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Abstract .  This paper considers spectral and autocovariance estimation for 
a zero-mean, band-limited, stationary process that has been sampled at time 
points jittered from a regular, equi-interval, sampling scheme. The case of 
interest is where the sampling scheme is near regular so that the jitter standard 
deviation is small compared to the sampling interval. Such situations occur 
with many time series collected in the physical sciences including, in particular, 
oceanographic profiles. 

Spectral estimation procedures are developed for the case of independent 
jitter and autocovariance estimation procedures for both independent and de- 
pendent jitter. These are typically modifications of general estimation pro- 
cedures proposed elsewhere, but tailored to the particular jittered sampling 
scheme considered. The theoretical properties of these estimators are devel- 
oped and their relative efficiencies compared. 

The properties of the jittered sampling point process are also developed. 
These lead to a better understanding, in this situation, of more general tech- 
niques available for processes sampled by stationary point processes. 

Key words and phrases: Jittered sampling, stationary processes, spectral es- 
timation, autocovariance estimation, kernel density estimation. 

1. Introduction 

Consider a zero-mean, continuous-time, covariance stationary process X(t )  
that  has been sampled at times Tn perturbed from a regular equi-interval time 
scale or equi-spaced grid with interval A. We assume that  X(t )  has autocovariance 
function ?(t) = E { X ( s ) X ( s  + t)} which is continuous and absolutely integrable 
so that  X(t )  has bounded spectral density 

F 1 e_ i t~( t )d t .  (1.1) f(w) = ~ o~ 
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To avoid aliasing effects we further assume that f(w) is band-limited with f(w) 
zero outside [ - ~ ,  ~]. Furthermore, the jittered sampling times T~ are assumed 
to satisfy 

(1.2) T~ = (~ ÷ nA + en (n = 0, ±1, ±2 , . . . )  

where the "jitters" £n form a zero-mean, strictly stationary process with finite 
variance that is independent of the X(t)  process. Of interest is the case where the 
sampling scheme is near regular so that a, the standard deviation of en, is small 
by comparison to A. This paper focusses on ways of estimating 7(t) and f(w) 
from the jittered time series Yn = X(T~). 

The assumptions given in the previous paragraph will be referred to as As- 
sumptions 1. The requirement that X(t)  have zero mean has been chosen for 
expositional simplicity. We believe that, under the conditions of this paper, mean 
correction by the sample mean will not alter the asymptotic results given in the 
following sections. Note that (~ is a fixed quantity which allows for an arbitrary ini- 
tial reference point for the sampling scheme and the aliasing assumption, although 
highly restrictive, will be approximately true in practice provided A is sufficiently 
small. 

For many time series, especially those collected in the physical sciences, jittered 
sampling schemes can arise in many ways. For example, they can arise as a result 
of noise in the clock signal used to time the samples, as a result of perturbations in 
the medium through which remote sensing (radar or sonar) pulses are propagated, 
or through unexpected or unavoidable residual motion of a sampling probe about 
its desired path. The jitters may be independent or correlated, depending on the 
situation. 

Jitter models of this sort were first considered in Akaike (1960) and also inde- 
pendently by Balakrishnan (1962). A discussion of the effects of jitter on spectra 
in practice and in theory is given in Moore et al. (1988) and Moore and Thomson 
(1991) respectively. In the latter it is shown that  the effect of jitter is to redistribute 
spectral mass without destroying it. Even in the case where the jitter standard 
deviation is relatively small, significant spectral damage can result, especially at 
the higher frequencies. 

If the sampling process is free of jitter so that ~ = 0 and T~ -= ~ + nA, 
then 7(nA) and f(w) can be estimated in the conventional manner. The general 
case where a ~ 0 is considerably more complicated and an analysis of irregularly 
observed data must be undertaken. See Parzen (1983) for a useful collection 
of papers on the latter topic. Also note the distinction between our problem, 
entailing a continuous time model, and that of a discrete time model with missing 
observations (see Akaike and Ishiguro (1980), Jones (1971) and Robinson (1984) 
for example). 

General methods due originally to Brillinger (1972) can be used here (see 
Moore et al. (1988) for a practical application). These have been further devel- 
oped in Brillinger (1983) and in a series of papers by Masry. See, in particular, 
Masry (1983a, 1983b), Lii and Masry (1992) and the references contained therein. 
These general methods consider the recovery and estimation of the second-order 
properties of a continuous-time stationary process X(t)  that has been sampled at 
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times generated by a stationary point process. However, as we show later, the 
point process specified by Tn can have lines in its spectrum at frequency 2~ and 
its harmonics so that spectral methods must be used with care. Moreover, in 
terms of the definition of alias-free spectra proposed by Masry (1978), T~ need not 
necessarily be alias-free. Indeed, for a small, as is the situation here, the jittered 
sampling process Tn will typically not be alias-free in practice. 

