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A b s t r a c t .  In this paper we investigate some aspects like estimation and hy- 
pothesis testing in the simple structural regression model with measurement 
errors. Use is made of orthogonal parametrizations obtained in the literature. 
Emphasis is placed on some properties of the maximum likelihood estimators 
and also on the distribution of the likelihood ratio statistics. 
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1. Introduction 

The classical simple regression model with measurement  errors is defined by 
the equations 

(1.1) 

Yk = Yk + ek, 

X k  ---- Xk -b Uk, 

Yk = a + 3Xk, 

where ek and uk are independent and normally distr ibuted with zero means and 
2 and 2 respectively, which we denote by variances a e ~u, 

0)) 
2 Uk O'u 

k = 1 , . . . ,  n, where N2 denotes the bivariate normal distribution. If the quant i ty  
xk is considered to be a fixed quant i ty  then, the functional regression model follows. 
On the other hand, if the quant i ty  Xk is considered to be a random quantity, then 
the s tructural  regression model follows. In this paper, we consider xk "-~ N(px,  a~), 
with xk independent of (ek, Uk), k = 1 , . . . ,  n, a typically made assumption. The 
main idea behind the equations (1.1) is tha t  (YI, x l ) , . . . ,  (Yn, x,~) are not observed 
directly and the est imation has to be based on (Y1, X 1 ) , . . . ,  (Y~, Xn),  which are 
observed. Examples of practical si tuations where the xk are measured with error 
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are reported in Fuller (1987). An interesting situation is the case where Xk is 
the amount of nitrogen in the soil and Yk is the yield of a certain cereal. In this 
case, the observed Xk values are determined by laboratory analysis and are only 
estimates of the unobserved xk values. 

As is well known, there are problems with the estimation of the parameters 
in both cases. In the functional case, /3 is not consistently estimated. In the 
structural case, some nonidentifiability problems arise. See, for example, Fuller 
(1987) and Kendall and Stuart (1979), where extensive bibliographies are provided. 
A Bayesian treatment for the problem can be found in Zellner (1971). Therefore, in 
order to make the estimation problem feasible, some additional assumptions have 
to be considered. In the structural model, a typically made assumption considers 
that the reliability ratio (Fuller (1987)) kx = 2 2 a J ( a  x + (72), or equivalently, A~ = 

2 2 (Tx/a ~ is known. Fuller (1987) reports several situations particularly in Sociology, 
Psychology and Survey Sampling where k~ is so well estimated that it may be taken 
to be known. Bolfarine and Cordani (1993) derived an orthogonal parametrization 
in this case and investigated the performance of confidence intervals for/3. Another 
common assumption is to consider that the ratio of the two variances Ae = a~2/a~2 
is known. This case has been investigated by Wong (1989) where an orthogonal 
parametrization is derived and Bartlett correction factors are provided for the 
likelihood ratio statistic by using the approach of Lawley (1956). 

In this paper, a unified approach is developed for both (Ax known and Ae 
known) cases. By studying the distribution of the maximum likelihood estimators 
of the orthogonal parameters, we investigate the distribution of the likelihood ratio 
criteria in both cases. The approach also makes it possible to compute directly 
the expected value of the likelihood ratio criteria to order n -2. As shown, the 
correction factors obtained are exactly the same in both cases and coincide with 
the one obtained by Wong (1989). 

Section 2 presents a general matrix representation for the model and the or- 
thogonal parametrization (in the sense of Cox and Reid (1987)) under both as- 
sumptions. Section 3 discusses maximum likelihood estimation and some prop- 
erties of the estimators derived are studied in Section 4. Section 5 investigates 
Bartlett correction factors for the likelihood ratio statistics. 

