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A b s t r a c t .  Approximations of density functions are considered in the mul- 
tivariate case. The results are presented with the help of matrix derivatives, 
powers of Kronecker products and Taylor expansions of functions with ma- 
trix argument. In particular, an approximation by the Wishart distribution 
is discussed. It is shown that  in many situations the distributions should be 
centred. The results are applied to the approximation of the distribution of the 
sample covariauce matrix and to the distribution of the non-central Wishart 
distribution. 
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1. Introduction 

Ill s ta t is t ical  app rox ima t ion  theory  the most  common  tool for app rox ima t ing  
the densi ty  or the d is t r ibut ion function of a s ta t is t ic  of interest  is the Edgewor th  
expansion or re lated expansions  like t i l ted Edgewor th  (e.g. see Barndorff-Nielsen 
and Cox (1989)). Then  a d is t r ibut ion is app rox ima ted  by the s t anda rd  normal  
d is t r ibut ion using derivat ives of its densi ty function. However,  for app rox ima t ing  
a skewed r a n d o m  variable  it is na tura l  to use some skewed distr ibut ion.  This  idea 
was elegantly used by Hall (1983) for app rox ima t ing  a stun of independent  r andom 

variables with the chi-square dis t r ibut ion.  
The  same ideas are also valid in the mul t ivar ia te  case. For different mult ivari-  

ate  s ta t is t ics  Edgewor th  expansions  have been derived on the basis of the mul- 
t ivar ia te  normal  dis t r ibut ion,  Np(0, E) (e.g. see Traa t  (1986), Skovgaard  (1986), 
McCul lagh (1987), Barndorff-Nielsen and Cox (1989)), bu t  it seems more uatu-  
ral in m a n y  cases to use mul t ivar ia te  approx imat ions  via the Wisha r t  distr ibu- 
tion. Most  of the tes t -s ta t is t ics  in mul t ivar ia te  analysis are based on functions of 
quadra t ic  forms. Therefore,  it is reasonable  to believe, at  l e ~ t  when the s ta t is t ics  
are based on normal  samples,  tha t  we could expect  good approx imat ions  for these 

s ta t is t ics  using the Wisha r t  density. 
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In this pape r  we are going to obta in  the W i s h a r t - a p p r o x i m a t i o n  for the densi ty  
funct ion of a symmet r i c  r a n d o m  matr ix .  In Section 2 basic notions and fornmlas  
for the  probabi l is t ie  charac te r iza t ion  of a r a n d o m  ma t r i x  will be given. Section 3 
includes a general  relat ion between two different densi ty  functions.  The  ob ta ined  
relat ion will be utilized in Section 4 in the  case when one of the two densities is 
the Wisha r t  density. In par t icular ,  the first t e rms  of the expans ion  will be wr i t t en  
out.  In Section 5 we present  two appl ica t ions  of our results  and consider the 
d is t r ibut ion  of the sample  covarianee m a t r i x  as well as the non-centra l  Wisha r t  
dis t r ibut ion.  

2. Moments and cumulants of a random matrix 

In the pape r  we are, systematical ly ,  going to use ma t r i x  notat ions .  Most  of 
the results  will be presented using notions like vec-opera tor ,  Kroneeker  product ,  
c o m m u t a t i o n  ma t r ix  and m a t r i x  derivative.  Readers ,  not very famil iar  with these 
concepts ,  are referred to the book  by Magnus  and Neudecker  (1988), for example .  
Now we present  those definitions of m a t r i x  der ivat ives  which will be  used in the  
subsequent .  

For a p x q-mat r ix  X and a m x n - m a t r i x  Y = Y ( X )  the ma t r ix  der ivat ive 
dY �9 d.~ IS a m n  x pq-matr ix :  

dY d 
- - -  | vec K 

dX dX 

where 

d ( 0  0 0 o) 
dX O X l l ' ' " '  OXpl' OX12'"" OXp2""'  OXlq OXpq 

i.e. 

dY d 
(2.1) d X  - d v e c ' ~  | vec Y. 