These circumstances have led us to propose estimators which are variants 
of the general Brillinger and Masry estimation procedures more closely tailored 
to the band-limited processes and jittered sampling scheme considered here. In 
Section 2 we consider spectral estimation in the presence of independent jitter and, 
in Section 4, the much more difficult case of dependent jitter. Section 3 develops 
the second-order properties of the jittered sampling process T~. These properties 
are needed for Section 4, but are also of independent interest (see Lewis (1961) 
and Lawrance (1972) for example). 

2. Spectral estimation for independent jitter 

When the jitter e~ is a sequence of independent random variables, Yn = X(Tn) 
has autocovariance function 

{ (n = 0) 
(2.1) 7y(n) = "7(x + nA)g(2)(x)dx (n = ±1, ±2,.. .) .  

Oc 

Here 

(2.2) g(~) (x) = 9(Y)9(x + y)dy 
o o  

is the probability density function of em+n - em for all n # 0, and it has been 
assumed that en is absolutely continuous with probability density function g(x). 
Replacing 7(t) by its spectral representation in (2.1) we have 

f 
,~/  A 

ei~a~i¢(w)12f(~:)dw (n # 0) (2.3) 7Y (n) = J-,~/zx 

where ¢(~) is the characteristic function of e~, and so Y,~ has spectral density 

( (2.4) fy(w) = ]¢(w)12f(w) + c lwl ~ 

where 

a f . la (1 -1¢(,~)12)f()0dA. (2.5) = 

Note that 7y(0) = 7(0) yields the spectral mass preservation property that 

(2.6) f ~ / A  f ~  = 

J - - ~ v / A  co  
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These results have been established in Akaike (1960), Balakrishnan (1962) and 
Moore and Thomson (1991). It can be seen that  fv(w) and fly(n) approach f(w) 
and f ( n A )  respectively as a approaches zero. 

We now consider solutions of (2.4) for f(w) in terms of fv(w) and [¢(w)l 2. 
These are then used to derive simple moment  estimators of f(w) from estima- 
tors of f v  (~) and I¢(w)I ~. This approach yields simple non-parametric estimators 
which, in many cases, can also be derived from a frequency-domain approximation 
to a quasi-likelihood based on the (almost certainly incorrect) assumption that  
the Yn are unconditionally Gaussian, averaging out over the Tn (see also Robinson 
(1980)). The method of estimation developed in this section and Section 4 as- 
sumes that  a and A are known so that  the en are completely determined. The 
situation where a and A are not known and must be estimated is briefly discussed 
in Section 5. 

Consider first the case where ¢(w) ~ 0 on [ - ~ ,  ~] as would pertain if a is 
sufficiently small. Then (2.4) and (2.6) yield 

(2.7) c = 
1)A-(,X)d), 

f _~r / A .IA I¢(.X)1-2d.x 

and the (unique) solution of (2.4) over [ - ~ ,  ~] is 

fy(w) - c 
(2.8) f ( w ) - -  I - ~ ) 7  

with c determined by (2.7). 
If ¢(w) or f(w) are zero over an interval within [ -~ , -~ ]  then a solution to 

(2.4) for f(w) over the entire frequency range may not be possible. Suppose, for 
example, that  

(2.9) fy(w) = re 

where ¢(w) is non-zero on I-w0, w0]. In practice this situation might occur if the 
underlying sampling rate is sufficiently rapid for f(w) to be assumed to be zero 
over a non-degenerate interval that  includes the Nyquist frequency ~.  In this case 
a simple and not necessarily unique solution to (2.9) for f(w) over [-w0, w0] is 
(2.8) with 

1 i ~/A (2.1o) c -  
A ~¢o ~' wQ 

More needs to be known about f(w) and ¢(•) in order that  f(w) can be recovered 
over the remainder of the frequency range. 
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Using these relationships, simple non-parametric estimators of f(w) can be 
obtained from conventional spectral estimators of fy(w). Suppose 

(2.11) 
271 N ( 27r j )  

]y(w) = N A  E kN(w - -  Aj)Iy(Aj) Aj = N A  
5=1 

where kN(X) = 1 x 7r ~-~N k(~-~N) is a standard spectral window, w E [0, ~)  and 

(2.12) 
N 2 

A E Y ( n ) e i n a ~  
I y ( w ) -  21rN n=l 

denotes the periodogram of the observed time series Y~. The kernel density func- 
tion k(x) is assumed to be an even, continuous, square integrable function with 
uniformly bounded second derivatives and f:~oo k(x)dx -- 1. Moreover, the band- 
width parameter bN satisfies bN ---* 0 and Nbg -~ oo as N ~ co. The assumptions 
given in this paragraph will be referred to as Assumptions 2. 

In addition to assuming that 7(t) is continuous and absolutely integrable we 
further assume that X(t) is fourth order stationary with an absolutely integrable 
fourth cumulant function q(tl, t2, t3). This, in turn, is assumed to satisfy 

(2.13) q( t l , t2, t3 ) = / / / e i t~+u2~2+u~3p(v l ,  v2, v3 )dul du2dv3 

where p(vl, 92, 93), the fourth cumulant spectrum of X (t), is absolutely integrable. 
These fourth cumulant assumptions axe trivially satisfied when X(t) is Ganssian. 

