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A b s t r a c t .  In general, the regressor variables are stochastic, Duan and Li 
(1987, J. Econometrics, 35, 25-35), Li and Duan (1989, Ann. Statist., 17, 
1009-1052) have been shown that  under very general design conditions, the 
least squares method can still be useful in estimating the scaled regression 
coefficients of the semi-parametric model Yi = Q1 (a +/3Xi; ei), i = 1, 2 , . . . ,  n. 
Here a is a constant, /3 is a 1 × p row vector, Xi is a p x 1 column vector of 
explanatory variables, ei is an unobserved random error and Q1 is an arbitrary 
unknown function. When the data set (X~, Yi), i = 1, 2 , . . . ,  n, contains one or 
several outliers, the least squares method can not provide a consistent estimator 
of the scaled coefficients/3. Therefore, we suggest the "fuzzy" weighted least 
squares method to estimate the scaled coefficients /3 for the data set with 
one or several outliers. It will be shown that  the proposed "fuzzy" weighted 
least squares estimators are v~-consistent and asymptotically normal under 
very general design condition. Consistent measurement of the precision for the 
estimator is also given. Moreover, a limited Monte Carlo simulation and an 
example are used to study the practical performance of the procedures. 

Key words and phrases: Least squares estimator, semi-parametric model, out- 
lier, asymptotic normality, fuzzy weighted least squares estimator, Monte Carlo 
simulation. 

1. Introduction 

In  m a n y  pract ical  s i tuations,  it is impor t an t  to s tudy  the  re la t ionship of the  
ma jo r  response variable Y to  the  other  factors  X T = (X1, X 2 , . . .  ,Xp) .  To ex- 
amine such relat ionship one usual ly  uses a regression model  in which Y has a 
dis t r ibut ion t h a t  depends  on X .  In m a n y  applicat ions,  pa r ame t r i c  model  is the  
best  approx ima t ion  to the  t rue  model,  however, the  search for an appropr ia t e  
model  is not  easy. This  is par t icu lar ly  t rue  when the  sample  size is l imited and  
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the justification of the use of the parametric model is difficult. Under such situ- 
ations, nonparametric smoothing techniques are frequently regarded as promising 
alternatives. The nonparametric methods break down quickly when the number of 
explanatory variables becomes large. To overcome the disadvantage, many statis- 
ticians and economists suggest the estimation procedures for the scaled coefficients 
of a semi-parametric model. The semi-parametric model is 

(i.i) Y~ -- Ql(a+/3Xi;ei), i -- 1 ,2 , . . .  ,n, 

where Q1 is an arbitrary unknown function, a is a finite constant, t3 is a i x p row 
vector of coefficient, Xi is a p x 1 column vector of explanatory variables, and ei 
is an unobservable random error term, i = 1, 2 , . . . ,  n. 

For the model (1.1), Q1 is unknown, Srillinger (1982) showed that the ordinary 
least squares method provide useful estimates for the scaled regression coefficients 
if the regressors are stochastic and jointly Gaussian or deterministic and quasi- 
Gaussian. Duan and Li (1987), Li and Duan (1989) also investigated conditions 
on the behavior of regressors such that consistent estimators can be developed for 
the scaled coefficients of the regression function of the dependent variable. 

In some practical conditions, the data  set from the population has one or 
several outliers, (see Rousseeuw and Levoy (1987), Rousseeuw (1984)), we can use 
the optimal fuzzy clustering procedure proposed by Van Cutsem and Gath (1993) 
to detect outliers. Therefore, the ordinary least squares method can not provide 
consistent estimators for the scaled regression coefficients of the model (1.1). In 
this paper, for the data set with outliers, we suggest an estimation procedure for 
the scaled coeffficients of a semi-parametric model. Thus, the semi-parametric 
model is replaced by the model 

(1.2) Yji=Q(a+/3Xji;eji), i = l , 2 , . . . , n j ,  j = 1 ,2 , . . . , q ,  

where Q is an arbitrary unknown function, a is a finite constant, 3 is a 1 x p row 
vector of coefficients, Xji is a p x 1 column vector of explanatory variables, eji is 
an unobservable random error term, q is the group number, ~-~=1 nj = n, q > 1 
and nj << nl, j = 2, 3 , . . . ,  q. Define nl to be the size of main group. 

