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A b s t r a c t .  We show that the entries of the asymptotic covariance matrix of 
the sample autocovariances and autocorrelations of a stationary process can be 
expressed in terms of the square of its spectral density. This leads to closed 
form expressions and fast computational algorithms. 
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1. Introduction 

Let  {Xt} be a s ta t ionary  process with mean #, autocovariance funct ion Rk = 
E(X t  - # ) ( X t - k  --#),  autocorre la t ion function rk = Rk/Ro,  and spectral  densi ty 

1 f (w)  = ~ ~-~k=-~ Rk cos(wk). The  sample autocovariances/~k,  k = 0, 1 , . . . ,  and 
the sample autocorrela t ions  rk, k = 1 , 2 , . . . ,  f rom a s t re tch (X1 , . . .  ,XN)  from 
{Xt} of length N are defined as 

N 

Rk = CN, k - m ) ,  = 

i----k+1 

where CN,k is usually equal to 1 /N  or 1 / (N  - k), while m is equal to the mean 
of the process or to  the sample mean according to whether  the  mean is known or 

unknown. 
Because of the impor tan t  role of the sample autocovariances and autocorre-  

lations in t ime series modelling their  statist ical  propert ies  are subject  to much 
research. One way to  describe such propert ies  is th rough the asymptot ic  covari- 
ances of/?/k and rk, defined as 

Fk j  = l iE  N Cov(/~k, /~) ,  g--~cx) 

3'k,l = lim NCov(Pk ,  rz). 
N---*c~ 

* This research has been partly supported by contract No. MM 440/94 with the Bulgarian 
Ministry of Science and Education and by the Division of Quality Technology and Statistics, 
Lule£ University, Sweden. 
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Under suitable conditions these limits exist and are given by Bartlett 's formulae 
(Bartlett (1955), Anderson (1971)) 

(1.1) rt,k = ~ (R{+zR~+k + Ri+zRi-k) + A~(k, 1), 

(1.2) Vk,t = E (ri+zri+k + ri+Iri-k -- 2rlriri+k - 2rkriri+l + 2rkrlr2), 
i=--o~ 

where A,~(k, t) depend on the fourth order cumulants and A,~(k, l) = 0 when the 
process {Xt}  is Gaussian. Note that the formula for the autocorrelations does not 
involve higher order characteristics of the process. 

Theorems for joint asymptotic normality of any finite number n of sample 
autocovariances Rk, k = O, 1 , . . . ,  n or sample autocorrelations rk, k = 1, 2 , . . . ,  n 
are also available (see Anderson (1971)). The entries of the covariance matrices of 
the limiting distributions are given by Fl,k and 71,k respectively. 

The infinite sums in these formulae make them not sufficiently convenient for 
"exact" computations. It is reasonable to expect that for some important classes 
of models finite algorithms should exist. This is indeed the case. Bruzzone and 
Kaveh (1984) obtained closed form formulae for Fk,t in the ARMA case under 
some restrictions on the roots of the ARMA polynomials (they should be complex 
and simple). Their solution is in terms of the roots of the ARMA polynomials. 
It is useful in simulation and in some theoretical considerations, but its value as 
computational tool is limited not only because of the restrictions on the roots, but 
because usually the coefficients of the polynomials are available, not their roots. 

Recently computationally feasible expressions and recurrence relations for the 
pure autoregression have been obtained by Cavazos-Cadena (1994). 

A general solution to this problem has been announced in Boshnakov (1989). 
The solution given there covers completely the ARMA case without any restric- 
tions on the autoregressive and moving average polynomials. Conditions on the 
distribution of the innovation process are necessary only to ensure the validity 
of Bartlett 's formulae. The aim of this paper is to represent in some length this 
solution. Namely, we will show that 

(1.3) Fk,z = Rg(1 - k) + Rg(l + k) + A,~(k,/), 

and 

(1.4) 7k,l = ~o[Rg(l - k) + Rg(1 + k) - 2Rg(k)rl - 2Rg(1)rk + 2rkrlRg(O)], 

where Rg(k) is the autocovariance function corresponding to the spectral density 
g(w) = 2rf2(w). 

This result reduces the computation of the asymptotic covariances of the sam- 
ple autocovariances and sample autocorrelations to the computation of the auto- 
covariance sequence R~ (k). 
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Conditions when these results hold are discussed in Section 3. From compu- 
tational point of view the most important case is when {Xt} is an ARMA process 
for which we have the following corollary. 