The assumptions given in the previous paragraph will be referred to as As- 
sumptions 3. They imply that Yn is fourth order stationary and, since the Tn are 
independent, has cumulant function 

(2.14) 

so that the fourth cumulant spectrum of Yn is also absolutely integrable. Given 
Assumptions 1-3 it is known (see Parzen (1957) for example) that ]y(w) is a 
consistent estimator of fy(w) and that the asymptotic variance of ~ ] y ( W )  
is 2~r 2 oo ~ f ~ ( w )  f:oo k2(x)dx (w ~ O) and 4, 2 oo f~(O) f~_~ k2(x)dx (w -- 0). Moreover 

the v/-N--~]v(w) are asymptotically uncorrelated at distinct, fixed frequencies w 
in [0, ~) .  

If ¢(w) ¢ 0 on [ - ~ ,  ~], then f(w) can be estimated over this range as 

(2.15) -  'JYf) 

where c is estimated from (2.7) as 

N ^ 2 

(2.16) e =  Ef=114(  )1-2 = 
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and a simple non-parametric estimator of ¢(w) is given by the sample characteristic 
function 

1 N 
(2.17) 4(~) = ~ ~ ~-~o~. 

n = l  

Now assume that  the en are independent random variables each with a common 
absolutely continuous distribution, probability density g(x) and a characteristic 
function ¢(w) which is bounded away from zero on [ - ~ ,  ~]. These assumptions 
will be referred to as Assumptions 4. Then, since ¢(w) is a sample mean of N 
independent and identically distributed random variables each with mean ¢(w) 

and variance 1 - I¢(w)l 2, ~(w) is a vrN-consistent estimator of ¢(w) uniformly in 
w so that ¢(w) - ¢(w) is O(1/v/N) in probability, uniformly in w. This, together 
with standard properties of the Iy ()U), implies that  ~ is a vfN-consistent estimator 
of c and so 

~ ( ] r ( w )  -1¢(~)12](-,)  - ~) 

= Nx/-N-~-~{(l$(w)t 2 - 1¢(<,)12)](~o)+ e - c }  

is O(v/@) in probability. Thus ]y(w) and I¢(w)12f(w) - c are asymptotically 
equivalent in the sense that their difference is o(1/v/-N~N) in probability as N -~ 
oo. These observations lead to the following result. 

THEOREM 2.1. Given independent jitter, Assumptions 1-4 and w E [0, ~) ,  

](~) is a consistent estimator of f (~)  ~ t h  

{2~- c 2 

lim NbNvar(](w))= ~(f(m)+lC(m)12)S-oo 
N--~ 47r S x) ~-(f(O) + c) 2 k2(x)dx 

oo 

k2(x)dx (~ # o) 

(~ = o). 

Estimates at distinct frequencies in [0, ~ ) are asymptotically uncorrelated. 

When a = 0 and the process is free of jitter the standard results for regular 
sampling are recovered. However if a > 0 the relative efficiency of f(w) with 
respect to the conventional regular sampling estimator is 

C = 1 C 
(2.18) 1 - I¢(w)i2f(w ) + c fy(w) 

Recalling that c is given by (2.5), considerable loss of efficiency can result when 
I¢(w)12f(w) is small relative to c at frequency w, a situation that  can occur even 
for relatively small values of a. By contrast to the standard case of regular sam- 
pling, note also that both the efficiency (2.18) and var(f(w)) depend on c which 
is a function of ¢(A) and f(A) over all frequencies ~ and not just the particular 
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frequency w chosen. Although these results are for the independent jitter case 
and involve simpler estimation procedures, these results and observations are con- 
sistent with the numerical studies of Moore et al. (1987) who investigated the 
sampling variability of the Brillinger estimators by simulation. 

In the case of (1.2) where ]¢(w)l 2 or f (w) are zero for w > w0, Theorem 2.1 
continues to hold for w in [-w0, w0]. However now ~ can be estimated from (2.10) 
by 

7r A3 = N A  ] 
A Wo 

where the summation is over those frequencies Aj in (w0, ~). Note in general that 
alternative estimators for c and ¢(w) could be used. All that is required is that 
they be x/~-consistent (uniformly in w in the case of estimators of ¢(~)). 

3. Properties of the jittered sampling process 

The point process properties of Tn are needed in order to take advantage of the 
general results of Masry (1983a, 1983b) which give general estimation procedures 
for recovering the second-order properties of a continuous-time stationary process 
from irregularly sampled data. However these properties are also of independent 
interest. In the point process literature the model (1.2) with independent en is 
referred to as the process of displaced regular events (see Lewis (1961), Lawrance 
(1972) and Cox and Lewis (1966)). It is a specific type of cluster process and 
has been used as an arrival process for certain queueing and inventory systems. 
However the case of dependent en does not appear to have been treated. 