For example, if the data set has only one outlier, then q -- 2, n2 -- 1 and 
nl = n - 1 in the model (1.2). Even when the data set has a few outliers, we can 
use the optimal fuzzy clustering procedure proposed by Van Cutsem and Gath 
(1993) to classify outliers to some groups. 

In this paper, we assume that the regressors are stochastic. We use the 
weighted least squares method to construct a consistent estimator for the scaled 
coefficients 13, and the optimal fuzzy clustering procedure to provide the weights 
of the weighted least squares method. 

Throughout this paper, our goal is to estimate the slope vector ~ when the link 
function Q is unknown. In this circumstance, the intercept a can not be identified, 
and the slope vector can only be identified up to a multiplicative scalar. Therefore, 
we can at most estimate fl up to an unknown constant of proportionality. Such 
estimate is useful in testing H0 : j3A = 0, A is a known p x k matrix, or estimating 
the ratios of slope coefficients. These ratios measure the relative importance of 
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the regressor variates of interest. To estimate the main features of Y, such as 
E(Y [ X) for the data  set with one or several outliers, our estimation procedure 
can provide a useful tool for reducing the dimension of the explanatory variable 
X to one dimension. 

Our consistent estimator is asymptotically normally distributed under some 
conditions. The asymptotic variance-covariance matrices can also be shown to be 
consistently estimated, and hence the precision of the estimate can be evaluated 
and test statistics can be derived. Section 2 discusses the estimation procedure 
and introduce the optimal fuzzy clustering procedure. Basically, suppose that  for 
the stochastic regressors in each group have jointly elliptically symmetric distri- 
bution (Fang et al. (1990)) (or satisfy Condition (C1) of Subsection 2.1), then 
the weighted least squares method can still help to estimate the scaled coefficient 
ft. Asymptotic results of the proposed estimator and its variance estimator are 
derived in Section 3. Section 4 provides simulation results of the estimates under 
two regression models, and one practical example. In the small sample size, the 
simulation performances of the estimator are still very robust. 

2. Estimation and the optimal fuzzy procedure 

2.1 Estimation procedure 
Suppose our set-up (Y~, X~), i = 1 , 2 , . . . ,  n, are independent but not all iden- 

tically distributed random vectors with one or several outliers. Therefore by the 
optimal fuzzy clustering procedure in Subsection 2.2, we can divide the data  set 
into some groups. Suppose there are q groups. Given the random observations 
(Yji, Xji), i = 1, 2 , . . . ,  nj ,  and nj  << nl ,  j = 2, 3 , . . . ,  q, and ~-~=1 nj = n, with 
the assumption that  for each j the unobserved eji, i = 1, 2 , . . . ,  nj are i.i.d, ran- 
dom vectors, we assume E(Yji I Xji) = g(a +/3Xji), where g is a real-valued 
function (that is, the means of the observed Yji depend on Xji only through 
flXji). When q = 1, if the regressors X T are Gaussian variables with mean ~T 
and variance-coverance matrix Z, and g is an almost differentiable function satis- 
fying E[g'(a + j3X)[ < co, then applying Stein's (1981) identity we have, for some 
constant 0o, 

(2.1) E[g(a + f lX)(X - #)T~- I ]  = 00fl 

where 
00 = Cov{g(a + fiX), a + f iX}/var(a + fiX). 

This result was essentially first obtained by Brillinger (1982). Moveover, Brillinger 
(1982) also applied this result to show that  the ordinary least squares method may 
provide consistent estimators of fl up to a constant of proportionality. Result (2.1) 
was later provided to be still valid by Duan and Li (1987) and Li and Duan (1989) 
even we only assume 

CONDITION (el). E(WX I ~X) is linear in fiX for all linear combinations 
WX.  Particular multivariate distributions satisfying (C1) include all elliptically 
symmetric distributions (Fang et al. (1990)). In this paper, according to the set-up 
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of data with one or several outliers, assuming q > 1 and applying Theorem 1 in 
Duan and Li (1987), we can prove the whole basis of our "fuzzy" weighted least 
squares estimator which is the conclusion of the following lemma. 