2. Orthogonal parametrizations 

Note that we may rewrite model (1.1) as 

(2.1) Zk = gk + ek, 

where 

Z k  = x k  ' gk  = g ( x k )  = \ xk / 
and ek - - - ( eu : ) ,  

k = 1 , . . . , n .  Thus, from (2.1), we have that g l , . . . , g , ~ ,  are independent and 
identically distributed with 

Zk ,'~ N~(#; ]E), 



where 

(2.2) 

and 

(2.3) 
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(o;?) 
#= E[Zk]= #x = 

2 (~:n ~ + ~ 

= Cov[Z~] = ( 9 ~  + xo~ 
(Ax + 1)a~ ' 

n~1 ) 
2 2 ~ O-x + ¢Yu 

Further, it can be shown that 

2 2 2 2 

(2A) I~1 = [ ~  + (Z~ 2 + ~)~]~. ,  

Let 

if Az is known, 

if A~ is known. 

if Ax is known, 

if Ae is known. 

{(0~,"  if2 ~2 ,'~\ /~x, e, ,,,/J;, if A~, is known, 
(2.5) O= ( a ,  a 2 a 2 

#z, z, u,/3), ifAe isknown 

and l = / (0) ,  the log likelihood function which may be written as 

(2.6) 
n 

n 1 Z(Zk _ _  V) t~_ ]_ I (Zk  __ V),  
l o< -~ log I~1 - 

k = l  

where #(8) and ~(8) are as given in (2.2) and (2.3), respectively. Let K(8) = [~i,j] 
denote the expected information matrix. Thus, from (2.6), after some algebraic 
manipulations, it can be shown that 

(2.7) 
[ Ol Ol ] [ O~ _~ 0~ n / I OE l OY-, \ l 

~,,y=E [~-~j j j  =n O--~k:E ~ j  +~ t r tE-  ~-~-  

where 8i denotes the i-th component of 8, as defined in (2.5). From (2.7) it follows 
that 

and 

I 0#' _10# ) n - ~  E O i '~-j ' 
ai,i = n / 10Z 10~a 

O, 

if i = 1, 2, 5, j = 1, 2, 

i f i  = 3,4,5 and j = 3,4, 

i f / =  1,2 and j = 3,4, 

t%,5 = ~ , Z  = 'n-0-~ z~ ~ + ~ tr ~ -  ~ , 
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where tr(A) denotes the trace of the matrix A. It follows that ~Z,j # 0, whatever 
be 03- and, furthermore, ~ i , j  = ~;j , i ,  i , j  = 1 , . . . ,  5. This fact makes it hard to obtain 
large sample inference for/3, particularly correction factors for testing statistics. 
One way of aiiviating this difficulty is to consider an orthogonal parametrization (as 
considered in Cox and Reid (1987)), by transforming 0 into ¢ = (¢1, ¢2, ¢3, ¢4, ]~)! 
so that Oi = 0i(¢), i : 1, 2, 3, 4, are the solutions to the differential equations: 

4 

(2.8) ~ ,~, oo~ 
i=1 o~ 

-- ~,j, 

j = 1, 2,3,4. Typically, solving a system like the one in (2.8) is not simple. 
Moreover, when solvable, such equations may not always be easily interpretable. 
In the case when he is known, a solution is given in Wong (1989) and when Ax 
is known, a solution is given in Bolfarine and Cordani (1993). We note that the 
problem of obtaining the orthogonal parametrization can be simplified by first 
making the location parameters in # orthogonal to scale parameters in l~, in the 
sense of Cox and Reid (1987). This is easily accomplished by taking ¢0 = a + ~#~ 
and ¢1 = #~. The problem now is to make ~ orthogonal to the other parameters 
which appear in IE. 

The solution presented in Wong (1989) and Bolfarine and Cordani (1993) may 
be written as 

(2.9) 

and 

(2.1o) 

¢1 = c~ + ~#x, ¢2 = #~, 

2 2 i)0-2 A~Z 0-~ + (A~ + 

¢3 = (~2 + ~)0-~ + ~0-~, 

(~4 = 0-2 

if Ax is known, 

if A~ is known. 

