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A b s t r a c t .  A version of Cra ig-Sakainoto ' s  theorem says essential ly tha t  if 
X is a N(0,  I,,) Gauss ian  random variable in N", and if A and B are (n, ~) 
symmet r ic  matrices,  then X ' A X  and X ' B X  (or traces of A X X '  and B X X ' )  
are independent  random variables if and only if A B  = 0. As observed in 1951, 
by Ogasawara  and Takahashi ,  this result  can be extended to the case where 
X X '  is replaced by a Wisha r t  random variable.  Many proper t ies  of the ord inary  
Wisha r t  d is t r ibut ions  have recently been ex tended  to the Wishar t  d is t r ibut ions  
on the symmet r ic  cone generated by a Eucl idean Jo rdan  a lgebra  E. Similarly, 
we generalize there the version of Craig 's  theorem given by Ogasawara  and 
Takahashi .  We prove tha t  if a and b are in E and if W is Wisha r t  d is t r ibuted ,  
then Trace a.I4 ~" and Trace b.W are independent  if and only if a.b = 0 and 
a,.(b.z) = b.(a.x) for all x in E, where the . indicates  Jordan  product .  

Key words and phrases: Jordan  algebra,  Wisha r t  d is t r ibut ions ,  exponent ia l  
families on convex cones. 

1. In t roduct ion  

T h i s  no t e  has  been  i n s p i r e d  by  two p a p e r s  oll  t h e  C r a i g - S a k a m o t o ' s  t h e o r e m ,  

namely Driscoll and Gundberg (1986) and Ogawa (1993). Both are extremely 
interesting and thoroughly written papers, the second one completing (and some- 
times correcting) the first on many points. Our note has no historical aims and 
we encourage the reader to have a look at these two papers for a detailed history 
of the subject. We thank both the editor and the anonymous referees for pointing 
o u t  s o m e  i n a c c u r a c i e s  in t h e  re fe rences  of  an  ea r l i e r  vers ion .  

We a re  i n t e r e s t e d  here  on ly  on the  tb l lowing  s i m p l e s t  ve r s ion  of the  Cra ig -  

Sa �89  t h e o r e m :  

THEOREM 1.1. Let X be a N(O, I,,) Ga.ussian random variable in ~r~ and let 

* Partially supported by NATO grant 92,13.47. 
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A and B be symmetric  (n., 77) matrices. Then 

U = X ' A X  and V = X ' B X  

are independent random variables i f  and only 'if A B  = O. 

This result is not so easy to prove. It has however an easy extension, which 
replaces N(0,  I,,) by N(0,  E) and A B  = 0 by A E B  = 0, and more difficult one, 
which replaces N(0,  I,~) by N(H.,/ , ,)  or N ( p ,  E): the s tory is described in Driscoll 
and Gundberg  (1986). Let us now consider another  easy extension of Theorem 1.1, 
which is already pointed out by Ogasawara and Takahashi  (1951). Let  us observe 
first tha t  in Theorem 1.1, X ~ A X  equals Trace A X X  ~, and tha t  ll" = X X  ~ has 
the Wishar t  dis tr ibut ion (denoted 11.;,(1, L~), following the nota t ion  of Muirhead 
((1982), p. 67)). Let us also recall tha t  if we denote  by C (resp. int C) the cone 
of (n, 77) symmetr ic  positive real matr ices (resp. positive definite), if p belongs to 

( i . i )  { 1 , 2  . . . . .  n - 1 }  U (7~ - 1, + o c )  

and if E is in int C, then a random mat r ix  I,V taking its values in C has Wishar t  
dis tr ibut ion II;~(p, E) if, for all matr ices S such tha t  E -1 + S is in int C, one has 

( 1  ) 
(1.2) E e x p - ~  TraceSt ' l"  = clet(I,, + SE)  -p/2. 

As a generalizat ion of what  is done for the gamma distr ibut ion,  p in (1.1) is called 
the sh.ape parameter and (2E) -1 in int C is the scale parameter of l'l,;,(p, E). 

Let us now write the trivial extension of Theorem 1.1 mentioned above: 

THEOREM 1.2. Let p be in (1.1), let IV be a random, variable with distribution 
14",,(p, L~) and A and B be symmetric (7~, n) matrices. Then 

U = Trace (Al l ' )  and V = Trace (BI I ' )  

are independent if and only 'if A B  = O. 

PROOF. Let c > 0 be such tha t  - c  < t < c and - c  < s < c imply tha t  
I,~ + tA, I,~ + sB,  In + tA  + sB  are in fL Then  it follows from (1.2) tha t  U and 
V are independent  if and only if for Itl and Isl < c one has 

(1.3) (Det(/,~ + tA  + sB))  -p/2 = (Det(l , ,  + tA))-P/2(Det(Z, ,  + sB))  -p/2. 