LEMMA 2.1. For each j, let X T have a multivariate distribution with mean 
vector #T and variance-covariance matrix Zj. Assume Condition (C1) is satisfied. 
Suppose Yj is a random variable depending on Xj such that E(Yj I Xj) = g(~ + 
19Xj), where the real-valued ]unction g satisfies E[g(~ + ~Xj)Xy T] < oc. There 
exist some finite constants Oj such that 

E[Yj(Xj # ~Tz -I] Oil3, j 1,2, - j j  J , . . . . .  , q .  

If the variance-covarianee matrix Zj, j = 1 ,2 , . . . ,  q, are different, and under 

CONDITION (C2). n j  ~ n l ,  w j i  = o(1),  i - -  1 , 2 , . . . , n j ,  j -= 2 , 3 , . . . , q ,  
V'~J w ''2 o(1), . and for some constants dj satisfy n z_,i=l 3~ = dj + j = 1,2,. .  ,q, 

~-~i=1 wji = 1, we can easily show Z~=i  ~J 

(2.2) = E wj y  (xj  - 
j = l  i=l  

qnj } 
j=l i=1 

-1 

to be a consistent estimator of/9** nl : = : E i = l  Wli01), E i = l  w l i O l ~  0 . . / ~ ( 0 . .  nl 

where -~,o q nj = ~ j=l  ~i=1 wjiXji, wji as weights from the optimal fuzzy procedure, 
i = 1, 2 , . . . ,  nj, j = 1, 2, . . . ,  q. Additionally, if all the variance-covariance matrices 
~j,  j = 1 ,2 , . . . , q  are the same, but the means #j, j = 1 , 2 , . . . , q  are different, 

then under Condition (C2) we can also show/~, to be a consistent estimator of 
~* ---- A.~j=I~[~q z_~i=lV'~J wjiOj3 = 0./3. The asymptotic normality of v~(/~. - / 3 . )  and 

v~ (~ .  - f~**) is established in Section 3. In addition, we shall propose consistent 
estimators for the asymptotic variance-covariance matrix. In Subsection 2.2, we 
will discuss the weights wji, i = 1, 2 , . . . ,  nj, j = 1, 2 , . . . ,  q from the optimal fuzzy 
procedure proposed by Bezdek (1973), Gath and Geva (1989). 

2.2 The optimal fuzzy clustering procedure 
This algorithm is derived from the combination of the fuzzy k-means algorithm 

proposed by Bezdek (1973) and the fuzzy maximum likelihood estimation proposed 
by Gath and Geva (1989). Fuzzy k-means algorithm is derived from the solution 
which minimizes the following fuzzy version least squares function: 

n K 

J(x, v) = Z Z , 
j = l  i----1 

K<_n, 

where uij is the degree of membership of Xj in i-th cluster, Xj is the j - th  p- 
dimensional data vector, V/ is the i-th cluster center, d2(Xj, V,) is the Euclidean 
distance between Xj and Vi, K is the number of clusters. The weighting exponent 
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for uij, 2(>_ 1), controls the "fuzziness" of the resulting clusters. A theoretical 
basis for an optimal choice of g is so far not available by Bezdek (1981), based on 
empirical grounds ~ was chosen to be equal to 2. The steps of fuzzy clustering 
proposed by Gath and Geva (1989) are following: 

1. Carry out unsupervised tracking of the initial set of cluster centers, (V1, V2, 
. . .  , V ~ ) .  

2. Calculate the weighted matrix U (with entries uij) according to 

K 

3. Calculate the new set of cluster centers (1)1, 1)2,..., l)g), where 

and update U to 5~j, according to Step 2. 
4. If maxi,j[luij - ~tijl] < e stop, else goto Step 3, where e between 0 and 1. 