As it stands Tn given by (1.2) is not stationary. However, as we shall see, 
it is stationary if we add the seemingly harmless assumption that a is uniformly 
distributed on [-~,-~] .  We also require that the process en be strictly stationary 
with finite moments of all orders and have absolutely continuous finite-dimensional 
joint distributions of all orders with joint densities of bounded variation. (The 
latter is implied if the densities are boundedly differentiable.) The assumptions 
given in this paragraph will be referred to as Assumptions 5. 

Let N(s, t] denote the number of sampling points Tn in (s, t] and N(t)  = 
N(0~ t]. Denote the probability density function of em+n -- e,~ by g~(x) and the 
joint probability density function of em, e~ by gm,~(X, y) = gO,~--,~(X, y). Then we 
have the following result. 

THEOREM 3.1. Given Assumptions 5, N(t)  is a stationary, orderly, point 
process with finite moments of all orders, mean intensity -~ and covariance density 

1 c¢ 1 
(3.1) rN(t) = g, (t-nA) 

A2 
n ~  - -  O 0  

where go(t) is defined to be the Dirae delta function 5(t). 
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To establish the stationarity of N(t) we consider the characteristic 

• (h) = E{e ~/-~ "(~)~(~)} 

and show that  this is invariant under any arbitrary t ime translation of h from h(s) 
to h(s + t). Here h(s) belongs to the class of bounded measurable functions with 
compact support  so that  expressions such as f~_~ h(s)dN(s) are well defined (see 
Daley and Vere-Jones (1988) for further details). Now write t = kA + 6 where t is 
arbitrary, 0 _< ~ < A and k is an integer. Then 

1 [A/2-,~ .~-,~ h(~+t+(n-k)~+~)da 

/ + E  AJzx/2-e  

Replacing n by n + k in the first integral, n by n + t: + 1 in the second, and using 
the stationarity of the en we obtain 

• (h) = E N J-z~/2 

: E{e i £ ~  ~<~+~)~(,)} 

as required. 
Let A, B denote arbitrary finite intervals. To show that  N(A) has finite 

moments of finite order k it is sufficient to consider the quantities 

n l#0  n2#0 nk#0 

Because of the monotonicity and stationarity of N(t)  we can restrict consideration 
to intervals A = I -a ,  a] with length less than A. Then 

Mk <<_ E E " " E X j_A/2 P { [ e . , l > l n i l A - a - l a [ }  da  
nl#On2#O nk#O 

which, by Chebyshev's inequality, is bounded by 

1 [ A / 2  E(Hie~,) 
Z Z .-. Z ~ ~_~/~ n~() , ,~=~-i . ) )  ~d" < ~ 

nl #0 ha#0 nk#0 
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as required. 
Now 

oo 

(3.3) E{N(A)} = ~ P(Tn E A) 
-- 00 

--'-- --~ --C~ J - A / 2 T n A  g ( x  -- a)dadx 

1i i? = -~ g((~)dadx- #(A) 

where #(.) denotes Lebesgue measure. Moreover 

E{N(A)N(B)} = Z Z P(Tm E A, Tm+n E B)+ E{N(AMB)}  
m n~O 

where the first term on the right-hand side of the above is 

m J-A/2+mA Z go,,~(X -- ~, y -- nA -- c~)dc~dxdy. 
riCO 

Completing the integral for c~ in much the same way as was done for (3.3) we 
obtain 

(3.4) E{N(A)N(B)}= -~ ~ - ~ g n ( y - x - n A ) d x d y +  #(AM B) 
he0 A 

Note that the exchange of summation and integration needed to establish (3.3) and 
(3.4) is justified by Fubini's theorem and the fact that N(A) has finite moments. 
In particular 7into gn(x - n A )  is a positive function which is integrable over any 
finite interval and thus finite almost everywhere. This establishes the results for 
the mean intensity and the covariance density of N(t). 

Now, from (3.4), 

(3.5) f (N( t )  ~_ 2) < ~ ~ P(Tm,Tm+n E (0, t]) 
m n~0 

: - -  ( t -  I x I )  ~ g n ( X  - - n A ) d x .  
A t ~¢o 

Since ~-]~#o g~(x-  nA) is integrable over any finite interval we conclude that (3.5) 
is o(t) which implies that N(t) is orderly. This completes the proof. [] 

Now g,~(t) converges to g(2)(t) given by (2.2) as {n I increases, with gn(t) = 
g(2) (t) for all n ~ 0 in the case of independent jitter. If we require 

(3.6) ~ / / l g o , n ( s ,  t) - g(s)g(t)ldsdt < oo 
d d  
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then 
o c  

A E (gn(t - nA) - g(2)(t - nA)) 
n ~ - - O 0  

has Fourier transform h(w) where 

A o o  

(3.7) = 

and hn (w) is the difference between the characteristic functions of 9~ (t) and 9 (2) (t). 
Note that hn(w) is just the autocovariance function of the (complex) station- 
ary process exp(-ienw) and (3.6) is of the form of a mixing condition for en. 
From the Cauchy-Schwarz inequality and Lemma 5, Chapter 4, of Ibragimov and 
Rozanov (1978) it follows that (3.6) is satisfied by Gaussian processes with abso- 
lutely summable autocovariance functions. 