COROLLARY 1.1. Let {Xt} be an ARMA(p ,q )  process, 

¢ ( B ) X ,  = O(B)e , 

where et is white noise, the polynomials ¢(z) and O(z) have no common factors 
and ¢(z) has no roots with Izl = 1. Then, if (1.1) (respectively (1.2)) holds then 
(1.3) (respectively (1.4)) holds with Rg( k ) being the autocovariance sequence of an 
ARMA(2p ,  2q) process 

¢2(B)Y t = 02(B)at, 

4 2 where the variances of the white noises obey the condition Ore = aa. 

PROOF. It is well known that the spectral density fx(cv) of the process X 
is given by the formula (see, for example, Brockwell and Davis ((1991), Theorem 
4.4.2)) 

or E 
= 

Hence, 
4 e2(e-i ) 2 O(e 4 = 

4rr 2 ¢(e - ~ )  = ~ ¢2(e-i~) 
[] 

Various efficient algorithms for the computation of the autocovariance se- 
quence of an ARMA process exist, e.g. Wilson (1979), Kay (1985). They can 
be used for the computation of Rg(k), and therefore of Fk,l and "lk,l. 

It is important to note that only the probabilistic structure of the white noise 
sequence of the ARMA model may preclude the validity of Bartlett's formulae 
and the above formulae. This is so because the coefficients in the infinite moving 
average representations of the ARMA models decrease sufficiently fast to ensure 
the validity of the conditions on them in all known results concerning Bartlett 's 
formulae (see Anderson (1971) and Section 3 below). 

Furthermore, causality conditions on the model are not necessary. This is of 
some importance in the non-Gaussian case since then the innovations sequences 
of the different representations of the ARMA model have different probabilistic 
properties. For example, if an ARMA process is non-Gaussian and the "forward" 
residuals are independent identically distributed, then the "backward" ones are 
only uncorrelated. Hence, the conditions for the validity of Bartlett's formulae 
may turn out to be fulfilled for some of the ARMA representations of a process, 
and not for others. 

Bartlett's formulae for the sample autocorrelations and sample autocovari- 
ances look similar but there exist important differences. The conditions under 
which the former hold are weaker than these for the latter. Moreover, the formu- 
lae for the autocovariances involve fourth-order cumulants, except for the Gaussian 
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case when these are zero. The asymptotic normality is easier for the sample auto- 
correlations as well. Detailed presentation of these and related issues can be found 
in Anderson (1971). 

2. Closed form of Bartlett's formulae 

Since the Fourier transform of a convolution is simply the product  of the 
Fourier transforms of its arguments (Fuller (1976), Corollary 3.4.1.1) and the au- 
tocovariance function is an even function, we have the following lemma. 

LEMMA 2.1. Suppose that ~ i ~ - ~  1P~I < oo. Then 

f (2.1) E Ri+~R,+k = 27r cos(w(k - l))f2(w)dw. 
i ~ - - o o  7r 

We use this lemma in our proofs. They could be equally well based on the 
integral representations, given in Anderson (1971). For absolutely summable au- 
tocovariance functions both approaches are essentially the same. 

THEOREM 2.1. Suppose that formulae (1.2) hold and that ~ i ~ - ~  tRiI < oc. 
Then formulae (1.4) hold. 

PROOF. Multiplying and dividing the righthand side of (1.2) by P~, substi- 
tuting (2.1) into (1.2), and bearing in mind that  rk = Rk/Ro, we obtain 

oo 

"/k,l = E (ri+lri+k + ri+lri-k -- 2r~riri+k -- 2rkriri+l + 2rkrlr 2) 

O0 

= 1_~ E (Ri+lR~+k + R4+zRi-k - 2rlP~R~+k - 2rkRiRi+l + 2rkr~R 2) 
~ i -~ - -oo  

- 2rl cos(~k)f2(w)d~ - 2rk cos(u:l)f2(w)dw 
?r 7r 

+ 2rkrl f2 (¢z)dw 
7~ 

1 
: --~oo[Rg(l - k) + Rg(l + k) - 2Rg(k)r~ - 2Rg(l)rk + 2rkrzRg(O)]. [] 

Similar arguments lead to the corresponding result for the autocovariances. 