Condit ion (1.3) for p is fulfilled if and only if it is fulfilled for p = 1, and fl'om 
Theorem 1.1, this is equivalent to A B  = O. [] 

During the last ten years, works on the classification of the natural  exponen- 
tial families in [~d with the simplest variance functions have called a t tent ion  to 
extensions of the Wishar t  dis tr ibut ions to cones other  than  the cone of positive 
matrices. Let  C be a closed convex cone in a Eucl idean space E (<s y-) will denote  
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the scalar product in E) such that the interior int C is not empty and such that 
C n ( - C )  = {5}. 

The dual cone is: 

(1.4) C* = {~ E E; (~,y-) > 0 for all :g in C}. 

One can show easily that 

1.5) L(O) = tic. exp(-(O, s 

is finite if O belongs to the interior of C* (see e.g. Rothaus ((1968), p. 165) for a 
generalization). 

In analogy with (1.1), denote by A the set of A > 0 such that there exists a 

positive measure #a on C such that for all 0 in int C* one has 

(1.6) (L(0")) ~ = ~ exp(-(O', .~})#x(da~). 

Then, for (A, 0) in A x int C*, the probability on C 

(1.7) = (L(U)) exp(- (J ,  

could be called a Wishart distribution in the C-sense. 
The distribution (1.7) is a genuine generalization of the ordinary Wishart 

distribution: if E is the space H, (N)  of symmetric (n, n) matrices, endowed with 
the scalar product (A, B) = Trace AB, and if C is ~, the cone of positive matrices, 
then in fact C* = C, A is (1.1) multiplied by the factor 1 and, for E in int C, 
the equality: 

W,~(P, E) = W ( (n  + I)P, - E ~ )  

links (1.7) with the traditional notation of Wishart distribution on H,~(N). 
With this definition (1.7) of the Wishart distribution on a general convex 

cone of N' ,  the problem of the extension of Theorem 1.2 arises. Observe first that 
X H f ( X )  is a linear form on H~(~)  if and only if there exists S in H, (N)  such 
that f ( X )  = Trace(SX).  Thus Theorem 1.2 can be seen as a characterization 
of independent pairs of linear forms of a Wishart distribution in H,~(N). More 
generally, let W be a random variable in C with distribution defined by (1.7), let 
a and b be in E and define 

U = (a, W} and V = (b, W); 

we may ask for a characterization of the pairs such that U and V are independent. 
Clearly this is equivalent to 

(1.8) L(O)L(O + ta + sb) = L(O + ta)L(O + sb) 
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for all ( t ,s)  in ~2 such tha t  0 + ta, 0 + sb, 0 + ta + sb are in int C* (here 0 is in 
int C* and L is defined by (1.5)). Note the independence of condition (1.8) with 
respect to A. 

The aim of the present note is to solve this problem in the part icular  case 
where int C is an irreducible symmetr ic  cone. These cones have already appeared 
in statistics (see e.g. Jensen (1988)) and their Wishar t  distributions retain some 
flavor of the Gaussian origin of the ordinary Wishart .  The natura l  exponential  
families associated to them have specially nice properties (see Casalis (1990, 1991), 
Letac (1994), Massam (1994) and Massam and Neher (1994)). We recall a few 
basic things about  them in Sections 2 and 3. Section 4 states and proves our 
generalization of Craig-Sakamoto's  theorem to these Wishar t  distributions. 

2. Symmetric cones and Jordan algebras 

One can find several references in the English l i terature on Jordan algebras. 
A classical one is Jacobson (1968), but  Chapter  1 of Satake (1980) contains a lot 
of information, references and exercises. Finally the book by Faraut  and Koranyi 
(1994), an elaboration of the notes by Faraut  (1988), is an excellent reference for 
our purposes. 

A closed convex cone C in a Euclidean space E is said to be sunmetvic if int C 
is not empty, C A - C  = {g}, C* = C and if the group G of automorphisms of int C 
acts transitively, i.e. if for all z and y in int C, there exists a linear automorphism 
g of E such tha t  g(int C) -- int C and 9(z) = 9. If E = E1 |  where E 1 and E2 
are orthogonal with positive dimension, if C1 and (2'2 are symmetr ic  cones of E1 
and E2, then C = C1 + C2 is also a symmetr ic  cone and C is said to be irreducible 
if there is no such pair (C1, C2). 