Moreover, since 9 (2) (x) is of bounded variation and integrable, ~ g(2) (t -- hA) 
is periodic with period A and 

(X) Co 

(3.8) E g(2)( t -nA)= E cjeit(2"j/A) 
n ~ - - O C  ) j ~ - - O 0  

where 

cj = g(2)(t + nA )e-it(27rj/A)dt 
-£ J-A~2 n=- 

1 f ~  e_,t(2~jlA)g(2)(t)dt = 1 ¢ (2_~j) 2 
A . . 

The previous discussion is summarised in the following corollary. 

COROLLARY 3.1. Subject to (3.6) and Assumptions 5, the jittered point pro- 
cess N(t) has spectral density 

(3.9) 

where h(w) is given by (3.7). 

Note, in particular, that fN(W) has spectral lines at all frequencies ~ (j ~ 0) 
where ¢(2_~) ~ 0. If ¢(w) is zero or approximately zero for Iwl _> ~--~ as would 
typically be the case when a is large in relation to A, then the right-hand side 
of (3.8) becomes ~.  In the Gaussian case this approximation is accurate to four 
decimal places for ~ > 0.5 and accurate to two decimal places for K > 0.4 (see 
Moran (1950) for further details concerning this approximation). In this case 
fN(w) reduces to the simple form ~h(w). 
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4. Estimation for dependent j i t ter  

The case for dependent jitter is more difficult. Now the autocovariance func- 
tion of Yn is given by 

F (4.1) "fy(n) = ~/(x + nA)g~(x)dx 
O0 

and, if 7(t) is replaced by its spectral representation, this becomes 

(4.2) f Tr /,", einA~(l¢(w)12 + hn(w))f(w)dw. 
')'y (n) = J-~r/A 

Note that hn(w) is a non-negative definite function of n since it is the autoco- 
variance function of the (complex) stationary process exp -ie,~¢a. Thus, provided 
~-~n°°=_oo Ihn(w)l is finite for w in [ - ~ ,  ~], 

(4.3) 
= fTrl,", 

J-Tr/A 

where H(A, w) is given by 

(4.4) H ( A , w )  = A c~ 2-~ ~ h"(~)e-'"A~ 
n = - -  C'Q 

Replacing hn(w) in (4.2) by its spectral representation (4.3) we see that the spectral 
density of Yn is now given by 

f ~ /  A 7r (4.5) SY(~) = 1¢(~)12f(~)+ U(w-  X,~)S(X)d~ (1~1 -< ~) 
J-Tr/A 

and the spectral mass preservation property (2.6) is again satisfied. This result 
was given in Moore and Thomson (1991). 

The various spectral quantities in (4.5) could he estimated and then the sample 
analogue of (4.5) solved for f(w). Alternatively one could proceed in the time 
domain and utilise (4.1) to estimate 7(nA). This is the approach we adopt. 

Before proceeding further we briefly discuss the implications of dependent 
jitter for the general point process approach given in Brillinger (1972) and Masry 
(1983b). Here the starting point is the marked point process Z(t) where 

(4.6) dZ(t) = X(t)dN(t) 

and N(t) is the jittered sampling point process whose properties have been ex- 
plored in Section 3. Following Brillinger (1972), Z(t) is a zero-mean stationary 
interval process with autocovariance function 

(4.7) rz(t) = 7(t) rN(t) + - ~  + 6(t) 
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1 from which ~/(t) can be obtained for t ~ 0 provided rN(t) + ~-~ > 0. Point 
processes satisfying the latter condition are termed alias-free by Masry (1978). 
The jit tered sampling point process N(t) is not alias-free when ~ is very small, 
but will typically be so if ~ is large enough. Consider, for example, the case of 
independent Gaussian jitter when time is measured in units of the interval A so 

1 is zero to that  A = 1. Then a simple graphical analysis shows that  rN(t) + h-~ 
6 decimal places when a = 0.1, 0 < Itl _< .2 and zero to 1 decimal place when 
(r = 0.2, 0 < It I _< .25. Thus, in this particular situation, N(t) can be regarded 

(T as alias-free for N > 0.3 say, but will typically not be alias-free in practice when 
< 0.2. In general the Brillinger and Masry procedures will work only for point 

processes that  are alias-free. 
From (4.7) and Corollary 3.1 the spectral density of Z(t) is given by 

1 ;-2, ¢(_~) 2 ( _ ~ )  1 j ?  
(4.8) fz(w) = ~ -~  f a~ - + ~ ~ f(w - ,k)h(A)dA 

which can be solved for f(;o) provided N(t) is alias-free. A modification of the 
general solution given in Brillinger (1972) and Masry (1978) yields 

(4.9) , (w)=A 2 ~ b j  {]~ (w-~-~-) -  f_~]z (w 27rj A)fl(A)dA} 
- o c  A 

where ]~(aJ) = fz(a)) - ~(o) and fl(w) is the Fourier transform of 27rA 

f~ e it~ h ( w ) - ~  dw 

+ d~ 

The Fourier coefficients bj satisfy E l¢(2a-~z)12b¢+k = 5k with 5k denoting 
Kronecker's delta. If N(t) is alias-free then the bj will typically converge to zero 
rapidly as IJl increases. For Gaussian ji t ter with ~ > 0.5 the bj are all effectively 
zero save b0 which is unity. Thus (4.9) can be used as a basis for forming estimates 
of f(w) in much the same way as was done by Brillinger and Masry. However this 
line of development has not been pursued and instead we have concentrated on 
the simpler problem of estimating the autocovariances -y(nA). 