Considering the above parametrization, we have that 

= ~(¢L) = ¢2 

and 

(2.11) IE = ~ ( ¢ s )  = 

(hx-t-1)-1 ( ~x-t- (hx/3)2¢4 
+ 1)h~Z¢4 

(Z2 + ~ ) - 1 / '  Z2~3 + h~¢4 
\ /~(¢3 - ~e¢4) 

(Ax -t- 1)2¢4 / ' 

if h~ is known, 

¢3 hi-/~2¢4 / ' 

if he is known, 

where eL = (¢1, ¢2)' (the location parameters) and qSs -- (¢3,  ¢4, /~) '  (the scale 
parameters). Note that in this new parametrization 

I~1 = ¢3¢4. 
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We call attention to the fact that  the choice of the scale parameters are not as 
obvious as the location parameters. However, the choice of the new parameters 
becomes obvious and clear from (2.4). Moreover, when A~ is known and taken to 
be equal to one (without loss of generality), it can be shown that  

tr(lE) = ¢3 + ¢4, 

so that  ¢3 and ¢4 are the characteristic roots of ~.  In the sequel, we present some 
properties of the matrix ]E which will make it easier to derive the cumulants of 
the log likelihood function 1 = / (¢ ) .  

Let 

and 

and note that  

i = 3, 4, and 

Similarly, 

O~ 3 

if As is known, 

if A~ is known 

Ot 4 

if A. is known, 

if Ae is known, 

CO~ 

0¢ i  = ~i~' 

0lE 0 E  
lE = ¢3 b-S; 3 + ¢4 b-~ = ¢3~3~ + ¢4~4~,. 

OE -i ~lE-icOIE~-i 

and 

(2.12) lE-1 0~] ~--- rh_l~  0~# 0¢~ ~'i i 

where 
5i = ¢ i lE - l  ai,  

i = 3 ,4 ,  are such that  ~ = 1, ~ j  = O, [[~if[ = [[~jrf, i # j  = 3,4; that  is, 

(2.13) 

and 

1 2 A ~ + I  (~x + i ) -  I ( 
\ -~#7' 

~3 = 
(#2 + , L ) - 1 / 2  ,L ' 

if Ax is known 

if A~ is known, 
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(2.14) f 
t 

if Az is known, 

if A¢ is known. 

Note that if ~i = (&3, (~4) and @ = diag(¢3, ¢4) then ~i(Zi - # ) ~  N2(O, O), 
i = 1 , . . . ,  n. Furthermore, from the above results, it is easy to see that 

from where it follows that 

/ 1 0 Z \  2 (2.15) ~- -~) =,~;~, 

where 12 is the two dimensional identity matrix and c~ = c ~ ,  with 

(2.~6) 
k ~  - ~-~-~ } (¢3¢4)'/2' 

if Ax is known, 

if Ae is known. 

From (2.12) it follows that 

(2.17) tr(E-10~E 10:E) -1-,- {~-2, i=j 
- b - ~ / =  (¢~¢~) ~ = 0, i # j ,  

i , j  = 3,4, and from (2.15) 

(2.18) ° s )  ~], tr(~;~) : 2~ 9.  tr (]~]-1-0-- ~ ]  j : 

Now let K = K(¢)  = [n~,j] the information matrix under the orthogonal parame- 
trization. Thus, from (2.7) with 0 replaced by ¢, we have that 

0 # ' _  1 O# 

~i,3 = n f / _ 1 0 r , \ 2 1  

O, 

i , j - - 1 , 2 ,  

i -- 3, 4, 5, 

i = 1,2, j = 3,4,5, 

where # = # ( e L )  and ]E = ]E(¢s) are as defined above and ~{,j = Kj,i, i , j  = 
1 , . . . ,  5. Thus, K = diag(KL, K s ) ,  that is, K is a block diagonal matrix with 

KL = n ~  -1 
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and, using (2.17) and (2.18), 