There are only 5 kinds of irreducible symmetr ic  cones. Let us describe them; 
if K is the algebra N, or C, or H (Quaternions),  or O (Octonions), denote by 
E = H, , (K)  the space of Hermit ian (n, n) matrices with entries in K.  An element 
a in H,~(K) is said to be positive if for all z in K ' ,  z ' (az )  >_ O. Hn,+(K) denotes 
the cone of these positive elements. Up to isomorphism, and with some overlap 
due to isomorphism, the five kinds of irreducible symmetr ic  cones are 

(1) H~,,+(N), 77, _> 1, 

(2) H,,,+(C), ,. _> 2, 
(3) S n , + ( H ) ,  

(4) H3,+(O), 

(5) the Lorentz cone, i.e. 

{ i =  e _> + . . .  + n_>2.  

Actually to each symmetric  cone one associates essentially one and only one 
Euclidean Jordan algebra E (see Faraut  (1988), Theorem III.3.1). Let us recall 
tha t  a Euclidean Jordan algebra is a Euclidean space E with scalar product  {a, b} 
and a bilinear map 

E x E ~ E  (a,b) H a . b  
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called "Jordan product"  with the following properties 
(i) the map is symmetric,  i .e .a .b = b.a, 

(ii) there exists e in E such tha t  a.e = a, 
(iii) (a, b.c) = (a.b, c) for all a, b, c in E, 
(iv) (a.b).(c.d) + (a.d).(b.c) + (a.c).(b.d) = (a . ( c .d ) ) . b+  (a.(b.c)) .d + (a.(b.d)).c,  

for all a, b, c, d in E. 
For a shape E as given above, one can prove (Faraut  (1988), Chapter  III) tha t  

C = {a.a; a E E }  is symmetr ic  and tha t  conversely every symmetric  cone can be 
built in that  way. When E = H~(I~), the Jordan product  is 

(2.1) A . B  = ~ ( A B  + B A ) ,  

where A B  stands for the ordinary product  of matrices. Formula (2.1) holds also 
in cases (2), (3) and (4). When E = ~ "  the Jordan product  

�9 ~ . ~  = ( X l Y l  -/-  " �9 " -t- X n Y n ,  x l Y 2  q- Y l X 2  . . . .  , X l y n  q- y l X n )  

yields the Lorentz cone of example (5). 
Finally a Euclidean Jordan algebra is said to be simple if it does not contain 

a non trivial ideal, i.e. linear subspace I such tha t  0 < dim I < dim E and such 
tha t  the image of I x E by (a, b) ~ a.b is in I.  prom Faraut  ((1988), Chapter  III 
Section 5), C = {a.a; a ~ E }  is irreducible if and only if E is simple. 

3. Determinant, trace and Wishart distribution on an irreducible symmetric cone 

Let 57 be a simplb Jordan algebra. There are two important  polynomial flmc- 
tions, det. and trace, defined on E and with values in N (see Faraut  (1988), Chapter  
II). For H, , (~)  and H,,(C) they coincide with the ordinary determinant  and trace 
of real or complex matrices. See details in Casalis (1990) for H,~(H) and H=(O). 
For example 5, de t (x l ,  x~.) = x I - x 2 . . . . .  x 2 and Trace(x1 , xn) = xl �9 " " ~ " F t  , . . . .  

There are also 3 integers (n, d, r) called the structural  constants of E; n is 
dim E, r is called the rank of E, d is called the Peirce constant  and n = r +  ~-r(r-1).  

For instance, 7' is the order of matrices in the examples (1), (2), (3), (4) H ~ ( K ) ,  
and d is the dimension of K over N, respectively 1, 2, 4, 8. For the Lorentz cone 
d = n -  2, r = 2. Needless to say, (d, r) characterises E7 up to isomorphism. 

The trace of a.b is proportional to the scalar product.  Prom now we choose the 
following normalization of the scalar product: the unit  element e, which always 
satisfies Trace e = r, must  be such that  (e, e) = r. This implies tha t  Trace a.b = 
(a, b>. 

Using these quantities, we can write explicitly the Laplace transform (1.5) for 
an irreducible symmetric  cone C. 

For all 0 in int C, we have: 

(3.1) L(e) = ffc exp(-(O, x ) ) d J  = Kc. , (de te)  - " /~  
C 
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where K c  is a constant  independent  of 0. Thus  (1.8) is equivalent to: 

(3.2) det(0) d e t ( O + t a + s b )  = d e t ( O + t a )  d e t (O + sb )  

for all (t, s) in [~2. Since det is a polynomial,  equali ty (3.2) holds in N2 if it holds 
in a neighborhood of (0, 0). 

Let us also recall tha t  the set A described in (1.6) is, in terms of d and r: 

(3.3) A = { d r  2dr 3dr . , ( r _ l ) d r } u ( ( r _ l ) ~ n , + c x ~ )  ' 
2n '  2 n '  2 n " "  2n 

i.e. int C ~ ]9 0 ~ (det 0)-pd/2 is the Laplace t ransform of some positive measure 
on C if and only if p belongs to {1, 2 . . . .  , r - 1} O (r - 1, +oc) .  