For Step 1, we need two statistics to do unsupervised fuzzy partition. In order 
to decide the initial subgroups and the optimal numbers of clusters in the data set, 
Gath and Geva (1989) proposed the performance measures--fuzzy hypervolume 
(FHv) and average partit ion density (DpA). 

Fuzzy hypervolume (FHV) is defined by 

K 

where 

FHV = E[det(Fi)] 1/2 
i=1 

{n }/{ } 
F~ = Z h(i I x~)(xj  - ~ ) ( x j  - V~) ~ ~ h(i l x j )  , 

j = l  j = l  

h{i I Xj) is the posterior probability (the probability of selecting the i-th cluster 
given the j - th  data  vector). When ~ = 2, h(i I Xj) is similar to uij. 

Average partit ion density (DpA) is defined by 

DpA = ( I / K )  SJ{[det(Fi)] 1/2 

where Si(= ~,j:x, ex~ uij) is called to be sum of central members, and 

~i = { x ,  I (x~  - ~ ) ~ F C i ( x ,  - ~ )  < 1}. 

Gath and Geva (1989) proposed that  the optimal numbers of clusters in the data  
set is determined by K which is corresponding to global minimum in FHV or global 
maximum in DpA. 

If we already get an optimal cluster result, we can choice the normalized degree 
of membership corresponding to the main classified cluster as weights for (2.2). 
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3. Asymptotic normality and measurement of precision 

First, we devote to establish the asymptotic normality of v/-n(/~, - ~ , ) .  Given 
the set-up of data in Section 2, and the assumption that for each j the regressors 
Xj i  has mean #ji and variance-covariance matrix E, the asymptotic distribution 
of v~(f~, -/~,) is equivalent to that of 

(3.1) 
q n j  

S~ = E E w j ~ { ( Y j , -  EY j )  - Z , ( X j i  - # j )} (Xj i -  # j ) T E - 1 .  
j = l  i=1  

Since S~ is the average of independent random variables, by the Slutsky theorem 
and the Theorem B of Serfling ((1980), p. 30), we estabilish the assertion of Theo- 
rem 3.1. The asymptotic variance-covariance matrix is also stated in Theorem 3.1 
with detailed analysis. 

THEOREM 3.1. Assume  conditions (C1), (C2) and (C3): E [ Y j X  T] < c~, for  
each j = 1, 2 , . . . ,  q, are satisfied, then 

x /n(~,  - ~ , )  d M V N ( O ,  E,), as n --, oc 

provided the variance-covariance matrix  E, exists. Here the matr ix  E, is 

q 

E, = E - 1 E  djE{[(Yj - EY j )  - 13,(Xj - p j ) I : ( X j  - #j)(Xj - # j ) T } E - 1 .  
j = l  

PROOF. Set 

I, j=l i=1 

Then 

q n j  

= E E 1 
j = l  i=1  

q nj  q n j  

j = l  i=1 j = l  i=1  

q rtj 

j - -1  i---1 

q n j  

+ ~_, Z ~J~(5~- EYj)(X~- , S ( t ;  1- Z-') 
j = l  i = l  
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q nj q nj 

+ Z ~J~EYj(X,' - ~-~ " j )  ~w -~ E E wjiYji("j xw)T~w x 
j = l  i=1 j = l  i=1 

q n j  

-~" E E wji(Yji - -  SYj)(Xj i  - -  ~j)T~--I 
j = l  i=X 

q nj 

+ E E wjiE{ (Yji - EYj)(Xji - ~t j )T}(~w 1 -- E - 1 )  -~- op(n-1/2). 
j=l i=l 

(By the Slutsky theorem, the Theorem B of Serfling ((1980), p. 30), and (C2)) 

