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Abst rac t .  Exponential families of stochastic processes are usually curved. 
The full exponential families generated by the finite sample exponential fam- 
ilies are called the envelope families to emphasize that their interpretation as 
stochastic process models is not straightforward. A general result on how to cal- 
culate the envelope families is given, and the interpretation of these families as 
stochastic process models is considered. For Markov processes rather explicit 
answers are given. Three examples are considered some in detail: Gaussian 
autoregressions, the pure birth process and the Ornstein-Uhlenbeck process. 
Finally, a goodness-of-fit test for censored data is discussed. 

Key words and phrases: Censored data, diffusion processes, Gaussian autore- 
gression, goodness-of-fit test, Markov processes, Ornstein-Uhlenbeck process, 
pure birth process. 

1. Introduction 

Many important statistical stochastic process models are exponential families 
in the sense that  the likelihood function corresponding to observation of the process 
in the time interval [0, t] has an exponential family representation of the same 
dimension for all t > 0. The exponential structure of the likelihood function implies 
several probabilistic properties of the processes in the family and statistical results 
for the model, see Kfichler and Scrensen (1989, 1994a, 1994b) and Scrensen (1986). 
Thus the study of exponential families of stochastic processes casts light on basic 
problems of statistical inference for stochastic processes and reveals important 
structure of many particular types of statistical models for stochastic processes. 

Most exponential families of stochastic processes are curved exponential fam- 
ilies in the sense that the canonical parameter space is a curved submanifold of a 
Euclidean space. It is therefore important to develop statistical theory for general 
curved exponential families of processes. Some steps in this direction are taken in 
the present paper. 
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Several modern statistical techniques for curved exponential families use prop- 
erties of the full exponential family generated by the curved model. Examples are 
methods based on differential geometric considerations or on approximately ancil- 
lary statistics. It is therefore, from a statistical point of view, of interest to study 
the full exponential families generated by an exponential family of stochastic pro- 
cesses and to investigate their interpretation as stochastic process models. This is 
the main purpose of the present paper. To emphasize the fact that a stochastic 
process interpretation of the full families is not straightforward, we propose to call 
these, in the stochastic process setting, envelope families. From a probabilistic 
point of view it is interesting that  this statistical investigation provides a new way 
of deriving other stochastic processes from a given class of processes. 

Some basic definitions are introduced in Section 2. In Section 3 we study 
the envelope families corresponding to a curved exponential family of stochastic 
processes. A general result on how to calculate the envelope families is given. 
Particular attention is given to the question in what sense the envelope families 
can be interpreted as stochastic process models. For Markov processes rather 
explicit answers can be given. In Section 4 three examples are considered in detail: 
Gaussian autoregressions, the pure birth processes and the Ornstein-Uhlenbeck 
processes. In Section 5 a goodness-of-fit test for censored data is studied using the 
techniques introduced in this paper. 

2. Basic definitions 

Let (~, 9 r ,  {gvt }) be a filtered space where the filtration {Srt : t _> 0} is supposed 
right-continuous and where 5 r = a(•t : t _> 0). Consider a class 7 ~ = {Pe : 0 E (3}, 
(~ C_ R k of probability measures on (£1, ~'). We will denote by #t the restriction of 
a measure # to the a-algebra 9ft. 

The class P is called an exponential family on the filtered space if there exists 
a measure # on (£/, ~-) such that P~ << #t, t _> 0, 0 c (~ and such that we have an 
exponential representation 

(2.1) dp$ d# t - exp('~t(O)TBt -- Ct(0)), 0 e O, t _> 0, 

where T denotes transposition. For fixed t this Radon-Nikodym derivative is the 
likelihood function corresponding to observation of events in f t .  In (2.1) ~ and 
7 (i), i = 1 , . . . ,  m, are non-random real functions of 8 and t. The m-dimensional 
stochastic process Bt is adapted to {~'t} and is called a canonical process. Without 
loss of generality we can assume that 0 E e and that the dominating measure is 
P0. If an exponential representation exists with ~ independent of t, we call the 
exponential family time-homogeneous. 