We now consider estimating ,y(nA) for n > 0 by 

(4.10) ;),(nA ) 

Y~m=l X(Tm)X(Tm+n)k T m -  b-Na - mA k Tm+n - 
- (m + n)A'~ 

G ) 
m=l b-N- k (  Tm+n b-N n)A ) 

where the kernel density function k(x) satisfies Assumptions 2, but now bN satisfies 
bN --* 0 and Nb2N --+ ~c as N ~ co. As in Section 2, a and A are assumed known 
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so that the en = Tn - a - nA  are completely determined (see Section 5 for a 
discussion of the case where a and A are estimated from the data). For n = 0 we 
choose to estimate the variance of X( t )  by 

(4.11) "~(0) = E'~N--1 X(T~)2 
N 

To establish the consistency and the asymptotic variances of these estimators we 
need to assume that the underlying process X(t )  is stationary to fourth order 
with ?(t), q(tl, t2, t3) and P(~I, v2, v3) being continuous, absolutely integrable and 
of bounded variation. In addition to Assumptions 5, the joint densities of the en 
are required to be uniformly bounded and equicontinuous at zero with g0,n(0, 0) 
bounded uniformly away from zero. In place of (3.6), we require 

(4.12) f f f f  Igo,m,.,.+.(xl, x4) X3, 

- go,m(xl,x2)go,n(x3,x4)ldzldx2dx3dx4 < oo 

uniformly in m and n with gs,t,u,v(Xl,X2,X3,X4) denoting the joint density of 
es, et, eu, ev. Moreover 

(4.13) E(go,m,v,v+n(Xl, X2, X3, X4) -- go,m(Xl, X2)gO,n(X3, X4)) 
V 

is assumed to be equicontinuous at zero. Since (4.13) is absolutely integrable by 
virtue of (4.12), a sufficient condition for (4.13) and the joint densities of the en 
to be equicontinuous is that their Fourier transforms be uniformly bounded by 
absolutely integrable functions. Like (3.6) the mixing condition (4.12) specified 
above is satisfied by Gaussian processes with absolutely summable autocovariance 
functions. The assumptions given in this paragraph will be referred to as Assump- 
tions 6. 

THEOREM 4.1. For all fixed, finite n > 0 and subject to Assumptions 1 and 
6, ~/(nA) is a mean-squared consistent estimator of 7(hA) with 

lim Nb2N var(~/(nA)) = 
N--~c~ 

(72(0) + 72(nA) + q(nA, O, n A ) ) ( f _ ~  k2(x)dx) 2 

g0,n(0,0) 

and ;7(0) is an unbiased estimator ofT(0) with 

lim N v a r ( ~ ( 0 ) ) = A  (2~/2(x)+q(O,x,x)) rN(X)+--~ dx. N-~co 

Here rN(x) is given by (3.1). Moreover estimates at distinct tags are asymptotically 
uncorreIated. 
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PROOF. 
where 
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We first consider ~/(nA) for n > 0 and write it as d(nA) /d(nA)  

¢(nA) - 1 
\ b / 

N-n 

Nb 2 ~ \ b / " 
m = l  

Here the suffix on bN has been suppressed for notational convenience. Now 

( n ) / ~ / :  
E{5(nA)} = 1 - ~ ~ k(x)k(y)~/(b(y - x) + nA)go,n(bx, by)dxdy 

o o  

n 
= ( 1 -  ~)("/(nA)go,n(O,O ) + o(1)) 

uniformly in n as N --~ oc, since 3'(t) is uniformly continuous, g0,n(x, y) is equicon- 
tinuous at zero, and b --* 0. Similarly 

n 
E{d(nA)} = ( 1 -  ~ )  (g0,n(0,0)+ o(1)) 

uniformly in n. 
Turning to the covariances we note that cov{d(mA), 5(nA)} can be written as 

(4.14) E[cov{~(mA), ~(nA)} I e] + cov{E[~(mA) I el, E[~(nA) I e]} 

where e denotes the N-dimensional vector with typical element e~. The first term 
of (4.14) is 

N - m  N - n  
1 

(4.15) N2b 4 E E E{(l(Tu+m - Tu,Tv - Tu, Tv+n - Tu) 
u = l  v = l  

where q(t, u, v) denotes cov{X(s )X( s  + t), X ( s  + u )X ( s  + v)} and 

(l(t, ~, v)  = q(t ,  ~, v)  + .y(~).y(v - t)  + .y(v) .~(u - t) .  