Set P B  = q "J E j = X  E i = I  wjiE{(Yji - EYj)(Xji  - # j ) T } ( ~ w l  -- Z - x )  

q nj 
PB = E E w j iE{ (Y j i -  E Y j ) ( X j i -  #j)T}E~x(E-  E~)E -1 

j = l  i=1 
q nj 

= E E wjiE{(Yji - EYj)(Xji - #j)T}E-I(E _ ~ w ) ~ - i  .~_ op( /~- l /2)  

j--1 i=1 

(By the Slutsky theorem, the Theorem n of Serfling ((1980), p. 30), (C2), 

and )(~ L#I )  
q n j  

= - E E wjiOli~(E~, - E)E -I + Op(n -1/2) 
j=l i=1 

= - ~ , ( E ~  - E)E -~ + oAn -~/~) 
q nj  

= - ~ ~ ~ , ~ , ( x j ~  - 2 ~ ) ( x j ~  - 2~)~r~ -~ + ~,  + o , (n -~/~1 
j = l  i=1 

q nj 

---- -- E E wjiZ*(Xji -- ~tJ)(Xji -- , j ) T ~ - I  _~_ Z* "~ op(n-U2), 
j = l  i=1 

therefore, 

q n i  

/~, = ~ ~ wji{(Yji - EYj) - ~ , ( X j i -  # j ) } ( X j i -  #j)TE-1 
j=l i=l 
+ ~, + %(n-1/2), 

then 

where 

v/-n(~. - i~.) d MVN(O,E.),  

q 

E. = E -~ E diE{[(Y3 - EYj) - fl.(Xj - #j)]2(Xi - #j)(Xj - #j)T}E-1. 
j = l  
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The proof is completed. [] 

For the estimator ~, to be of practical use, one needs an estimator of its 
asymptotic variance-covariance matrix. Therefore, a moment  estimator of E,  can 
be defined by 

q 

~,  = ~ l  E ( d j / n j )  
j = l  

n j  

• - .tj)12(xj - Xsl(Xj - 
i----1 

Under the conditions of Theorem 3.1, E,  can be shown to be asymptotically con- 
sistent for E, .  Based on this measurement of precision, hypothesis testing on 
H0 : ~A = 0, A is a p × k matrix of full rank k < p, can be done by using the usual 
Wald statistic. The test statistic is n ( ~ , A ) ( A E , A T ) - X ( ~ , A )  T and its limiting 
distribution is X 2 with k degrees of freedom. 

Secondly, given the set-up of data in Section 2, and the assumption that  
for each j ,  the regressors Xj~ has mean #j and variance-covariance matrix ~ j  
(different variance-covariance matrix), the asymptotic representation similar to 
(3.1) for v~(~ , - /3**)  can be analogously derived. Thus v~(/3, -/3**) is equivalent 
to that  of 

(3.2) 
n l  

Tn ~- E W l i { ( Y l i  - EY1 - ~ * * ( X l i  - j - t l ) } ( X l i  - ] - t l ) T ~ l  1, 

i=1 

where/3** n l  = ~-~i=1 Wli01~. Then, /3, is a v~-consistent estimator of/3** stated 
formally in Theorem 3.2. 

THEOREM 3.2. Given Conditions (C1), (C2) and E[Y1X1 T] < oo, then 

x/-n(3, -/3**) d_~ MVN(O,  E**), as n --~ oc 

provided the variance-covariance matrix E** exists. Here the matrix E** is 

E** = E~ldaE{[(Y1 - EY1) - ~**(X1 - tq)]2(X1 - ~tl)(Xl -- ~ t l ) T } ~ l  1- 

Moreover, we can show that given the conditions in Theorem 3.2, E** can be 
estimated consistently by 

~** = ~ w l ( d l / n l )  
nl 

i=1 
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Table 1. Estimated means of ~. and 4, the sample variance $2(t3, ) (in 1st parentheses), the 
Monte Carlo means of the variance 52(j3.) (in 2nd parentheses), and means of squares errors (in 
parentheses) of ~ for (#1, P2) -- (4, 7) in Model (I). 