This result is due to Gindikin (1975). It had been conjectured a long time 
before by L~vy (1948) for the cone H2(R):  Shanbhag (1988) gives a clever proof  
of it; it can be easily generalized to symmetr ic  cones (see Casalis and Letac (1994) 
for this generalization and some bibliographical comments) .  

4. Craig-Sakamoto's theorem on an irreducible symmetric cone 

THEOREM 4.1. Let E be a simple Euclidean Jordan algebra and C be an 
irreducible symmetr ic  cone. Let a and b be in E,  let A be in the set (3.3) and let 
X be a random variable with. Wishart distribution W(A, e) on C. Consider 

U = Trace(a .X)  and V = Trace(b.X).  

The following four s tatements  are equivalent 
(i) U and V are independent, 

(ii) for all (t, s) in R 2 det(e + ta + sb) = det(e + ta) det(e  + sb), 
(iii) a.b = 0 and for all x in E a.(b.x) - b.(a.x) = O, 
(iv) there exists an idempotent c in E such that a E V(c,  1) and b E V(c,  0). 

Comments .  With  (3.1) and (3.2), equivalence between (i) and (ii) is ahnost  
trivial. Condit ion (iii) is the closest to the condition A B  = 0 in Theorem 1.1. 
But  note that  in Hr(N) ,  the condition A . B  = 0, i.e. A B  + B A  = 0 does not 
imply A B  = 0, whereas A B  + B A  = 0 plus A . ( B . X )  - B . ( A . X )  = 0 for all X 
(i.e. ( A B  - B A ) X  = X ( A B  - B A )  for all X in Hr (R) )  is equivalent to A B  = O. 
Condit ion (iv) in the case of Hr (R)  alludes to the fact tha t  in a Euclidean space, 
the product  of two symmetr ic  endomorphisms a and b is 0 if and only if there 
exists an or thonormal  basis f l , . . . ,  f< such that  

[ a ] f =  [ A 00] and 0 

Equivalence between (iii) and (iv) is easy, as well as the implication (iv) ~ (ii). 
Finally, like in Theorem 1.1, the more delicate point is (ii) =~ (iv). There are es- 
sentially three different proofs of the necessary condition in Theorem 1.1, the one 
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given by Ogawa (1949), the one given by Matus i ta  (1949)-- i t  was rediscovered 
independent ly  by Lancas ter  (1954)- -and  finally the one given by Ogasawara and 
Takahashi (1951). These  two proofs given in 1949 are historically the first cor- 
rect  proofs of Theorem 1.1. Olkin ((1990), p. 247), also contains variations of the 
me thod  of Ogasawara and Takahashi.  We shall give two proofs of (ii) =v (iv), imi- 
ta t ing first Ogasawara and Takahashi,  then Matusi ta-Lancaster .  Actual ly Ogawa 
proves a slightly stronger result, which says in essence tha t  if A and B are 2 
symmetr ic  (r, r) real matrices then 

d e t ( I .  + t ( A  + B))  = d e t ( I .  + t A )  det( /~  + tB)  

for all t in R if and only if A B  = O: it lacks a clear probabilistic interpretat ion.  

PROOF OF THEOREM 4.1. 
(i) (ii) 
Denote for simplification p = Ad(r  + 1)/2. Then  for t and s small enough, 

from (3.1) 
{E(exp - t U )  = (det(e + ta))  -p  
[F(exp - s V )  = (det(e + sb)) -p  
E(exp - t U  - sV) = (det(e + ta + sb)) -p.  
This  identi ty (ii) holds for t and s small. Since both  sides are polynomials in 

(t, s), it holds for (t, s) in N2. 

(ii) (i) 
Similar. 

For the remainder  of the other  equivalence proofs we adopt  the following no- 
tat ion.  Given a in E,  there  exists a sequence (cl, .. �9 ca:) of or thogonal  primitive 
idempotents ,  with k _< r, such that  a = c~1cl + . . .  + C~kCk, where the real numbers 
c~1 - �9 - ce~: are all different from 0. Let  c be the idempotent  equal to cl + .. �9 + ck. 
Finally if V(c, A) for A = 0, 1, 1/2 denotes the eigenspace of the endomorphism 
of E x ~-+ c.x, we denote  by x = xo + x l / 2  + Xl the  Peirce decomposi t ion of a 
given x in E,  with xa in V(c, A); the functions "determinant"  defined on the two 
subalgebras V(c, 1) and V(c, 0) will be denoted by det l  and det0 respectively. 