The summation in (4.15) can now be broken up into separate summations over 
distinct subsets of the indices u, u+rn, v, v + n  and evaluated over each of these. In 
the case where m < n and the indices are all distinct, for example, (4.15) becomes 

(4.16) N~a(~ ~) k(~)O(b(~-x~)+.~ZX, 

b(x3 - -  Xl) -~- v A ,  b(x4 - Xl) -~- (v -~- n)A) 
x go,m,v,v+n(bx)dx 
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where the summation is over distinct sets of indices 0, m, v, v + n, the vector x 
has typical element xi, k(~) is the product of the k(xi) and 

m + Ivl 
1 n ~ - -  ( - N + m + l < v < m - n )  

a(g) = 1 -~ (m -- n < v < O) 

n+M 
1 

0 (otherwise). 

Since the go,m,v,v+n(bx) are uniformly bounded we note that (4.16) is bounded 
above by a term proportional to 

l / k(x){~v 'O(b(x2 - xl) + mA'b(x3 - xl) + 

b(x4 - Xl) + (v + n)A)[ }dx 

which is O ( ~ )  uniformly in m and n. The latter follows from the fact that  ~(t, u, v) 
comprises absolutely integrable functions of bounded variation and the bracketted 
factor is an approximating sum to an integral. The case where m < n and the 
indices are not all distinct follows similarly and these terms are O(~bb ) uniformly 
in m and n. 

When m -- n the terms for u ¢ v axe dealt with in the same way and we find 
that (4.15) differs from 

n 
1 ( 1 - - ~ ) E { ~ l ( e n - e o + n A ,  O , e , ~ - e o + n A ) k 2 ( b ) k 2 ( b ) }  Nb 4 

by terms of O(~--6b ) uniformly in n. The latter is 

n// 1 by)e ey 
Nb 2 

which equals 

{ ( / ) '  } (4.17) 1 ( l _ N )  ~(nA, O, nA)go,n(O,O) k2(x)dx +o(1)  Nb 2 

uniformly in n since {(t, u, v) is uniformly continuous, g0,~(x, y) is equicontinuous 
at zero and f k2(x)dx is finite. 

Now consider the second term of (4.14) which is 

N - - m  N - - n  

(4.18) 1 cov{v(Tu+m (e,,+m'~ 
u = l  v---1 

£v+n 
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The summation is again broken up into distinct subsets of indices and evaluated 
over each of these. In the case where m < n and the indices are distinct, (4.18) 
becomes 

(4.19) 

× ~ ,  a(~N)(go,.~,.,.+.,(.) - g0,m(.1, x.)go,.(-., x4)) }d. 

where, as before, the summation is over distinct sets of indices 0, m, v, v + n. 
However, from (4.12), the bracketted factor is absolutely integrable and continuous 
at zero so that (4.19) is O(-~) uniformly in m and n. The case where m < n and 
the indices are not all distinct follows similarly. For m = n the various terms are 
treated as before and we find that (4.18) differs from 

(4.20) 
1 ..n// 

( \1 - - ;~. .  k2(x)k2(y)"/2(nA + b(y - x))gon(bx, by)dxdy 
Nb 2 

by terms of O(~bb ) uniformly in n and so (4.20) is 

1 (1 - ~ )  "/2(nA)go,n(0,0) k2(x)dx + o(1) 
Nb 2 

uniformly in n. 
Thus limg--.~ Nb 2 cov{~(mA), d(nA)} is now given by 

(F )' ('y2(0) + 272(nA) + q(nA,O, nA))go,n(O,O) k2(x)dx 
CO 

for m = n and zero for m ¢ n. The covariance properties of the d(nA) are 
established in exactly the same way as for the second term of (4.14) yielding 

(4.21) lim Nb 2 cov{d(mA), 0~(nA)} 
N---* oo  

2 

: {.o./o,o/(/2././.x) 0 / I t  ~ -  / t )  

(m # n) 

and 

lim Nb 2 cov{~(mA),d(nA)} 
N--~  o c  { )' ~(,~a)go,~(o, o) k~(~)d~ 

0 

m ~ n )  

(?7/ ¢ n). 
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Since d(nA) converges in probability to go,~(0, 0) > 0, s tandard variational argu- 
ments applied to the ratio ~(nA) = 4(nA)/d(nA) yield the required results for 
the limit of Nb 2 cov{-~(mA), ;y(nA)}. 

Finally observe that  ;y(0) is an unbiased estimator of "y(0) with variance 

1{ } 
-~ O(O,O,O)+/O(O,x,x)E 1 -  gn(x-nA)dx 

n¢O 

which equals 

(4.22) 
( 1 )  } 

q(0, z ,x)  rN(z) + ~ dx + o(1) . 

Similarly Nbcov{;y(O),5(nA)} converges to zero uniformly in n. This completes 
the proof. [] 

Note that  Theorem 4.1 also applies to the case of independent jitter. Then 
the denominator of the limiting variance for v/NbN;Y(nA) becomes g(0) 2 which is 
independent of n. 