10 0.44743 0.89432 0.50031 

(0.581) (0.146) (0.716) 

(0.363) (0.091) 

20 0.44732 0.89437 0.50015 

(0.169) (0.042) (0.302) 

(0.154) (0.038) 
3o o.44718 o.89444 0.49995 

(0.101) (0.025) (0.156) 
(0.080) (0.020) 

Table 2. Estimated means of ~. and ~/, the sample variance ~2(f~.) (in 1st parentheses), the 
Monte Carlo means of the variance &2(~.) (in 2nd parentheses), and means of squares errors (in 
parentheses) of ~ for (#1, P2) : (1, 5) in Model (I). 

10 

20 

30 

0.44732 0.89437 0.50015 
(0.425) (0.106) (0.663) 
(0.340) (0.085) 
0.44720 0.89443 0.49998 

(0.141) (0.035) (0.244) 

(0.126) (0.031) 

0.44714 0.89446 0.49990 

(0.090) (0.022) (0.151) 

(0.077) (0.019) 

Note: The unit in parentheses is 10 -5 . 

4. Simulation studies, example and final remarks 

In order to study the finite sample properties of the "fuzzy" weighted least 
squares estimator /3,, a Monte Carlo experiment has been done in which 300 
samples of different sizes n were generated from various populations for dependent 
variable. While it is not possible to completely characterize the sampling behaviour 
of the estimator, our main purpose is to suggest that  the proposed estimator can 
be feasible and can perform well in finite samples. Here, we only discuss the case 
which (Xi, Yi), i = 1, 2 , . . . ,  n with same variance-covariance matrix and different 
means. Alternatively, in our unpublished technical report, (X~, Yi), i = 1, 2 , . . . ,  n 
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Table 3. Estimated means of/~. and -~, the sample variance $2(/3,) (in 1st parentheses), the 
Monte Carlo means of the variance b2(/3.) (in 2nd parentheses), and means of squares errors (in 
parentheses) of ~/for (#1,/~2) --- (11, 3) in Model (I). 

n /~.1 /3.2 ~/ 

10 0.44723 0.89442 0.50003 

(0.123) (0.031) (0.289) 

(0.148) (0.037) 

20 0.44719 0.89444 0.49997 

(0.049) (0.012) (0.128) 

(0.066) (0.016) 

30 0.44723 0.89442 0.50002 

(0.038) (0.010) (0.077) 

(0.040) (O.OLO) 

Table 4. Estimated means of/3.  and "~, the sample variance $2(/3.) (in 1st parentheses), the 
Monte Carlo means of the variance b2(/~.) (in 2rid parentheses), and means of squares errors (in 
parentheses) of "~ for (#1, #2) = (15, 13) in Model (I). 

n /3.1 /3.2 '7 
10 0.44725 0.89441 0.50005 

(0.253) (0.063) (0.565) 

(0.290) (0.073) 

20 0.44719 0.89444 0.49997 

(0.110) (0.027) (0.240) 
(0.123) (0.031) 

30 0.44723 0.89442 0.50003 

(0.075) (0.019) (0.131) 

(0.067) (0.017) 

Note: The unit in parentheses is 10 -5  . 

with different means and different variance-covariance matrices, the es t imator /~.  
is also very robust  in the finite samples. 

Two additive models were investigated in our experiment.  Model (I) consid- 
ered Y = 50 + ~1Xli + ~2X2i ~- ei where (/~1, ~2) ---~ (50, 100) and the true s tandard-  
izable parameter  ( /31 . , /~ . ) - -  (0.44721,0.89443). The  regressors (Xl i ,X2i )  are in- 
dependent  of error ei, i = 1, 2 , . . . ,  n. For i = 1, 2 , . . . ,  n - 2 ,  (Xli ,  X2i) have jointly 
multivariate normal distr ibution with mean (#1, #2) = (6.0, 8.0) and variance and 
covaviances: or11 = 7, a22 = 8, a12 = 4 and for i = n - 1, n, (XI~, X2i) have jointly 
multivariate normal distr ibution with mean (#1,#2) (where (#1,#2) = (4, 7) or 
(1, 5) or (11,3) or (15, 13)) and variance and covarioaaces: a l l  = 7, a22 = 8, 
a12 = 4. Random error ei has s tandard  normal distribution. Model (II) is basi- 
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Table 5. Estimated means of ~. and ~/, the sample variance $2(j3,) (in 1st parentheses), the 
Monte Carlo means of the variance 62(/3.) (in 2nd parentheses), and means of squares errors (in 
parentheses) of ; /for (#1, #2) = (4, 7) in Model (II). 