Higher order  derivat ives are defined recursively: 

(2.2) dkY d d k - l Y  
dX k dX dX k-1 

W h e n  different iat ing with  respect  to a symmet r i c  ma t r i x  X we will instead of (2.1) 
u s e  

dY d 
(2.3) d A ~  - dvec '  A X  Q vecY, 

where A X  denotes  the  uppe r  t r iangular  pa r t  of X and 

v e c A X  = ( X l l , X l z , X 2 2 , . . . , X l p , . . . , X p p ) ' .  

The re  exists a (p2 x �89 + 1)) -mat r ix  G which is defined by the relat ion 

G ~ vec T = vec AT.  
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Explicitly the block-diagonal matrix G is given by p • blocks Gii: 

(2.4) Gii = ( e l , e2 , . . . , e i )  i = 1 ,2 , . . . , p ,  

where ei is the i-th unit vector, i.e. ei is the i-th column of Ip. An important 
special case of (2.3) is when Y = X. Replacing vec AX by G' vec X we get by 
definition (2.1) the following equality 

d X  
d A X  - + K , , ,  - ( K , , p ) d ) G ,  

where (I(p,p)d stands for the commutation matrix A'p,p where the off-diagonal 
elements have been put to 0. To shorten the expressions we shall use the notation 

(2.5) H,,p = I,~ + A~.p - (K,,,)d, 

where the indices may be omitted, if dimensions can be understood from the text. 
Hence our derivative equals the product 

d X  
- H G .  

d A X  

Note, that  the use of H G  is equivalent to the use of the duplication matrix (see 
Magnus and Neudecker (1988)). 

For a random p • q-matrix X the characteristic function is defined as 

9)x(T) = E[exp(i tr(T'X))], 

where T is a p x q-matrix. The characteristic function can also be presented 
through the vec-opera;tor; 

(2.6) ~x  (T) = E[exp(i vec' T vec X)], 

which is a useful relation for differentiating. In the case of a symmetric p x p-matrix 
X the nondiagonal elements of X appear twice in the exponent and so definition 
(2.6) gives us the characteristic function for X l l , . . . ,  Xpp, 2X12,. . . ,  2Xpp_ 1. How- 
ever, it is more natural to present the characteristic function of a symmetric matrix 
for X.ij, 1 <_ i <_ j ,  solely, which has been done for the Wishart distribution in 
Muirhead (1982), for example. We shall define the characteristic function of a 
symmetric p x p-matrix X, using the elements of the upper triangular part of X: 

(2.7) p.\-(T) - 9~ax (AT) = E[exp(i vec' AT vec AX)]. 

Moments 'rnk [X] and cmnulants ek[X] of X can be found from the character- 
istic function by differentiation, i.e. 

1 d k ~ x ( T )  T = 0  (2.8) mk[X] -- .i k d T  k 

and 
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1 d k lng~x(T) T=0 
ck[X]  = ik d T  ~. 

Following Cornish and Fisher (1937) we call the function 

t/'x (T) = In ~ x  (T) 

the cumulat ive flmction of X.  
Applying the matr ix  derivative (2.1) and higher order matr ix  derivatives, (2.2), 

we get the following formulae for the moments:  

, , , ,  IX] : E[vec' X],  

-,.A. [X] : S[(vec  X)  'aA-' vec' X],  k > 2  

where a r s tands  for a G, a ~0 �9 .. @ a and a q)~ = 1. The last s ta tement  can easily 

k t~nes 
be proved using mathemat ica l  induction. In fact, the proof repeats the deduct ion 
of an analogous result for random vectors (e.g. see I<ollo (1991)). Moreover, the 

following equalities are valid for the central moments  ~ga.[X]: 

(2.9) ffTt.[X] = E[(vec(X - E[X])) | vec'(X - E[X])], k = 1,2 .... 

which can be obtained as the derivatives of the characterist ic function of X - E [ X ] .  