Time-homogeneous exponential families of stochastic processes can be parame- 
trized by the set F = {'y(O) : ~ E 0}. This parametrization is called a canonical 
parametrization. Typically the set F is a curved (i.e. non-affine) submanifold of 
R m, in which case we talk about a curved exponential family. In fact, for a minimal 
time-homogeneous representation, int F ~ 0 implies that the canonical process B 
has independent increments, see K/ichler and Sorensen (1994b), so such models 
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are essentially similar to repeated sampling from a classical exponential family 
of distributions. For many curved exponential families it is possible to find a 
representation of the form 

(2.2) dP~ exp(0TAt - at(o)Tst - Ct(0)), t _> 0, 

where at(O) is a (m - k)-dimensional vector with at(O) = O. Moreover, At and St 
are vectors of {~'t}-adapted processes of dimension k and (m - k), respectively. 
The natural exponential family generated by a semimartingale has a representation 
of this form; see Kiichler and Scrensen (1994a, 1994b) and Scrensen (1993). 

3. Enve lope  fami l ies  

3.1 Definition and interpretation 
Classical curved exponential families can be embedded in a corresponding full 

exponential family. In this section we study the problem of similarly extending 
a curved exponential family on a filtered space. Particular at tention is given to 
stochastic process interpretations of the full family generated by a finite sample 
exponential family. 

Consider a time-homogeneous exponential family P = {Po : 0 C O} on a 
filtered space with a general representation of the form (2.1). For fixed t _> 0 we 
can define the full exponential family generated by P~ and Bt in the classical way. 
Specifically, for every t _> 0 we denote the domain of the Laplace transform of Bt 
under P0 by Ft. The full exponential family Qt = {Q(t) : 7 E F t }  of probability 
measures on 9~t is given by 

dQ(O exp(TTBt -q t (7 ) ) ,  7 E F t ,  (3.1) dP~ = 

with k~t(7) = logEo(exp(TTBt)). Here E0(.) denotes expectation under P0- For 

fixed 7 the class of measures {Q(t) : t _> 0} need not be consistent (i.e. need not 
be in accordance with our observation scheme given by the filtration {~} ) ,  as 
appears from the following discussion. To emphasize this fact we call the class Qt 
(with t fixed) the envelope exponential family of P on ~t. 

Obviously, Q(t) only exists for all t > 0 if 7 belongs to the set 

(3.2) r = N r,, 
t_>o 

which is non-empty because F _C F. If F is a curved sub-manifold of R m, the set 
]~ is necessarily strictly larger than F, because F is a convex set. 

Fix 7 E F. It is well-known that  the class of probability measures {Q(O : t > 0} 
is consistent if and only if {dQ(t)/dP t : t > 0} is a P0-martingale. If this is the 
case, and if (gt, 5 ~) is s tandard measurable, then there exists a probability measure 

P~ on (~t, 5 ~) such that  Q(t) is the restriction of P~ to Tt for all t > 0; see 
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Ikeda and Watanabe ((1981), p. 176). This can only be the case for all 7 E F if 
the canonical process has independent increments, i.e. when we axe essentially in 
an i.i.d, situation. Specifically, let F* denote the set of -~-values in F for which 
dQ (t)/dP~ is a P0-martingale. Then int F* ¢ 0 implies that the canonical process 
has independent increments under P7 for all ~ E P*. This follows from Theorem 
3.1 in Kiichler and S0rensen (1994b). 