n ~.1 a,a # 

i0 0.44758 0.89424 0.50052 
(1.923) (0.483) (2.285) 
(1.159) (0.290) 

20 0.44740 0.89433 0.50027 
(0.556) (0 .139)(0 .982)  

(o.5ol) (o.125) 
30 0.44718 0.89440 0.49995 

(0.101) (0.025) (0.156) 

(0.080) (0.020) 

Table 6. Estimated means of/~, and "~, the sample variance $2(/3.) (in 1st parentheses), the 
Monte Carlo means of the variance 82 (~.) (in 2nd parentheses), and means of squares errors (in 
parentheses) of ~/for (#1, #2) -- (1, 5) in Model (II). 

n ~.1 ~,2 
10 0.44736 0.89434 0.50022 

(1.397) (0.345) (2.197) 

(1.134) (0.280) 

20 0.44716 0.89445 0.49992 

(0.461) (0.115) (0.805) 
(0.413) (0.103) 

30 0.44708 0.89449 0.49982 
(0.299) (0.075) (0.492) 
(0.251) (0.063) 

Note: The unit in parentheses is 10 -5 . 

cally the same as the first model except that we define ei has logistic distribution 
with mean zero and variance 7r2/3. It is noted that  the logistic distribution can 
be obtained as a mixture of extreme value distributions. 

The Monte Carlo estimates of the means of the estimators ~,i for/~,i and the 
ratio estimators "~ = ~*1/~,2 for the scaled invariant parameter 7 = ~1//~2 = 0.5 
are given in Table 1 to Table 8. Furthermore, the sample variances S2(/~,i) of 
the estimators/3,i and the Monte Carlo means of the variance estimators b2(/3,~) 
based on the results in Section 3 and the estimated mean squares error were also 
calculated in order to investigate the behaviour of the measurements of precision. 

We find the experiment results encouraging. Basically speaking, when the 
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Table 7. Estimated means of/3. and ~, the sample variance $2(/3.) (in 1st parentheses), the 
Monte Carlo means of the variance #2(I3.) (in 2nd parentheses), and means of squares errors (in 
parentheses) of ~ for (#1, #2) = (11, 3) in Model (II). 

n 3,1 3,5 
10 0.44725 0.89440 0.50006 

(0.404) (0.101) (0.921) 

(0.473) (0.118) 

20 0.44717 0.89445 0.49995 

(o.t6o) (0.040) (o.415) 
(0.213) (0.053) 

30 0.44724 0.89442 0.50003 

(0.125) (0.031) (0.256) 

(0.131) (0.033) 

Table 8. Estimated means of ~, and x~, the sample variance $2(/3.) (in 1st parentheses), the 
Monte Carlo means of the variance a2(/3.) (in 2nd parentheses), and means of squares errors (in 
parentheses) of ~ for (#1,/~) = (15, 13) in Model (II). 

n ~.1 ~.2 
10 0.44726 0.89440 0.50007 

(0.827) (0.206) (1.813) 

(0.931) (0.233) 
20 0.44719 0.89444 0.49997 

(0.355) (0.089) (0.774) 

(0.398) (0.099) 

30 0.44726 0.89440 0.50007 

(0.246) (0.062) (0.435) 

(0.223) (0.056) 

Note: The unit in parentheses is 10 -5 . 

sample size is small, the biases of the estimators/~, and x/are almost negligible 
for Models (I) and (II). The improvement of the bias reduction by increasing 
sample size is significant. The sample variance estimators S2(~,i) and the Monte 
Carlo means of the variance estimators ~2(/3,~) behave satisfactorily for different 
sample size under both Models (I) and (II). Therefore, in the small sample size, 
the simulation performances of the estimator are very robust. 

