as s ~ oc. h ( u , s ) =  1+~/ __(1+~) 

In general, for any/3 > 0, there exist/~1 and/32 (0 </31 </32) such that 

1 + ~ l Z < ( 1 + z ) 1 3 < 1 + ~ 2 z ,  for 0 < z _ < 2 .  

Hence, if 0 < u/s  7 < 2, in the case a > 1, there exists/3a such that 

3~_a ( u/s~ )1/2 3,~_1 

We get also the same bound in the case 0 < a < 1. If u/s  7 > 2 and s >> 1, there 
exist c and n E N such that 

1 U 112 
h(u,s) < ~ m a x { ( 1  +u)a - l ,1}  (31/7_ 1)1/2 < cu n. 

Applying Lebesgue's dominated convergence theorem, we get 

fo~-~uh(U,S)e-~'du - -  F(1/2) = v/~, as s---* cc. 

Thus, the asymptotic expression of fn is proved. 
To prove the asymptotic expression (4.4) of/0A, we find from (2.4), 

/5 1 - FA(S) -- 7 V/-~( s + w)~7-1e-(8+W),dw 
F c~+ 

/5 e -s'~ 87)1/7 8)1/2(U + sT)a-le-Udu. 

F a+~-~ 

We get the asymptotic expression corresponding to fA by calculating upper bounds 
almost in the same way as above. [] 

PROOF. (Corollary 4.2) From Propositions 2.4 and the discussions at the 
beginning of Section 4, the distribution of Tv and Tc axe Ga(a, 1,~ 7) and Ga(a + 
~ ,  1,~7), respectively. The p.d.f. CA of TA/~ "y and its asymptotic expression is 
given, from Proposition 2.4 and the Theorem 4.1, by 

tl/7--1 
~ l ( t l / 7  + w) aT-i exp(-(tl/~ + w)7)dw ( s . i )  C A ( t ) -  2 0r( ) _ 
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where 

(8.2) ( #o = E(T~/2"~) = E(S~/2) = x / ~ r  a + F(a). 

The d.f. ~A of TA/~ ~ has the same asymptotic expression 

(8.3) 1 - OA(t) ~ V " / r  ta-a/2+l/2~e-t t ~ oc. 

2F a +  

The asymptotic expressions are obtained by comparing the integral form of CA or 
CA with those of fA or FA, and by transforming the variables in (4.4) and (4.5). [] 

8.3 Power transformation for the Gumbel approximation 
A referee of this paper suggested that the observed improvement of the Gumbel 

approximation of Wv and WA, in the beginning of Section 6, might be justified 
by theory on rate of convergence to the Gumbel distribution. 

The discussions in Cohen (1982), Gomes (1984) and Resnick (1988) show that, 
for the d.f. Fv of Ga(~, % .), sup_oo<x<o ~ IF~(anx + bn) -  A(x)l is O((logn) -1) if 
"y 7~ 1, O((logn) -2) if~, = 1, a 7 ~ 1 and O(n -1) i f a  = "y = 1. 

However, this rate of convergence is achieved only if the attraction coefficients 
are 'optimal' in the sense of Theorem 4 in Cohen (1982). In case ~/= 1, a ~ 1, 
for example, this means that the attraction coefficients (an, bn) should be specified 
up to O((logn)-2).  Our attraction coefficients (4.6)-(4.13) are not optimal. The 
optimal ones are too complicated to be utilized for prediction, and the authors 
are not successful in finding the explicit form of the optimal ones for the Wicksell 
transform FA. 

8.4 Murakami's original prediction method 
By metallurgic research, experiments and simulations, Murakami and his coau- 

thors chose (a, "/) = (1, 1/2). That is, they assumed the distribution of v/-Sy to be 
exponential. In our version this condition is generalized, although we still assume 
(a,-~) to be known. 

At some points, the original version is different from our new version. Let 
X ( n)n=l be a sequence of i.i.d, random variables with the d . f .H .  The expected 

number T of observations before the first occurrence of Xn > x0 is T = 1/(1 - 
H(xo)), which is called 'return period' in some applications. Conversely, p -- 
H(xo) = 1 - 1/T. For the standard Gumbel distribution, the quantile xo for the 
return period is - l o g ( - l o g ( 1  - l / T ) ) -  logT, and for A((x - ~ ) / ~ )  the quantile 
is V + ~ log T. 

Murakami and his coauthors anticipated that  the difference of the locations 
of Wv, We and WA are mainly due to the difference of the area or volume where 
we consider the maximum, and considered the magnifying factor, e.g. A c / A  as a 
return period. That  is, the observation of the maximums are repeated T = A c / A  
times. 
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Table 3. Bias of Murakami's original predictor, given the value of ~//~, for c~ = 1, 7 = 1/2 and 
some values of exp(~). 

4/~ 
exp(~) 2 2.5 3 3.5 4 4.5 5 

10 0.301 0.238 0.189 0.150 0.118 0.094 0.074 
20 0.349 0.284 0.232 0.189 0.154 0.126 0.102 
50 0.398 0.333 0.278 0.233 0.195 0.163 0.136 

In the case (C), their prediction value of W~ is the quantile 

7) + ~ l o g T  = ~(~/~ + re - r) 

= ~ - ~ { ( ~ / ~ -  w )  - (~/~- ~)}. 

See (5.3) and (5.4) to find the second te rm to be much smaller than  the first. 
Hence, Murakami 's  original method  is close to the modified version in this case. 

In the case (V), they  adopted moreover the magnifying factor V/(AE(W~4)) 
instead of v/-~Vl(2AE(vf-ffv)) based on an intuitive reasoning. Hence, their pre- 
diction value of W~ is the quantile 

(8.4) ~ + ~ log T = ~(~/~ + log(V/A) -log(7) + ~/E)) .  

^ 

Compare it with our est imate ~fy + wp(, and find the value p of Wp, corresponding 
to their prediction value. For simplicity, we discuss the case a = 1, which was 
assumed by Murakami and others. From (5.9), (5.10) and (8.4), 

~/~ + l o g ( V / A )  - log(O + ~ 7 - )  = ~p  + ~v  + l o g ( V / A )  - ~, 
or 

(1 ~) 1 ^ 
0.)p = 2-~ log ~ - log vf~ + ~ log ( - log(~) + ~'YE ). 

Since up = - l o g ( -  logp), 

(8.5) v = exp{-vS(~/~ + ~)~-~/~+~+-~l~+v~}. 

Some numerical values of p, with the estimates 7), ~ and ~ replaced by typical 
values are shown in Table 3. These values show tha t  the original predictor is 
biased to lower, or risky, side, a l though these values support  somehow the intuitive 
arguments  by Murakami and others. 
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