(iii) (.iv) 
If we apply (iii) to x = c we obtain 

(  b1 2) O = a.(b.c) - b.(a.c) = a. bl + - (bo + b1/'2 + bz).a. 

1 Since bl/2 is in V(c ,  1/2), we can write Thus  0 = ~a.bl/2.  

l<i<k<j<_r 
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T h u s  
1 

O=a'bl/2 = ~ ~ =- ~ ~ = ~ ~ ceibij. 
e,i<_k<j i<_k<j i<_k<j 

Since the  bij are i n d e p e n d e n t  this implies a:ibij = 0, and  bij = 0 since a.i r 0. 
T h u s  bl/2 = O. 

T h e  o the r  p a r t  of  the  hypo thes i s  is a.b = 0. This  yields 0 = a.(bl + bo) = a.bl, 
and  one shows s imilar ly  t h a t  bl = 0. 

(iv) ~ (iii) 
Here  bl and  bl/2 are 0, and  the re  exists  a sequence  (Ck+l . . . . .  cr) of  o r t h o g o n a l  

pr imi t ive  i d e m p o t e n t s  such tha t :  b = / 3 1 c . k +  1 q -  ' ' '  -[- / 3 r _ k C , ,  , where  /31, . . . , /3~-k 
are in ~ ,  and  such t h a t  ck+l + - + c,. = e - e. T h u s  a.b = 0. To see t h a t  
a.(b.x) - b.(a.x) is zero, we c o m p u t e  this q u a n t i t y  in the  th ree  cases: x is V(c, k), 
wi th  k = 0, 1 and  1/2.  F r o m  different re la t ions  be tween  the  V(c,  A) (see F a r a u t  
((1988), p. 46)) we have a.(b.x) - b.(a..r) = 0 when  x is in V(c, A) for A = 1 or 0. 
If  x is in V(c,  1/2)  we wri te  

x = ~ xij ,  with  xij in V(ci,  1/2) Cl V(cj ,  1/2) .  
l<i<k<j<r 

T h u s  
0..37 z ~ O:iXij , b.:r = ~ 9j:l'ij, 

i<k<j i<_k<j 

f rom which  it follows easily t h a t  a.b.(x) - b.(a.x) = 0 for all x in E .  

(iv) ~ (ii) 
We still wr i te  b = ~ = / , . + 1 / 3 j _ k c j  T h u s  

__k ~Oci)Ci + ta + sb = ~ ( 1  + + (1 + 8/3j-k)Cj~ C 
i=1  j = k + l  

de t (e  + ta + sb) = I - I ( 1  + tai)  (1 + s,@_~:) 
i=1  j = k + l  

= de t (e  + ta) de t (e  + sb). 

(ii) ~ (iii) o7" (iv) 
Now comes  the  in te res t ing  pa r t  of  the  proof.  

1ST PROOF. O g a s a w a r a - T a k a h a s h i ' s  m e t h o d .  
We will first recaI1 this  m e t h o d  ill the  real s y m m e t r i c  m a t r i x  case: for A and  

B (r, r)  s y m m e t r i c  matr ices ,  and  t and  s small  enough ,  we wri te  
O(3 

1 
e x p -  ~ 77-- 

rz=l  

t r a c e ( t A  + sB)"  = det(I ,-  - tA - sB)  

= det( I , ,  - tA)  det(I , ,  - sB )  

= exp - Trace  A"  + s n Trace  B " ) .  
T/ l z= l  
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T h u s  Trace [ ( tA  + s B )  '~ - t nAn  - sr~B ~] = O for all n _> 1. 

W a t c h i n g  the  coefficient of t2s 2 for n = 4, one gets  

(4.1) 2 T r a c e A B 2 A  + T r a c e ( A B  + B A )  2 = O. 

Since A B 2 A  and  A B  + B A  are s y m m e t r i c  matr ices ,  this implies A B  = O. 
We now imi ta t e  this clever tr ick for a J o r d a n  a lgebra  E .  As usual,  we a d o p t  

the  no ta t ion ,  for x in E and  n in N : x ~ = e and  x ~+1 = x.(x'~). We have, for t 
small  enough:  

k ~.~ tn k 
det (e  - ta) = I I ( 1  - ta i )  = e x p -  A.~ - -  ~ a'i~ 

Tt 
i : 1  n : l  i = 1  

t 71. 

= exp - ~ '  - -  t r a ce ( a " ) .  
r t =  1 

(4.2) T r a c e ( ( t a  + sb) '~ - t~a '~ - s % ' )  = 0 for all n >_ 1. 