Because the measures {Q(t) : t >_ 0} are typically not consistent, we need the 
following more complicated approach to obtain a stochastic process interpretation 
of the envelope family on ~'t. For fixed t > 0 and 7 EF t  we consider the restriction 
Q(t,~) of Q(t) to ~~, s < t, and note that 

(3.3) dQ(t'~) ( dQ!~) 
dP~ - E° \-~-o [ ~ ) = exp('yTBs + C~t)('Y) - ~t(Y)), 

where C~t)('y) = logEo[exp('~T(Bt - B s ) )  I ~'~]. Suppose B is a semimartingale 
under P0 and that {gv~} is generated by observing a semimartingale X. Then 

{X~ : s _< t} is also a semimartingale under Q(t), and its local characteristics 

under Q(7 t) can be determined from (3.3) by Theorem 3.3 in Jacod and M~min 
(1976). This gives an interpretation of the envelope family on ~'t as a stochastic 
process model. 

Note incidentally that Q(t,~) = Q(S) only when C (t) ('y) = kot(~/)- kos(-y), which 
happens only when B has independent increments under P0. In general the class 
of probability measures {Q(t,8) : ~/E Ft} is not an exponential family. If 7 ) is a 
time-homogeneous curved exponential family with representation (2.2), it follows 
easily that for ~/= ('Ya, 72) with ~/1 k-dimensional 

(3.4) C(t)(7 ) = log(E~,{exp[('y2 + o/(~f l ) )T(s t  -- Su)] I .~'u}) -~- q)t("/1) - q~u('fl). 

3.2 Markov processes 
Let us consider the case where {Oft} is generated by observation of a Markov 

process X with state space E. We will look at the conditional exponential family, 
where we condition on X0 -- x, see Kiichler and S0rensen (1991). It is useful to 

make the initial condition x explicit in the notation, so we replace Po by Pc,x, Q(t) 

by g)(t) et cetera. In (3.1) we replace ~t(~/) by kot(3,,x ). We assume that  X is 
a Markov process under {P0,x : x E E} and that B is a right-continuous additive 
functional with respect to X and {P0,x : x E E}. Then X is a Markov process 
under {Po,x : x E E} for every 0 E 0,  see Kiichler and Scrensen (1991). Under 
these assumptions 

(3.5) C~ t) (7) = log Eo,x, (exp{3'TBt-~}) = ~t-~(7,  X~), 

SO 

A~(t,8) 
(3.6) ~,~,x _ exp(~/TBs + ~t-s('Y, X~) - kOt(% X0)). dP3,x 
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This is only an exponential family when ~ ( % y )  = )-~i f(i)(7)g(i)(Y), u <_ t. For 
exponential families of Markov processes the key to studying the envelope families 
is the function ¢,(%y),  Before giving results on how to determine ¢t(7) for 
general curved exponential families, we shall first consider two important classes 
of Markov processes. 

Example 3.1. Suppose we observe a diffusion process X which under Pe 
solves the stochastic differential equation 

(3.7) dZ~ = ~#(Zt)dt + a(Xt)dWt, Xo = x, 9 • e, 

where W is a Wiener process, O c_ R and a > 0. It is well known that, provided 

(/0 ) Po #2(Xs)a-2(Xs)ds < o0 = 1, 

this model is an exponential family of stochastic processes with likelihood function 

dP~ ( t #(X~).dX ~0 2 t#2(X~) ) 
(3.8) dP~ exp O f  o - fo du = ~2(X~) ' ~ ( z ~ )  

which is of the form (2.2). The envelope family on ~t is given by 

0q/  ~Q(,,~) f~ 71#(x~)+ ~ ~-~(%x~)~(x~) 
(3.9) log ~ - ! ~x~  

ff2(Xu) J0 

-I-loS{ 72#2(xu)O.2(Xu ) JV :-~-~t-u(7, Xu) 
+ ~-~y2102 ett_u(% Xu)a2(Xu) }du, 

for 7 = (71,72) e Ft, and under Q(t), the process X solves the equation 

dX~=d~(%X~,s)ds+a(X~)dW~, X o = x ,  s e t ,  (3.10) 

where 

0 
(3.11) dr(% y, s) = 71#(Y) + -7~--¢t-~ (7, y)(~2(y), s < t. au y 

The result (3.9) follows by applying Ito's formula to the function (y, s) 
kot_8(7,y). The second result follows from Theorem 3.3 in Jacod and Mdmin 
(1976). 