THEOREM 2.2. Suppose that formulae (1.1) hold and that ~-~.i~-c¢ ]Ril < oc. 
Then fo~nulae (1.3) hold. 
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A closer look at equation (1.4) reveals that "Yk,l can be written in terms of F~,j 
as (assuming A,~(k,l)= O) 

1 
(2.2) "Yk,l = ~202 (rk,l -- rlFk,o -- rkFl,o + rkr~ro,0), 

since 2Rk = Rk-o + Rk+o. 
The equation (2.2) can be obtained also directly from equation (1.1). The 

function g(xo, xk, xl) defined as 

g(Xo,Xk,xl)= zk ,x l  , 
\ xo  

transforms (Ro, Rk, R~)' into (rk, rl)'. The matrix D of its first derivatives at 
(Ro, Rk, R~) is given by 

(~,Rk,nO 1/Xo0 ) 1  
Og f--Xk/X~ 1/oXO 

D =- -~x = ~, -x'/x2o (no,nk,n,) 

1(_. 1 o) 
= - ~  -r l  0 1 " 

Assuming that the sample autocovariances are asymptotically normal, it can be 
verified easily that the conditions of Brockwell and Davis ((1991), Proposition 
6.4.3) are fulfilled. Therefore, the sample autocorrelations are also asymptotically 
normal with asymptotic covariance matrix equal to DED', where 

ro,o ro,k ro,l  
E =  Fk,o Fk,k Pk,l I . 

F~,o Fl,k Ft,~/ 

Direct calculations show that 

1 f r~F0,0 - 2rkro,k + Fk,k .. .  ) 
DED' = ~2 k, rkrzF0,0 - rkFo,t - riF0,k + Fl,k r~Fo,o - 2rtFo,t + Ftj 

which, as expected, coincides with (2.2). 
This derivation shows also that ~/k,l does not depend on higher order cumulants 

if and only if 

rkrtA~(O, O) -- rkA~(O, l) -- r,A~(O, k) + A~(l, k) = O. 
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3. Some sufficient conditions 

The sample autocorrelations have "better" asymptotic behaviour than the 
sample autocovariances--higher order cumulants do not enter Bartlett 's formulae; 
when the sample autocovariances are asymptotically normal, so are the sample 
autocorrelations; asymptotic normality has been proved without any conditions 
on the higher order moments (a result which is due to Anderson and Walker 
(1964), see also Anderson ((1971), Theorem 8.4.6)). 

In this section we give some sufficient conditions under which formulae (1.3) 
and (1.4) hold. We state the conditions as in Anderson (1971). 

DEFINITION 1. A process {Xt}  is said to be linear process if it admits a 
representation as 

DO 

(3.1) Xt = Z hi¢t-i, 
i =  - -  o o  

o o  
where )-~i=-oo Ih~l < ~ and the process {st} is such that Est = O, EE 2 = a 2 < co, 
EEt~s = 0 when t # s. 

To say it another way, {Xt}  is a linear process if there exist white noise {st} 
and absolutely summable sequence of constants {hi} such that equation (3.1) 
holds. 

THEOREM 3.1. Let the process {Xt}  be linear with representation (3.1), 
where 

(i) {ct } is a sequence of independent identically distributed random variables, 
and 

(ii) }-~im=_oo [i[h2i < oo. 
Then formulae (1.4) hold and the joint distribution of any fixed number of 

sample autocorrelations is asymptotically normal with elements of the asymptotic 
covariance matrix given by (1.4). 

PROOF. The validity of Bartlett 's formulae and the asymptotic normality 
follow from Anderson ((1971), Equation (47), Theorem 8.4.6). Then, by Theorem 
2.2, the formulae (1.4) also hold. [] 

The fourth-order cumulants of {Xt}  are denoted below by a(k, l, m) (Anderson 
(1971), §8.2.2, Equations (34)-(36)). 

THEOREM 3.2. If]~-~i~=_~ a ( k , - i , l  - i) < oc and the spectral density f (w)  
of the process { Xt  } is continuous, then 

(3.2) rk,z = Rg(l - k) + Rg(l + k) + 
o o  

. ( k , - i , l -  i), 
7 . ~ - -  OO 
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where Rg( k ) is the autocovariance function corresponding to g(w) = 27rf2(w). 