We now take  n = 4, look at the  coefficient of  t2s 2 in (4.2) and  take t = 1 w i t h o u t  
loss. One  has to c o m p u t e  (a + sb) 4 accord ing  to the  rules of  J o r d a n  algebras:  

9 9 (a + sb) 2 = a? + 2sa.b + s-b-,  

(a + sb) 3 = a a + s(2a.(a.b) + a2.b) + s2(2b.(a.b) + a.b 2) + sab 3. 

T h e  coefficient of  t2s 2 in (4.2) for n = 4 is 

(4.3) t r ace (a . ( a .b  ~) + 2a.(b.(a.b)) + 2b.(a.b) + b.(b.a2)) = O. 

We now have to t r a n s f o r m  (4.3) into s o m e t h i n g  close to (4.1). To do so, we 
use (for the  first t ime)  the  q u a d r a t i c  m a p  P .  Let  us observe  t h a t  in general  

(4.4) t r a c e P ( x ) ( y )  = t r a c e x 2 . y  for all x and  y in E.  

Th i s  comes  f rom the  fact  t h a t  

(4.5) t r ace ( (x .y ) . z )  = t r a c e x . ( y . z  ) for all x , 9  and  z in E 

(see F a r a u t  ((1988), pp. 32 33)), and  f rom the  very  defini t ion of P ( x ) ( y )  = 
2x(x .y )  - x 2 . y .  

A p p l y i n g  (4.5) we get  t h a t  

(4.6) t r ace  a2.b '~ = t race  a.(a.b 2) = t race  b.(b.a~). 

A p p l y i n g  (4.4) to x = a and  y = b 2 we get  t h a t  

(4.7) t race  P(a) (b  2) = t race  a2.b 2. 

(4.5) gives also 

(4.8) t race(a .b)  2 = tracea.(b.(a.b))  = traceb.(a.(a.b)) .  
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Gathe r ing  (4.6), (4.7) and (4.8), we finally get the desired consequence of (4.3) 
as an analogue of (4.1): 

(4.9) 2traceP(a)(b2)+4trace(a.b) 2 = 0 .  

Since (a.b) 2 and b 9 are in the symmet r i c  cone C, since C is preserved by the 
quadra t ic  maps  P(z)  and since t races  of e lements  Y of C are non negat ive  (and 0 if 
and only if y = 0), we get. f rom (4.9) t ha t  a.b = 0 and tha t  P(a)(b 2) = 0. Finally, 
we write 

(4.10) b 2 = b~ + bg + b~/2 + 2(bl + bo).bl/2. 

Using the general  rules 

(4.11) P(V(c, l))(V(c, I)) < V(c, i), 
P(V(c, I))(V(c, O) + V(c, 1/2)) = O, 

we obta in  
0 = P(a.)(b ~) = P(~,,)(b'~) + P(al(b~/2). 

Again, since bl 2 and b'~/2 are in C, we get P(a)(b~) = O. 
Since a -1 exists in V(c, 1) and since P ( a  -1)  = (P (a ) )  -1 in V(c, 1), we get 

b~ = 0 and bl = 0. Since a.b = 0, we get a.bl/2 = 0. Wri t ing  bl/2 = ~i<_k<j bij 
with bij in V(c~, 1/2) N V(cj, 1/2),  we get 0 = a.bl/2 = ~s<_k<j c~b,j, and finally 
bij = 0 since a'i # 0 and the b/j are independent .  Thus  bi/2 = O, a . (b .z ) -  b.(a.a:) = 
0 for all z in E and (iii) is proved. 

2ND PROOF. Matus i t a -Lancas t e r ' s  method .  
We also recall the principle of this m e thod  in the case of real symmet r i c  ma-  

trices to prove the necessary condit ion in T h e o r e m  1.1. W i t h o u t  loss of generality, 
we assume tha t  A and B are wr i t ten  by blocks as follows: 

[ 01 ~ 
with A1 = d i a g ( a l ,  c t 2 , . . . ,  c~k) and det A1 # 0. Thus  

E 1 1 1 det(I , ,  + tA + sB) = det 7(I~ + sB1) + A1 sB1/2 
(4.12) t- ~. s , " 

7B1/2 I,--k + sBo 

Taking the limit as t --+ + o c  in (4.12) and using (ii), we get 

(4.13) a~ �9 . . a k  d e t ( I , _ k  + sBo) = o h . . .  aA- det(I , .  + ~B). 

C o m p a r i n g  the eigenvalues of B0 and B from (4.13) we get 

9 / 
0 = t race  B 2 - t race Bo 2 = t race(B~ + 2B1/2B1/.,). 
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Since B~ and B~/2B~t/2 are positive symmetr ic  (k, k) matrices,  we obtain B~ = 0, 
B1/2 = 0 and A B  = O. 