Example 3.2. Next let the observed Markov process X be a counting process 
with intensity At(9) -- (1 - 9)F(Xt_), where 9 C (-c~, 1) and F is a mapping 
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N --* (0, oc) satisfying that F(x) <_ a + bx for some a > 0 and b _> 0. Then X is 
non-explosive for all 0 (see Jacobsen (1982), p. 115), and 

(3.12) dP~ = exp 0 F(Xs)ds + log(1 - O)(Xt - Xo) . 

Under Q(t), "~ • Ft, given by (3.1) the process {Xs : s < t} has almost surely 

sample paths like a counting process because Q(t) is dominated by P~. In order 
to find the intensity of {X, : s _< t} under Q(t) note that it follows from (3.6) that 
for u < s < t 

= Eo[l{i}(X~)exp{'yl ~sF(Xv)dv+~/2(X~-Xu) 

Therefore, 

(s -1 (t) - u )  Q.y ( X ~ = i + l l X u = i )  
= exp('y2 + Ct-s(%i + 1) - Ct-~('y,i)) 

× ( s -  u)-lEo (l{i+l}(X~)exp ['h ~ F ( X , ) d v ]  I X~ = i )  

-~ exp('~2 4, Ct-u(% i 4- 1) - Ct-u(% i) )F(i), 
s.[ u 

where we have used that the intensity of X under P0 is F(Xt_). We have, for sim- 
plicity, assumed that Ct(% x) is a left-continuous function of time. The intensity 

under Q(t) is thus given by 

(3.13) A~t)('y)=exp('y2+¢t_~(%X~_+l)-~zt_~(%X~-))F(X~-), s<_t. 

3.3 Explicit calculations 
We conclude this section by giving some results about how to calculate the 

function k~t (~/) explicitly for general curved exponential families. We assume that 
the family has a representation (2.2) with int O ~ ~. 

Let p t0,1 and p t0,2 denote the marginal distributions of At and St, respectively, 
under Po. Further, define for all t _ 0 and 0 c O the Laplace transforms 

(3.14) cl(w;O,t) = Ea(e wr&) and c2(w;O,t) = Eo(ewTS~), 

and denote by Di(O, t) the domain of ci(.; 0, t), i = 1, 2. 

PROPOSITION 3.1. The envelope exponential .family on .~t contains the mea- 
sures given by 

ran(t) 
(3.15) ~'~0,~ _-- exp[OT At  4- ¢pT s t  _ ~t(O, ~)] 
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where 

(3.16) k~t(O, q~) = log c2(~p + at(O); O, t) + Ct(O) 

and 

(3.17) (O,~p) e Adt = {(O,¢p): 0 E O,~p + o~t(O) e D2(O,t)}. 

Suppose int Adt ~ 0, and let 354t denote the largest subset of R "~ to which 
gJt(O, ~) can be extended by analytic continuation. Then Ft = )Qt and the mea- 
sures in the envelope family are given by (3.15) with gYt(O, ~) defined by analytic 
continuation. 

Remark. It is well-known that A~t is a convex set and that the convex hull 
of {(0, -at(O)) : 0 e O} is contained in )Qt. For a discussion of how to determine 
Adt, see Hoffmann-Jcrgensen (1994). 

PROOF. 
and set 

Then 

Let /s t  denote the conditional distribution under Pe of At given St, 

dP~,2 
ft(x; O) - dp~, 2 (x). 

= exp[OTAt - at(o)Tst  - Ct(O) - l o g  A(St; 0)], 

from which we see that 

Eo( e°r A~ I St) = exp[at(o)T st + Ct(O) + log ft(St; 0)]. 