Additionally, to illustrate the ideas presented, we have applied the proposed 
estimate ~, to the raw data on Wood Specific Gravity from Rousseeuw (1984), 
which is given in Table 9. 

An optimal selection at k = 2 for the fuzzy optimal clustering procedure 
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Table 9. Modefied d a t a  on Wood Specific Gravity.  u l j  be the degree of membersh ip  of main  
group from opt imal  cluster  result  by using the  fuzzy clustering procedure.  

index X1 X2 X3 X4 X5 Y ulj  

1 0.5730 0.1059 0.4650 0.5380 0.8410 0.5340 0.85891 

2 0.6510 0.1356 0.5270 0.5450 0.8870 0.5350 0.95306 

3 0.6060 0.1273 0.4940 0.5210 0.9200 0.5700 0.93508 

*4 0.4370 0.1591 0.4460 0.4230 0.9920 0.4500 0.01617 

5 0.5470 0.1135 0.5310 0.5190 0.9150 0.5480 0.89736 

*6 0.4440 0.1628 0.4290 0.4110 0.9840 0.4310 0.02067 

7 0.4890 0.1231 0.5620 0.4550 0.8240 0.4810 0.62758 

*8 0.4130 0.1673 0.4180 0.4300 0.9780 0.4230 0.02603 

9 0.5360 0.1182 0.5920 0.4640 0.8540 0.4750 0.77239 

10 0.6850 0.1564 0.6310 0.5640 0.9140 0.4860 0.84630 

11 0.6640 0.1588 0.5060 0.4810 0.8670 0.5540 0.86623 

12 0.7030 0.1335 0.5190 0.4840 0.8120 0.5190 0.82961 

13 0.6530 0.1395 0.6250 0.5190 0.8920 0.4920 0.87608 

14 0.5860 0.1114 0.5050 0.5650 0.8890 0.5170 0.96400 

15 0.5340 0.1143 0.5210 0.5700 0.8890 0.5020 0.88729 

16 0.5230 0.1320 0.5050 0.6120 0.9190 0.5080 0.77675 

17 0.5800 0.1249 0.5460 0.6080 0.9540 0.5200 0.85767 

18 0.4480 0.1028 0.5220 0.5340 0.9180 0.5060 0.47615 

"19 0.4170 0.1687 0.4050 0.4150 0.9810 0.4010 0.03883 

20 0.5280 0.1057 0.4240 0.5660 0.9090 0.5680 0.62754 

Note: "*" represent  outlier. 

shows that  the data are contaminated with outlying observations and discerns 
observations 4, 6, 8 and 19 as outlying observations (Van Cutsem and Gath (i993)). 
Therefore, we use the "fuzzy" weighted least squares method to estimate the scaled 
regression coefficient/3.. Here the weights for (2.2) are from the normalized degree 
of membership corresponding to the main classified cluster; see Table 9. So, the 
"fuzzy" weighted least squares estimate is 

/3. = (0.3408, -0.7762, -0.4122, -0.2163, 0.4250) 

and the variance estimate is 

~2(/~.) = (0.0048, 0.0988, 0.0030, 0.0060, 0.0134). 

And the signs of the estimate/~.i are the same as those of estimate of the least 
median of squares regression proposed by Rousseeuw and Leroy (1987). Therefore, 
the "fuzzy" weighted least squares estimate can also provide a good initial estimate 
for the regression parameters in the least median of squares regression. 

In the practical example, we can use the general Wald statistics proposed 
by Section 3, X 2 = n(~.A)(AT~.A)-I(~.A)T to test H0 : /31 ---- /32 ---- /33 = 
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~4 = ~5 = 0. Here let A is the identity matrix. Therefore, given ~ = 0.05, 
X 2 = 110.7 > X~5,0.05) = 11.071. So, we can reject H0 and conclude that  at least 
one of the explanatory variables is related to the dependent variable. 

Finally, according to our simulation study, we have seen that  the proposed 
method for analyzing the data set with one or several outlier is reliable. Particu- 
larly, we have found the estimator/~, is easy to compute. 
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