To imitate  Matus i ta -Lancas ter  and equali ty (4.12), we would need the exact 
analogue t r iangular  matr ices in the context  of symmetr ic  cones and this is not 
available. We use instead the following lemma (a detailed proof  is in Massam and 
Neher ((1994), Proposi t ion 3.3.1)). 

LEMMA 4.1. Let  c be an idempoten t  in the s imple Eucl idean .Jordan algebra 
E ,  let x0 + x l  + x l /2  be the Peirce decomposi t ion of  x with respect to c and assume 

tltat ~,-1 ezists in V(c ,  1). Then  P ( z l / 2 ) ( X l  1) is in I/(c, 0) and 

(4.14) det  x = detl//21 det(z0 - P(.~h/.2)(z{ 1 )). 

We apply the lemma to x l  = c + ta + sbl,  Xo = e - c + sbo and : r l / 2  = 861/2: 

for fixed s and for t big enough x1-1 exist.; thus from (4.14): 

(4.15) ~ d e t ( e + t a + s b ) = d e t  ( c + S b l ) + a  d e t ( x o - P ( x U 2 ) x { l ) .  

Since, clearly, : r l  1 ---~t-+~ 0, taking limits in (4.15) when t ---, +oc  and using 
(ii) we get the analogue of (4.13): 

(4.16) det a det(e - c + sbo) = det a det(e + sb). 
�9 1 0 1 

Let. (c~.+1,.. c,.) and ' " . ., (cl, c 2 . . . .  c~r) be two sequences of or thogonal  primitive 
idempotents  such tha t  

bo = @ cj and b = ,3 i c i . 
j=k+l i=l 

From (4.16), since det t  a 7~ 0 we get for all s 

i~ F ! 
(1 +/3 is )  = II(1 + 9 s), 

j = k + l  i=1 

(4.17) t race b o = ,Jy = (/3~) 2 = trace b 2. 
j = k + l  i=1 

V(c ,  1/2) is or thogonal  to V(c, 0) and V(c, 1) (thus tracebl/ .2(bl + bo) = 0). 
Using this and (4.10), we get from (4.17) tha t  trace(b~ + b~/.,_) = 0. Since b~ and 

b'~/2 are in C, this implies bl and bl/.2 = 0 and (iv) is true. 
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5. Another result of independence 

The following result is easily obtained as a consequence of Theorem 1.1: 

THEOREM 5.1. Let (~,71) ~ be a Gaussian centered random, variable of ~"+~ 
with covariance matrix: 

E = [  E1 E1/2] 
E'I/2 Eo " 

Let A1 and Bo be symmetric  (77,n) and (k, k) matrices. Asswmc th, at E, A1, Bo 
aTv inve'rtible. Then, if  ~ A l ~  and 7/Bo'11 aT"e independent, one has El~2 = O. 

[ oo] [o  ,nd PROOF. \Ve write A = V~ A10 v ~  and B = ~ 0 B0 

note that 

has distribution N(0, I,,+~.). An application of Theorem 1.1 shows that r162 and 

7 ] l B ~ 1 7 6  = 0 " "  S i n c e A E B =  [I)) A1EI/2B~ 

and since A1 and Bo are invertible, the result is proved. [] 

Just ~ we passed from Theorem 1.1 to Theorem 1.2 by introducing the ordi- 
nary Wishart distribution, we could give an easy extension of Theorem 5.1 with 
Wishart distributions again. We opt not to do so, but rather to give a generaliza- 
tion in the framework of symmetric cones. 

THEOREM 5.2. Let IV be a ~'andonz variable taking its values in a simple 
Euclidean Jordan algebTa E, Wish.art distributed with scale paramctc'r 9 in int C 
(C is the symmetric  cone of E) aT~.d sh.ape pararneter p in (3.3). i.e. for 0 i'n i'nt C' 

~(exp - T r a c e  0W) = ((det 9)/(det(9 + 0))) pd/'. 

Let c be an idcmpotent and let a and b be in V ( c, 1) and V(c, 0) 'respectivel:q. 
We ass~lmc that a and b are inve.rtible with rrspect to these subalgeb~'as. Th.en 
trace((l.ll') and trace(b.IV) are independent implies that 91/2 = O, 'whc'lr 91/2 is 
th.e projection of 9 on V(c, 1/2). 

PROOF. Clearly trace(a.IV) and trace(b.W) are independent if and only if 
for all (t, s) in N2 one has 

(5.1) de tyde t (g  + sa + sb) = det(9 + sa) det(y  + tb). 