Therefore 

= E o ( S S ' E o ( J  A' I S,)) 
= EO( I + ,toI)Ts, 

= Eo (e (~+~'(°))rst)e ¢'(0) 

= c2(~ + at(O); O, t)e ¢~(e) 

provided 0 E O and ~o + at(0) E D2(0,t). 
The extension to A/It follows from well-known properties of the Laplace trans- 

form, see e.g. Hoffmann-JCrgensen (1994). The idea of exploiting the above ex- 
pression for the conditional Laplace transform of At given St was first used by 
Jensen (1987) to obtain conditional expansions. [] 

Using arguments similar to those for Proposition 3.1 we can prove the following 
result. 
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PROPOSITION 3.2. Suppose the function 0 --* st(O) is invertible on 0 F C_ 0 
and set At = -oLt(~)~). Then 

(3.18) M~" = {(0, ~) :  ~ C At, 0 -  oltl(--qO) E n l ( c ~ - l ( - ~ ) ,  t)} _C Ft, 

and for (0, ~) E A4~ the function kot(O, ~) in (3.15) can be expressed as 

(3.19) ~t(0, ~) = log[c1(0 - o/71 ( - (p) ;  C~71(--~3),t)] "~- Ct(o/?l  (-- if)) .  

I f  int AA~' ¢ 0, the whole envelope family can be obtained by analytic continu- 
ation as described in Proposition 3.1. 

Note that it follows from Proposition 3.1 or Proposition 3.2 that in order to 
show that an element of our exponential family of processes belongs to the interior 
of the envelope exponential family, we need only know something about the tail 
behaviour of the distribution under Po of At or of St. 

4. Examples 

In this section we will study some examples of curved exponential families of 
stochastic processes and their envelope families. 

4.1 The Gaussian autoregression 
The Gaussian autoregression of order one is defined by 

(4.1) Xi = OXi-1 + Zi, i = 1 ,2 , . . . ,  

where 0 E R, )Co = Xo and where the Zi's are independent standard normal 
distributed random variables. 
with the representation 

(4.2) dP~ 
dP~ - exp 

This is a curved exponential family of processes 

E± 0 X i X i - 1 -  0 2 X~_I • 
i=1 = 

The envelope family on ~-t has a representation of the form 

(4.3) ~ 0 , ~  = e x p  0 X i X , _ I + ~ Z x L I - - ~ t ( O ,  cp;Xo) , 
i=1 

where (0, ~) E Ft. The function ~2t(8, ~; x0) is easily found by direct calculation. 
Indeed, 

exp(~t (0, ~; Xo)) 

/_ /; x. I,.l-.,. . . . .  e x p  0 X i X i - - 1  -~- ~ i - 1  

c<~ oo i =  l i=1  

= e x p [ z g ( ~  - 02/(4At))](2rr) - t /2 
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where the quantities A1 , . . . ,  At are functions of 0 and ~ defined iteratively by 

1 1 _ 0 2 / ( 4 A i _ 1 ) "  (4.4) AI = - 2  and Ai = ~ - 

Clearly, kot(O, qo; xo) is finite if and only if Ai(O, ~) < 0 for i = 1 , . . . ,  t, and if this 
is the case, 

(4.5) [ Vt(O, qO;Xo)=X 2 At+l(O, qo)+ - ~ E log(-2Ai(O, qo)). 
i=1 

Explicit, but complicated, expressions for the Ai's can be derived from results in 
White (1958)_. 

The set Ft = {(0, ~v) : A~(O, ~) < O, i = 1 , . . . ,  t} is not easy to characterize in 
102 ) an explicit way. However, because Ft is a convex set containing { ( 0 , - 7  : 0 C 

R}, it follows that  {(0, qo) : qo < -}02}  C f't for all t > 1. Moreover, from the 

inequality A2 = ~ -  ½ + ½02 < 0 we see that  Ft C_ {(0,~0) : q0 < -½02 + ½} for 
t > 2. An elementary, but somewhat involved, analysis of the iteration formula 
(4.4) reveals that  

(4.6) u 
t>0 

~0 102a and that  ~ , - 7  j E in tFt  for 101 # 1 for all t > 1. For 10l = 1 the points 