(111) 
K s  = n diag 2¢23 , 2¢2, , 

where ~r~ is given in (2.16). Note that in both cases (A= and A~ known), ~ 

can be the asymptotic variance of v~/~, where ~ is the likelihood estimator of/3 
(Section 3) and may be written as 

~2 ¢xxav____v.x _ e2 ( 1 - p2 x "~ 

where a y x  -- Cov[Yi,Xi], a x x  = Var[Xi], ayy .x  = Var[Y~[X d = ~ y y -  
-1 2 ~rxxaYx = ayy(1  - p2x)  and 

O'y x 
PYX  = @ r x x a y y ) l / 2 ,  

which denotes the correlation between Yk and Xk, k = 1 , . . . ,  n. 

3. Maximum likelihood estimators 

The loglikelihood function l = / ( ¢ )  with respect to the orthogonal parameters 
given in (2.9) and (2.10) may be written as in (2.6), with # replaced by #(eL) 
and E replaced by E(¢s) .  Hence, the maximum likelihood estimator (¢L,¢S) of 
(eL, CS) is obtained by solving the equations 

01 ¢=¢= ~ 0/.t' ~.a_l[ rl 
a¢i  k----1 ~/Z-J  I~  k -- ~)l~b--¢ -- 0, 

i = 1, 2, 

0¢i ~ tr E -1 0E 

"PE 1 0 E  1 1 E ( Z k _ #  ) _ _~_~ilE_ ( Z k - p )  --0,  +5 
k=l ¢=4 

i = 3, 4, and 

¢=~b n 
= - - , )  ~ -  b - 5 ~ -  ( z ~  - ~ ) l ~ = ~  

0/3 2 k=l 
= 0 .  

The first equation leads to ft -- #(q~L) = Z, from which we get 

~1 =]~r  and ¢2 =2{,  
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since p = (01, O2)' and Z = E'-1 Zk/n

	

Using these estimators, it
follows from the above equations that

a'O)Sdi(Q)'

i = 3, 4, and
d'3(O)S&40) = 0,

respectively, where ai (/3), i = 3, 4, is as defined in (2 .13) and (2.14), respectively,
with /3 replaced by /3 and

S= nE(Zi _Z)(Zi-Z)'- (SYx Sxx)'2=1

where Sxx =

	

1(Xi-X)2/n, Syy = Fi=1(Yi-Y)2/n and Syx
X)(Yi - Y)/n . From the above equations, it follows that

(i) when Ax is known (Bolfarine and Cordani (1993)) :

03 = (Ax + 1)Syy - 2(\x3)Syx + (A. /3)2 4,
,~ =SXX
4~4

	

Ax + 1 '

~- (A E +1) Syx
Ax Sxx

Replacing ~4 and 13 in ~3, we have that

~3 = (Ax + 1)SYY.X,

where

Syy.x = Syy - SXXSYX = SYY (1 - rYX)

(ii) when A e is known (Wong (1989)) :

Q2SYY+ 2Ae/3SYX+ aeSxx
~3 =

	

~2 + Ae

~4 =
SYY - 2,3SYx + /3 2SXX

)2 + Ae

and ryx

- Ei=1(Xi-

SYX

(SYYSXX) 1! 2 '

1/2
SYY-AeSxx

	

SYY -ASXX
2

Q = (

	

2Syx

	

) + (sign(Syx)) (

	

2Syx

	

+ A
e

It can also be shown that the maximum likelihood estimator of cbs
(03,04,0)' is given by the solution of the equation

E(OS) = S,
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where E(~s) is as given in (2 .11), with cs replaced by ~s. Some estimators may

also be given alternative expressions as, for example,

(A + 1)Syy - (AJ)2~4, if A is known,
~3 =

)\ e Syy - /3Syx,

	

if A e is known .

Note also that, in both cases,

(3.1)

	

~3& = IEI = SYY.xSxx •

4. Some properties of the maximum likelihood estimators

In this section we study some properties of ~ = (0'L , 0s )', for A,, and Ae known .