Since U is in int C, and if 9 = 91 + yo + 91/2 is the Peirce decomposition of U, 
clearly .g~-i and yo 1 exist. Denote Zo = P(91/2)~.]~ 1. 
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F r o m  L e m m a  4.2 it is in V(c, 0), and  Yo - zo is in C.  Le t  us a p p l y  L e m m a  4.2 
to each  of the  4 d e t e r m i n a n t s  of  5.1. Af t e r  t r i t e  s impl i f ica t ions ,  we get  

(5.2) det(YOo - z o ) d g t ( y o  - t b - P ( y l / 2 ) ( y l  - sa) -1 ) 

= det(YOo - zo - t b )  dgt(yo - P ( y u 2 ) ( y - s a ) - l ) .  

L e t t i n g  s ~ + o o ,  (5.2) gives 

(5.3) det(YOo - Zo)dgt (yo  - tb) = d e t g o  det (yo - Z o  - t b ) .  

Since de t (P(y ) (x ) )  = (de t  9 )2(de t  x) for any  x and  Y in E and  Yo - zo, be ing  
in C,  has  a squa re  roo t  in C,  (5.3) b e c o m e s  

(5.4) ) - 1  det(YOo - z o ) d e t ( y o  - tb) = det  'go de t ( e  - t P ( ( ~ y o -  Zo (s))) .  

For  t = 0 in (5.4), we get  deto(Yo - Zo) = de toyo ,  or 
de to(e  - P ( ( v / ~ ) - l ) ( Z o ) ) )  = 1. Since ~' ~' *o = P ( ( v / ~ ) - l ) ( z o )  and  e -  ~o are b o t h  in 

~1 C, the  e igenvalues  of  e - ~o are in [0, 1], the i r  p r o d u c t  is 1, the re fo re  " ~0 = 20 = 0.  

T h u s  P(~ql/2)g{ -1 = 0. Wr i t i ng  

y l l  = E CtiCi w i t h  

i = 1  

Cl~ 1 > 0 a 2 > 0 ' ' ' 0 ~  k > O, 

and  c = c I -[- "" �9 -~- Ck -~ith (C 1 . . . . .  CA- ) a sequence  of p r imi t i ve  o r t h o g o n a l  i d e m p o -  
ten ts ,  we have  

0 = TraceP(ya /2 ) (y l  1) = (Yl/2, Yl/2-9{-1), 

by  us ing  (4.4) and  (4.5). Wr i t i ng  

K--" 
~1/2 = ~ aij, 

i<k<j 

where  aij is in V(ci, 1/2)  A V(cj ,  1/2) ,  we get  

and  

-1 
Y1/2"Y1 = 1/2 E aiaij 

i<_k<j 

1 
0 = E  illa Jll2' 

i<_k<j 

since the  aij a r e  or thogona l .  Since a i  > 0, it follows t h a t  aij = 0 and  bl/2 = O. [] 
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6. Comments 

T h e  f i rs t  a u t h o r  of  t h i s  p r e s e n t  n o t e  h a s  b e e n  a s k e d  b y  P .  D o i s y  (T ou louse )  

wh ich  e x t e n s i o n  of  T h e o r e m  1.1 to  in f in i t e  d i m e n s i o n a l  s p a c e s  a r e  poss ib l e .  T h e  

m o s t  n a t u r a l  one  is to  c o n s i d e r  s y m m e t r i c  m e a s u r a b l e  f u n c t i o n s  a a n d  b : [0, 1] 2 --~ 

[R such  t h a t  a a n d  b a re  in L2([0,112),  a n d  to  c o n s i d e r  d o u b l e  i n t e g r a l s  w i t h  r e s p e c t  

to  s t a n d a r d  B r o w n i a n  m o t i o n  

/011/I /01/01 U = a(x ,  y ) d B ( x ) d B ( y ) ,  V = b(x,  y ) d B ( x ) d B ( y ) .  

I t  has  b e e n  p r o v e d  by  Us t f ine l  a n d  Z a k m  (1989) t h a t  U a n d  V a re  i n d e p e n d e n t  

if  a n d  on ly  if f~  a ( x , z ) b ( z , y ) d y  = 0 in the L2([0, 1] 2) sense.  I t  a l so  has  been 
g e n e r a l i z e d  to  h i g h e r  m u l t i p l e  i n t e g r a l s  in t h e  s a m e  p a p e r .  Suff ic ient  c o n d i t i o n  

(which  was  t r i v i a l  for T h e o r e m  1.1) has  go t  a s i m p l e r  p r o o f  w i t h  K a l l e n b e r g  (1991);  

we a re  i n d e b t e d  to  M a r c  Yor  for t h e s e  two re fe rences .  N e e d l e s s  to  say, t h e s e  in f in i t e  

d i m e n s i o n a l  r e su l t s  a re  u s ing  t h e  s t o c h a s t i c  c a l c u l u s  of  I t o  a n d  M a l l i a v i n  a n d  a re  

no longe r  e l e m e n t a r y .  
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