(0,-½02) E bdFt for t large enough. By (3.6) and (4.5) the restriction of ~o,~ c)(t) to 
.7"8 (s < t) is given by 

(4.7) 
dc•(t,•) "~ 0,~ dP~ exp 0 x , x , _ l + q O E X L l +  At_s+l(0,9~)+ x ~  

L i=1 i=1 

- dt+l(O,¢p)+ x2+~ E log(-2A~(0,~)) 
i = t - -8+  l 

ic)(t,s) Note that  t~0,~ : (0, qo) C Ft} is an exponential family for all s < t so that  

{Q(t) (0, qo) E F t }  defines an exponential family of stochastic processes which is 8,qo : 
not time-homogeneous. 

The simultaneous Laplace transform under Q~t) of the random variables Wi 
1 --1 Xi + 5OAt_i+l(O, qo)X~-l, i = 1 , . . .  ,t, can be found by direct calculation. This 

shows that  the random variables Wi, i = 1 , . . .  , t  are independent,  and that  W~ 
N(0, a -1 = , t } i s t h u s  --~At_i+l) , i = 1, ,t. Under Q(t) the process {Xi : i 1 , . . .  

• • " 0 , ~  

the autoregression 

(4.8) 1 1 X~ = --~OAtdi+l(O, ~)X~-I + W~, 

where the regression parameter  as well as the variance of Wi depend on i. 
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If we restrict the parameter  set to F~ = F t \ { (8 ,~ )  :t01 <_ 1,~v > -½02}, the 
process (4.8) can be extended beyond t in a natural  way. This is done by defining 
A - i ,  i =- 0, 1, 2 , . . . ,  i teratively such tha t  they  are related by (4.4). Considerations 
like those for i _ 1 show that  for (O, ~) E F~ we have A_i(0, ~v) < 0, i = 0, 1, 2 , . . . ,  
while for (O,~) E Ft\F~ there exists an i > 0 such tha t  A - i ( O , ~ )  > 0. The 
likelihood function for the extended process is given by (4.7) for all s E N. 

4.2 The pure birth process 
The pure bir th processes are counting processes with intensity A X t _  where 

> 0. We assume that  X0 = x0 is given. The likelihood function is 

(4.9) d p  D - exp 0 X~ds  + log(1 - O)(Xt  - xo)  , 

where 0 = 1 - A < 1. To determine the envelope families by means of Proposition 
3.1, we use tha t  the Laplace t ransform of St = X t  - xo is 

E0(e S,) = _ _ 

with domain z < - log[1 - exp((0 - 1)t)]. Hence 

[/0 ] (4.10) '*'~o,~ UPS) - exp 8 X~ds  + v (  X t  - xo) - xo/3t( 8, ~o) , 

where 

(4.11) fit(0, ~) = - l o g [ e  (1-e)t - e~(1 - 8 ) - 1 ( e  ( 1 - 0 ) t  - 1)] 

and ~ < log[(1 - 0)/(1 - exp((0 - 1)t))]. Here we have used tha t  fit(0, ~') is also 
defined for 0 _> 1 provided ~ is as specified. Note that  the canonical parameter  set 
of the class of linear birth processes F = {(0,log(1 - 0)) : 0 < 1} is contained in 
Ft, which is open for all t > 0. Note also tha t  F = Nt>0 Ft = convF,  where convF  
denotes the convex hull of F. The simultaneous c u m u ~ n t  t ransform of Xt - x0 and 
fo  X ~ d s  appearing in (4.10) was first calculated by Puri  (1966), see also Keiding 
(1974). 