PROOF. Under the imposed conditions we have from the first part of Theo- 
rem 8.3.3 in Anderson (1971) that  

7 O0 

(3.3) rk,, = cos( k)cos( l)f2( )d  + . ( k , - i , 1 -  i). 
l r  i ~ _ ¢  ~ 

As any continuous function on [-7r, 7r] is square integrable we can split the integral 
into two integrals, using the formula for the product of cosines, 

1 
cosacos b = ~(cos(a + b) + cos(a - b)) 

to get the desired result. [] 

Note that the spectral density of a process with absolutely convergent auto- 
covariance function is continuous, while the converse is not true. Difficulties may 
arise in the reconstruction of a convolution by inverting the product of the Fourier 
transforms of its arguments, when the arguments are not absolutely convergent. 
This explains why we do not use the second part of the Anderson's theorem which 
establishes Bartlett 's formulae (1.1) under the weaker condition that  the squared 
autocorrelations form a convergent series. 

For linear processes the infinite sum in (3.3) simplifies to a single term, under 
some distributional assumptions about the innovation process, as described in the 
following corollary. 

COROLLARY 3.1. Let the process {Xt} be linear with representation (3.1), 
where 

(i) Ect~s~eq = O, when t ¢ s and t ~ r and t ¢ q, 
(ii) EE 4 < co, a4 = EQ a - 3a4, 

(iii) Ee2e~ = a4, when t ~: s. 
Then 

(3.4) Fk,z = Rg(1 - k) + Rg(l + k) + ~ R k R l .  

PROOF. The result follows from Theorem 2.1 and from Anderson ((1971), 
Corollary 8.3.1). [] 

If the innovations sequence is strictly stationary then asymptotic normality 
can be obtained. 

COROLLARY 3.2. Let the process (X t}  be linear with representation (3.1), 
where 

(i) {E,} is a sequence of independent identically distributed random variables, 
(ii) E~, a < oc, aa = Ee~ - 3a 4. 
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Then for any fixed n the vector (l:lo,..., • ) '  is asymptotically normal with 
elements of the asymptotic covariance matrix given by equation (3.4). 

PROOF. The result follows from Theorem 2.1 and from Anderson ((1971), 
Theorem 8.4.2). [] 

We have given the main result (see Corollary 1.1) in the Introduction. In 
view of the above results to prove it it remains to note that  the infinite moving 
average representation Xt = ¢(B)et  of the process ¢(B)Xt  = O(B)et exists and 
its coefficients form an absolutely convergent series (recall that  ¢(z) ~ 0 when 
Izl # 1). 

The following results show that  lPk,l and "Yka satisfy difference equations, which 
can be used for further simplification of the computations. 

COROLLARY 3.3. Suppose that 

(3.5) Fk,l = R9(1 - k) + Rg(1 + k) 

and let k > 0, 1 > 0, 1 - k > max(2q, 2p). Then 

¢ 2 ( B l ) r ~ , l  = 0, 

where the shift operator Bl operates on l, i.e. Bzrk,~ = Fk,t-1. 

Note nonetheless that  when Rg(1- k) and Rg(1 + k) axe already available there 
is no need to use recurrences. More valuable appears to be the corresponding result 
for the autocorrelations. 

COROLLARY 3.4. Suppose that (1.4) holds. Then, 
(i) i l l  >_ q+ 1 then 

(3.6) ¢(Bt)%,l = ~,2 [¢(B1)rk,, -- rk¢(Bt)rl,o], 
0 

(ii) if I > max(2q + 1, 2p + 1) then 

¢2(B1)Tk,l = O. 

PROOF. From (2.2) it follows that  

1 
7k,1 = R--~o(rka - Fk,0rl - Fz,ork + F0,orkrz). 

Applying the operator Bl to the both sides of this equality, we obtain 

O(Bl)%,l = 1W~((P(BI)Fk,I -- Pk,0¢(Bl)rl - rk¢(Bl)Fi,0 + Po,orkc~(Bl)rl), 
1"5 
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which proves (i) since ¢(Bt)rz = 0 when l _> q + 1. Applying the operator ¢(Bl) 
to equation (3.6) and using the previous corollary we obtain (ii). [] 

We end this section with a generalization of the Bruzzone and Kaveh's result 
(see Bruzzone and Kaveh (1984)). Although Corollary 1.1 shows that Rg(k) can be 
obtained as the solution of the difference equation ¢2(B)Rg(k) = O, for k > 2q+ 1, 
subject to the initial conditions given by the even property of Rg(k), we state the 
result in the form obtained in Bruzzone and Kaveh (1984). 

COROLLARY 3.5. Suppose that ¢(z) can be written in the form 

P 

¢(z) = H ( 1 -  Piz- ') ,  
i----1 

where Pi are distinct and formulae (1.1) hold. Then, 
(i) Rg(j) is given by the following formulae 

• / o r j  = o  

2 R2 + 1 - P,P, 
r = l  s----1 

• for j odd 

2 E R i R i + j +  E R i R j - , +  1-P~P~J 
L/=O 7=1 r = l  s = l  

• for j even 

where vj, j = 1, . . .  ,p are the solution of the system 

Rk~EViPi k-q, 
i =1  

k- -  q,q+ 1 , . . . , q + p -  1. 