An alternative estimator of "y(nA) is provided for n > 0 by 

(4.23) ~(nA) = 

N N x ( T v - T ~ - n A )  
Y~=I Y~,=I (T~)X(T~)k bg 

N N ( T v - T , - n A )  
Y~=I Y~v=l k blv 

where now k(x) and bN satisfy Assumption 2. This estimator has much the same 
form as that  considered by Masry (1983a). However the denominator of Masry's 
estimator involves rN(nA) + 1/A 2 rather than an estimator of this quantity as 
in (4.23) above. Adapting the results of Masry (1983a) or following a similar de- 
velopment to that  given in Theorem 4.1, it can be shown that  ~(nA) is also a mean- 
squared consistent estimator of -y(nA) with limg-.o~ NbNeov{Z/(mA),Zy(nA)} 
given by 

('),2(0) + ~,2(nA) + q(nA, O, nA)) f~oo k2(x)d x 
A(rN(nA) + 1/ 2) 

for m = n and zero for m # n. 
It is of interest to compare the two estimators ;y(nA) and 9(nA).  Clearly 

-~(nA) enjoys significant computational advantages since it is a ratio of two con- 
ventional autocovariance estimates. However, in terms of efficiency of estimation, 
9(nA) will typically be more efficient for moderate to large values of ~ and ;r(nA) 

¢ r  more efficient for smaller values of ~ .  
This is illustrated in Fig. 1 where the efficiency of "~(nA) relative to ~(nA) 

for Gaussian ji t ter is plotted as a function of lag for four values of ~ .  The kernel 
functions of both estimators have been assumed to make the same contribution 
to the asymptotic variance. The Gaussian ji t ter models chosen correspond to the 
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--,...... 

Inclolmnckmt OluW~m JItler 

m 

Gau~dan MA(a) Jilter 

I~ 4 6 8 2 4 8 8 

Lag I.ell 

Gaulllllm AR(2) Jlllor. I = 0.08 

J 

G ~ l u i m ' l  A R ( 2 )  J t t t i r :  l = 0 . 2 5  

2 4 6 8 2 4 6 8 

t q  Lag 

Fig. 1. Plots of the efficiency of ~(nA) relative to ~(nA) at lag n for ~ = 0.3, 0.4, 

0.5, 0.6 and Gaussian jitter. The plots, from highest to lowest, are in increasing order of 

~.a Four cases are considered: independent jitter; MA(3) jit ter with non-zero autocor- 

relations 1, 0.578, 0.223, 0.025 respectively; AR(2) j i t te r  with autocorrelation functions 

0.91hAl cos(27rnAf) for frequencies f ---- 0.08 and f --- 0.25 respectively. 

cases of independent jitter, moving average jitter and two cases of autoregressive 
jitter with peaked spectra. These models were used in Moore and Thomson (1991) 
and are used here for the purposes of comparison. If these results are at all 
indicative of what might occur in practice, then it would seem that one should use 

a cr ~(nA) when ~ < 0.5 and ~(nA) when ~ > 0.4. 
In practice these estimators will be difficult to make operational because of 

the need to estimate q(nA, 0, nA) in order to compute standard errors. However, 
if the latter axe small as would be the case if X(t) is near Gaussian, then this may 
not be so important. Of course there are no problems in the important case where 
X(t) is Gaussian since then the q(nA, 0, hA) are identically zero. 

5. Fur ther  c o m m e n t s  

If c~ and A are unknown then they will need to be estimated from the Tn. 
Least-squares regression, for example, will yield estimators & and/~ that are N 1/2 
and N 3/2 consistent estimators of c~ and A respectively in this situation. Thus, 
since ](w) in Section 2 and ~(nA) in Section 4 typically involve (~ and A only 
through the kernel function k(x), Theorems 2.1 and 4.1 should continue to hold 
with c~ and A replaced by & and /~ provided stronger conditions are made con- 
cerning b N and the smoothness of k(x). Similarly, if stronger conditions are made 
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concerning the mixing properties of both the X(t) and en processes then these 
theorems can no doubt also be extended to include the asymptotic normality of 
the estimators. 

For the case of independent jitter, the results of Sections 2 and 4 go some way 
towards obtaining spectral and autocovariance estimators with known sampling 
properties. However the results for dependent jitter are mixed. Satisfactory esti- 
mators with prescribed sampling properties are only given for the autocovariance 
function, although a better understanding of the spectral estimators proposed by 
Brillinger (1972) and Masry (1983a) has been achieved in this case. Even when 
these latter techniques are applicable, as in the case when ~ is large and fN(w) 
is approximately hN(w)/A 2, sampling properties are not yet available. 

Further development could be undertaken along the lines of Section 4 using 
7(nA) as the basis for a weighted covariance spectral estimator. At first sight this 
would seem to involve two kernel functions, one to estimate 7(nA) and the other 
to act as a convergence factor for the estimator. The interaction between the two 
bandwidth parameters would need to be handled with care. In the case where 
en is Gaussian and follows a parametric model such as an ARMA process, non- 
parametric spectral estimators and their sampling properties may more readily be 
determined. However these and other possibilities remain the subject of further 
research. 
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