The family {Q~t,~) : (0,~)  E F t }  obtained by restriction to 5c~ (s < t) is an 
exponential family, which is not t ime-homogeneous. By (3.6) and (4.11) we see 
tha t  

(4.12) 

with h,,(O, qo) ~o + flu(O, ~o). In Example 3.2 we saw tha t  under  Q(t) the  process = O,~, 

{X~ : s _< t} is a counting process with intensity A~t)(O, ~o) -- exp[ht_~(0, ~o)]X~_. 
For every (0, ~o) E F the function flu(0, ~o) is not only defined for u E [0, t], but  

also for u < 0. The function exp[ht-s(0,  ~o)] is thus defined for all s > 0 and remains 
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bounded for s -4 oo for all (9, cp) E Ft . Hence AV ) (9, cp) defines a non-exploding
counting process for all s > 0, and for each (9, cp) E Ft there exists a measure Pet ),
on F the restriction of which to Fs is given by (4.12) for all s > 0 . For all s > 0 the
measure Qet"' ) belongs to the exponential family {Q($ ) : (9, cp) E r,}. The curve
(0, ht_3 (0, cp)) tends monotonically to (0, log(1 - 9)) for 9 < 1, i .e. to the curve
I corresponding to the original counting process model. For 9 > 1 the function
ht_8 (0, cp) decreases to -oo for s -> oc. For s = t the curve passes through the
point (0, cp) for all 0 E R .

4 .3 The Ornstein-Uhlenbeck process
Consider the class of solutions to the stochastic differential equations

(4.13)

	

dXt = 9Xtdt + dWt , Xo = xo ,

for 9 E IR . The likelihood function corresponding to observation of X in [0, t] is

t

(4.14)

	

Lt (9) = exp {9[x2 - xo]/2 - 292
f

X3ds - 29t} .
J0

The envelope families can be determined by Proposition 3 .2 and are given by

	 It)(4.15)

	

dQpt - exp 9[Xt - xo]/2 + cpf t
X9 ds - T t ( 9 , co ; x 0 )

o

	

o

with

(4.16) 'F t (0, cp ; xo) _ -
2
log{cosh(t J-2cp) - 9 sinh(t ,,1-2cp)//-2cp}

xo
C
292 +~)

-2cp cot h(t _-2 W) - 9

and with parameter space ft given by cp < Z7r2 t -2 , 0 < /7coth(t1/-2cp), for
details see Sorensen (1995) .

The family {Qet~ ) : (0, co) E Ft} is an exponential family for all s < t which is
not time-homogeneous . By (3.6) and (4.16) we see that

d (t's)

	

(
(4.17)

	

Q

,
	= exp{ h(9, cp; t - s)X9 + cp

f
X,2du

+m(9, cp ; t, s) - h( 9 , cp ; t)xo },

where

	 2	+ cp(4.18)

	

h(9, cp ; u) = 29 +	92
vl'-~2coth(uv,'-~2) - 0
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and 

(4.19) m(O, ~; t, s) 

1 log [ c ° s h ( t x / - ~ ) - O s i n h ( t ~ - ~ ) / v / : - - ~  
2 [ cosh((t - s)~/-z-~) 0sinh((t - s ) v / - ~ ) / x / - i - ~ J  " 

By results in Example 3.1 it follows that under Q(t) the process X solves the 
stochastic differential equation 

(4.20) dX~ = 2h(0, ~; t - s)X~ds + dW~, X0 = x0, s _< t. 

For qo <_ 0 and 19 >_ - v / ~  the function h is well-defined and bounded for u < 0, 
so (4.20) has a solution for all s _> 0. This is not the case if ~ < 0 and 0 < - v/- :-~ 
or if q0 > 0. In these cases the drift tends to infinity (or minus infinity) at a finite 
time larger than t. 

5. Goodness-of-fit tests 

A possible test of the appropriateness of a stochastic process model, which for 
observation in [0, t] is a curved exponential family, is the likelihood ratio test of the 
curved model against the full envelope family on 9vt. For an interpretation of this 
test and an evaluation of its relevance, the results in Section 3 are useful. For the 
Ornstein-Uhlenbeck process, for instance, the drift under the alternative model 
is not strictly proportional to the state of the process, but a certain temporal 
variation of the constant of proportionality is allowed. Similar remarks hold for 
the Ganssian autoregression and the pure birth process. The following simple, but 
interesting, example illustrates the main ideas. 