Under model (1 .1), it follows that

and

(4.1)

are independent, where

1
A=Z-N2

C
€, 1 E ,n )

E=SNW2CIE,n-1),
n

and E
= C

QYY uYX 1
QYx aXX '

with Z and S as before. Here, Wk (A, m) denotes the k-variate Wishart distribu-
tion with dispersion matrix A and m degrees of freedom (Muirhead (1982)) . From
these results, it follows that ~L = (~1, ~2)' and Os = (~2, ~4, )' are independent
and

1
Q5L=Z~N2(L, 1En )

Thus, confidence regions or hypothesis testing for Ho : OL = 'yo can be performed
by considering the variable

F = Cn 2
	 2)

n-2C 2

	

(Z- €)'S-1 (Z - €) F2,n-2,

that is, F is ditributed according to the Fisher F distribution with 2 and n - 2
degrees of freedom . Furthermore, confidence intervals or hypothesis testing for
functions of the form a'cbL where a is a known vector of constants, we can use

-v/_n_(a'
0L - a'OL)

	

t(0 1 ; n - 1),
(a Sa) /

	

'
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where t(0, 1; n - 1) denotes the central t distribution with n - 1 degrees of freedom. 
On the other hand, the exact marginal distribution of the components of the vector 
q~s is particularly difficult to obtain when Ae is known. In particular, if A~ = 1, 
then ¢3 and ¢4 are the proper values of the Wishart matrix ~ (¢s ) .  Thus, in this 
situation, the distribution function of (q~3, ~4) can be represented in terms of an 
infinite series (Muirhead (1982)). Similarly, the distribution function of ,~ can be 
given as a convergent infinite series of incomplete beta functions (Anderson and 
Sawa (1982) derived the distribution of fl in the functional case. This distribution 
corresponds to the conditional distribution of/~ given x = ( x l , . . .  , xn) '  in the 
structural case). For this reason, inference on fl when A~ is known typically is 
based on large samples, since as n --. co, 

v/-~(~_ fl) P N(O, a2). 

Moreover, using properties of the Wishart distribution we can study the exact 
distribution of certain functions of Cs in both cases (Ax or Ae known). Thus, 
considering the Wishart distribution in (4.1) it follows, in both cases, that  

(i) SYY .X  ---- S y y  - s ~  = S y y ( 1  - r 2 x )  is independent of ( S v x  S x x ) ;  S x x  
(ii) ~Svv.x 2 -1 2 °'YY.X t ~ J  )(.n--2, where as seen before, a y y . x  = ~ r y y - ~ T x x a Y x  z a y y ( 1 - -  

P~'X); 
(iii) S y x  [ S x x  "~ N(~-r'z-S "~" ~-v-z~" S x x ) ;  k a X X  A A '  n 

(iv) ~Svr 2 ~Sxx 2 
avv  ~ X n - 1  and axx ~ X n - 1 ;  

(v) Svx ~ t(~YX ~vv.x 1) 
S x x  ~ a x x '  (n -1 )axx  ; n -  

and 
(vi3 ( (n -2)Sxx '~ l /2{  Sv x  _ avx  

/ ~ S v v x  / ~Sxx ) N t ( 0 , 1 ; n - 2 ) .  
Results (i) to (ii) follows ~xx directly from Theorem 3.2.10 in Muirhead (1982). 