(ii) ¢2(B)Rg(k) = 0 when k >_ 2q + 1. 

PROOF. The first part of the corollary has been proved by Bruzzone and 
Kaveh (1984) under the additional assumptions that the roots of ¢(z) are complex, 
and those of ~7(z) are complex and distinct. It can be seen that their proof can be 
carried out without these additional assumptions as well. The second part of the 
corollary follows from the previous results. [] 
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4. An example 

Let { X t }  be an autoregression of order 1, i.e. 

(I - CB)X~ = ~. 

The zero lag autocovariance of {Xt} in this case is Ro -= a~ / (1  - 02). The auto- 
correlation function is given by rk = Ck. The function R g ( k )  is the autocovariance 
function of the AR(2) process 

(1 - CB)2Yt  = at, 

2 4 Solving the Yule-Walker system with a~ = a~. 

Rg(2) - 2¢R~(1) + £R~(0) = 0 
(1 + £ ) n g ( 1 )  - 2¢R~(0) = 0 

2 ¢2Rg(2)  - 20R9(1) + Rg(0) = ~a, 

we obtain 

Rg(O) - 1 + 02 a 2 Rg(1) - 2¢ 30"a2' R g ( 2 )  - 3¢2 - ¢4 c r2 
" '  (1 ° 

Now, equation (1.4) shows that, for example, the variance of rl  is 

1 
~1,1 = ~ ( ( 1  + 2rl~)R~(0) + R~(2) -  4rlRg(1)) 

(1 + 2 ¢ 2 ) ( 1 + ¢ 2 ) + ¢ 2 ( 3 _ ¢ 2  ) _8¢2  ( a 2 ~  

¢~4 _ 2¢2 + 1 

I - ¢2 

= 1 - ¢  2, 

which is a well known result. 

5. Conclusion 

We have shown that the infinite sums in Bartlett 's formulae, under quite 
general conditions, can be written in closed form in terms of the autocovariance 
sequence of a model, closely related to the model of the process under considera- 
tion. In the ARMA case this reduces to the computation of the autocovariances 
of the "squared" model, which is also an ARMA model. Efficient algorithms exist 
for this task. We also presented a closed form expression which may be useful 
occasionally. Conditions under which Bartlett 's formulae can be written in our 
form have been given as well. 

The recurrent expressions of this paper can be used for efficient computation 
of the asymptotic covariance matrix of the sample autocovnriances and autocor- 
relations. 



CLOSED FORMS FOR BARTLETT'S FORMULAE 59 

Acknowledgements 

The referees' comments were helpful in improving the quality of the paper. 

REFERENCES 

Anderson, T. W. (1971). The Statistical Analysis of Time Series, Wiley, New York. 
Anderson, T. W. and Walker, A. M. (1964). On the asymptotic distribution of the autocorrela- 

tions of a sample from a linear stochastic process, Ann. Math. Statist., 35, 1296-1303. 
Bartlett, M. S. (1955). An Introduction to Stochastic Processes with Special Reference to Methods 

and Applications, Cambridge University Press, Cambridge. 
Boshnakov, G. (1989). On the asymptotic distribution of the sample autocovariance and auto- 

correlation functions, Comptes Rendus de l'Academie Bulgare des Sciences, 42, 21-23. 
Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, Springer Set. 

Statist., 2nd ed., Springer, New York. 
Bruzzone, S. P. and Kaveh, M. (1984). Information tradeoffs in using the sample autocorrelation 

function in ARMA parameter estimation, IEEE Trans. Acoust. Speech Signal Process, 32, 
701-715. 

Cavazos-Cadena, R. (1994). A simple form of Bartlett 's  formula for autoregressive processes, 
Statist. Probab. Lett., 19, 221-231. 

Fuller, W. A. (1976). Introduction to Statistical Time Series, Wiley, New York. 
Kay, S. (1985). Generation of the autocorrelation sequence of an ARMA process, IEEE Trans. 

Acoust. Speech Signal Process, 33, 733-734. 
Wilson, G. W. (1979). Some efficient computational procedures for high order ARMA models, 

J. Statist. Comput. Simulation, 8, 301-309. 