Example 5.1. (A model for censored data) Consider the following well- 
known model for censored observation of a random variable with hazard func- 
tion (1 - O)h (0 < 1) defined on (0, oc). We suppose that h > 0 and that it is 
integrable on (0, t) for all t > 0. Let U and V be two independent random variables 
concentrated on (0, oc) such that  the hazard function of U is (1 - O)h, and denote 
the cumulative distribution function of V by G. Define two counting processes N 
and M by 

Nt = l{v<t^v},  Mt = l{y<tAu}- 

The intensity of N with respect to the filtration given by 5vt = a(N~, Ms : s < t) 
is 

(5.1) At(0) = (1 -O)h(t)l{t<_v}l{gt=o}, 0 < 1. 

Observation of N and M in the time interval [0, t] is equivalent to observation of 
a random variable U censored at time V A t. 

The likelihood function for the model based on observation of N and M in 
[0, t] is given by 

d--~ = exp Jo h(s)ds + log(1 - O)Nt . 
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We see that the model is a curved exponential family of stochastic processes. A 
possible test that  the hazard function of the observed random variable belongs to 
the class (1 - 8)h, 8 < 1, is the likelihood ratio test for the curved family (5.2) 
against the envelope family on J'-t. This test was proposed in the particular case 
h -= 1 (censored exponential distribution) by Vmth (1980). He gave an interpre- 
tation of the alternative hypothesis by means of a biased sampling scheme (Voeth 
(1982)). Here we obtain a different interpretation by considering the envelope 
family as a stochastic process model. 

It is easy to see that  Eo (e wN~ ) = ~t (8) + e w (1 - ~t (0)), where/3t (8) = Po (Nt = 
0) = f o  ( 1 -  Fo(v At))dG(v) is the probability of obtaining a censored observation, 
and Fo(x) = 1 - exp{-(1 - 8) fo  h(v)dv} is the cumulative distribution function 
corresponding to the hazard function (1 - 8)h. By Proposition 3.1 the envelope 
family is given by 

(5.3) 
dO(t) 

"*¢ 0 , ~o _ _  fotAVA U } 
exp 0 h(s)ds + ~Nt - tI't(0, ~o) 

with ~ • R and flit(0, 9~) = log[fit(0) + (1 - 0)- le~(1 -/3t(0))]. 
The process N is not a Markov process (except for h -- 1), so the conclusions 

in Example 3.2 do not apply directly, but we can proceed in a very similar way. 

Thus we find that  under tq(t) the process (N8 : s < t) is a counting process that  "g 0,~o 
makes at most one jump. Its intensity with respect to {~'u} is 

{7(t)(0)(e -~  - (1 - 0) -1) + (1 - O)-l}-ah(u)l{~<_v}l{N,_=o}, 

for u < t, so under r)(t) observation of N and M in [0, t] is equivalent to censored 
- -  "~ 0,~o 

observation of a random variable with hazard function 

(5.4) { 7 ~ O ( O ) ( e - ~ ° - ( 1 - o ) - l ) + ( 1 - o ) - l } - l h ( s ) ,  s<_t. 

Consider the situation where the censoring distribution G is concentrated on 

[t, co) (type 1 censoring). Then 7!0(0) is given by 

i - Fo(t) 

7~t)(O) - 1 -  Fo(s) 

which is an increasing function of s. The factor modifying h in (5.4) is in this 
situation increasing or decreasing depending on whether q0 > log(1 - 0) or ~ < 
log(1 - 0). 

As another example suppose h = 1 and G(x) = 1 - e -ux. Then 

# 
= 

1 - 0 - 0 - 0 + u ) 8  
e 

i - 0 + #  

Here 7(0(0) is a decreasing function of s, and the hazard function given by (5.4) 
is monotonically increasing or decreasing depending on whether ~o < log(1 - 0) or 
~o > log(1 - 0). 
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