Notice also that  (iii) follows from the fact that  Yi [Xi ~ N(I~v + a V X a x l x ( X i  - 
#x), a v y . x ) ,  i = 1 , . . . ,  n. To prove (v) and (vi) notice first that  (iii) implies that  

S y x  a v x  S x x  "~ N 0, 
(4.2) \ S x x  a x x  n S x x  J 

Let 
S y x  6ryx n S X X  

U x x  - and V x x  - 
S x x  a x x  ( n -  1 ) a x x  

Thus, from (4.2) it follows that  

6rYY'X I (4.3) ( U x x  ] S x x )  d ( U x x  ] V x x )  ~ N O, (n - 1 ) ¢ x x  V x l  ' 

where X __d y means that  X and Y have the same distribution. Moreover according 
to (iv), it follows that  

1 2 
(4.4) V x x  ": n - 1Xn-1.  
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From (4.3) and (4.4) it follows that the unconditional distribution of Uxx is given 
by 

( ayv.x ) 
Uxx -- sxxSY-----xx ~xxaYX .v t O, (n - 1)axx ;n - 1 , 

since, as is well known, the t distribution is a mixture of a normal distribution 
with a chisquare distribution (Muirhead (1982), Arellano-Valle et al. (1995)). This 

proves (v). Now, notice that (4.2) implies that Sx~2Uxx  is independent of Sxx ,  
from where it follows that 

(4.5) o- l /2r r  ( S y x  aYX~ ( (Tyy.x~. Oxx c~xx = Sxlx/2 ,., N O, 
S x x  a x x  / n / 

Thus, (vi) follows from (i), (ii) and (4.5). 
Moreover, (vi) allows making inference on the ratio (function of Cs) 

O'y x 
O'X X 

if Ax is known, 

if Ae is known. 

For example, for testing H0 : fl = 0 (independence between X and Y), we can use 
the fact that 

"- t(0, 1; n - 2), 

where cr~ = aZ(¢s) is as defined in (2.16). From results given above, we also have, 
for Ax and Ae known, that 

(4.6) 

since, as considered in (3.1), 

and 

Sy~.xSxx = Isl  = I~ , (~ )1  = 4 ~ 4  

~ Y Y . X ~ X X  = I~1 = ¢s¢4.  

Moreover, 

(4.7) t, ~-7~7] ] \ OyY.XCrXX 

\a-~xY.x/J + E [log \~----~X JJ 
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which follows from the fact that  if V ~ Ga(u,5), the gamma distribution with 
parameters u and 5, then E[logV] = ~b(u) - logS, with ¢(.) being the digamma 
function (Abramowitz and Stegun (1965)). In particular, if Ae = 1 (or known), we 
can write 

~3 nt- (~4 = tr{~](¢E)} = t r ( S ) =  Syy + Sxx,  

from which it follows that  

Finally, considering Ax known, we have that  

¢3 = (Ax + 1)awy.x, 
axx fl= ( A~ + I ) aYX 

¢ 4 -  A ~ + I '  \ A~ O'xx' 

so that  the maximum likelihood estimators of the above parameters are given by 

S x x  
$3 = (~x + 1 ) s y y  x ,  & - ~ + 1' Sxx A~,~4" 

Considering the above relations and the previous results, when A~ is known, we 
have that  

(i) ¢3, ¢4 and ¢41/2(/3- fl) are independent; 

(ii) ~ 2 and ~-~ 2 ~'~ Xn--2 ¢4 '~ Xn-l; 

(iii) ~]/2(/}_/3) ~ N( 0, Z~A~n j, where a~ is as given in (2.16). 

(iv) ~ t ( f l , ~ - ~ l ; n -  1); and 

(v) ~ ( ~ - ~ )  ~ t(o, 1; n - 2). aO 

Notice from (v) that,  

E[/3] =/~, n > 2 and Var[/~] = a~ n---3 '  n > 3 .  

Moreover, from (v) it follows that  an exact (1 - a)100% confidence interval for/3 
is given by 

where tn_2,a/2 is the upper 1 - a/2 point of a t distribution with n - 2 degrees of 
freedom which can also be used as an exact a level test for H0 :/3 =/3o. 
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5. The likelihood ratio statistics 

Let ¢ = -' = ^ _ (eL, ~S)' the maximum likelihood estimator of ¢ (¢~, ¢~)' under 
the null h_ypothesis Ho : /3 = /30. It is easy to see tha t  (~L = eL ----- Z and 
Cs = (¢3, 44,/3)' follows from the equations 

and 
~= /3o  

where 6i(/3o), i = 3, 4, are as defined in (2.13) and (2.14), with/3 replaced by/3o. 
In the model with A~ known, it follows that ¢4 = ¢4. Under Ho :/3 =/30, we have 
that 

nS ~ W2(Eo, n - 1), 

where Eo is the same as E (defined in (2.11)), but evaluated at (¢3, ¢4,/30). This 
implies that 

~ 

(5.1) 2 Xn--1, 

= 3, 4. However, ¢3 and ¢4 are independent only in the model with A~ known. 
The likelihood ratio statistics for testing Ho :/3 =/3o against H1 :/3 #/~o is given 
by 

(5.2) G=2(L(q) ) -L (¢ ) )=n log  ~ [ ¢-~4 J " 

Under Ho : /3 = /30, the statistics G has asymptotic chisquare distribution with 
one degree of freedom, denoted by G ~ AX21, and can be represented in terms of 
/3o and the elements of S as 

(5.3) G(/3o) 

n log { (/3gSvy 

'k 1)Syy - 2~oflxSvx 'F (~oAx)2Sxx ] 

if Ax is known, 

+ 2Ae/3oSyx + AeSxx)(Syy - 2/3oSYx +/32Sxx) ] 

if A~ is known, 

where, as before, Syy.x = S y y ( 1  - r~x ). Notice that in the case where Ax is 
known, 
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As has been extensively discussed in the literature (Cordeiro (1983), Wong (1989)), 
the approximation of the distribution of the statistics G to the chisquare distribu- 
tion can be improved by using Bartlett correction factors. For the case when A¢ is 
known, the correction factor has been derived by Wong (1989), by using the ap- 
proach developed by Lawley (1956), which typically is difficult to implement since 
it depends on the fourth order cumulants of the likelihood ratio statistics. We pro- 
pose now an alternative approach of deriving the correction factor for both cases 
(Ax known and ~ known) by computing directly the expected value of the likeli- 
hood ratio statistics by using some results derived in the previous section. Letting 
E0[G] denote the expected value of G under the null hypothesis H0 : /3 = ~30, it 
follows from (5.1) and (4.7) that 

= n {~b ( ~ )  - ~b ( ~ - ~ )  } , 

is the diga.mma function evaluated at m. Using the fact that where ~b(m) 
(Abramowitz and Stegun (1965)) 

1 
~b(m) = ~(m - 1) + ------l'm- 

1 1 1 
~b(m) = log m 2m 12m ----5 + 120m -----g + 

1 1 + O(m_4) ' 
= logm 2m 12rn 2 

n{ [ l o g 7  _ 1 1 1 )  

3 (n + 1) 2 n 2 0 ( n - 4 )  n 1 

-- n{l°g ( 1 +  l )  - -1 [ ( 1 + 1 / - 1 - 1  I n  

1 
1 + - 1 + O(n -4) 

3n 2 

2 [ ( 1 - 1 ) - 1 - ~ ( ~ - 1 ) - 1 ] } .  

we have that 

(5.4) 

n 2)} 
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Considering the expansions 

l o g ( l + l )  1 1 
n 2n ---~ + O(n-3)' 

1 + = 1 - - + O ( n - 2 ) ,  k = 1 , 2 ,  
n 

(1 1 )  -1 1 1 ( ) (~  1 )  -1 2 4 
_ = + - + O _ n - 2 ,  - = + - + O n - 2 , ( )  

n n 

it follows from (5.4) that 

5 
E0[G] = 1 + ~nn + O(n-2)' 

so that for both cases (A~ and Ae known) the corrected likelihood ratio statistics 
is given by 

(5.5) c*  = G/(1 + 5/2n),  

with G as given in (5.3). Notice from (5.5) that the correction factor derived is 
exactly the one derived by Wong (1989) for the case Ae known, and that it is the 
same for the case Ax known. 
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