Using (2.7), sinfilar results can be s tated for a symmetr ic  matrix. 

To shorten notat ions we will use the following conventions: 

<A.[zxx] = ck [vec A x ] .  

,,,k [zxx] = ,,,k [vec ZXX], 

"~k [Ax] = ,7~k [vec Ax], 

as well as 

E[AX] : E[vec AX], 

D[AX] = D[vec AX]. 

Finally we note that, as in the univariate case there exist, relations between 
cumulants  and moments,  and expressions for the first three will be utilized later: 

ci [x] = ,,,~ [x], 

c.2[x] = 7D,2[x] = D[X], 

,3[X] : ,~[X]. 
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3. Relation between two densities 

Results in this section are based on Taylor expansions. If g(X) is a scalar 
flmction of a. p x q-matrix X, we can present the Taylor expansion of g(X) at the 
point X0 in the following form (Kollo (1991)): 

I77 

(3.1) .q(X) = oo(.X0)q-~--~ ~ (vec'(X-X~174 dkg(X)(LYk x=x,, vec(X-'l(~ 
k=l 

where R,,, stands for the remainder term. For the characteristic function of X we 
have from (3.1), using (2.6) and (2.8): 

~x(T)  = 1 + ~(vec '  T)~ vecT + Rm. 
k=l 

For the cumulative function 

(3.2) ~/'x(T) = ~(vec '  T)~ vecT + R,,. 
k=l 

If X is symmetric, vec T will be changed by vec AT; 

= 1 + vec(LXr) + R,,,, 
k=l 

m ik 
= E ( , ' e c '  v e c ( A V )  + R m. 

.k=l 

Let X and Y be two p x q random matrices with densities f x ( X )  and fy(Y),  
corresponding characteristic functions ~.\-(T), ~y(T)  and cumulative functions 
'~b.\-(T) and ~/,y(T). Our aim is to present the more complicated density flmc- 
tion, say fy(Y) ,  through the simpler one, f x (X) .  In the univariate case, the 
problem was examined by Cornish and Fisher (1937) who obtained the princi- 
pal solution to this problem and used it in the case when X ~ N(0, 1). Finney 
(1963) generalized the idea to the nmltivariate case and gave a general expression 
of the relation between two densities. In his paper Finney applied the idea in 
the univariate c~se, presenting one density through another. From later presen- 
tations we mention McCullagh (1987) and BarndorffNielsen and Cox (1989) who 
with the help of tensor notations briefly consider generalized fbrmal Edgeworth 
expansions. Tan (1979) utilized Pinney's (1963) work when approximating the 
non-central Wishart distribution with the Wishart distribution. One main differ- 
ence between the approach in this paper a.nd Finney (1963) and Tan (1979) is 
that we use matrix representations of moments and cunmlants as well as nmtrix 
derivatives. This makes all computations nmch simpler and enables us to derive 
results in explicit form. When comparing the approach in this paper with the 
coordinate fi'ee tensor approach, this is a matter of taste which one to prefer. The 
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tensor  nota t ion approach,  as put  forward by McCullagh (1987), gives compact  ex- 
pressions. However, these can sometimes be difficult to apply in real calculations 
and the approximat ion  of the inverted Wishar t  dis tr ibut ion may serve as such an 
example.  

To establish our results, in part icular ,  for random symmetr ic  matrices,  we 
need some propert ies  of Fourier transforms.  The  basic relat ion is given in the next  
lemma. The  proof  will, however, be omi t ted  since the lemma is a direct general- 
ization of a result  for random vectors (e.g. see Traa t  (1986), or Kollo (1991)). 

LEMMA 3.1. Th, e den.sity f x ( X )  and th, e characterist ic  fll, nc t ion  c;x(T) of a 
p • q -mat r i x  X are connected by the fo l lowing relatio,n; 

~.\. (T ) ( i  vec T) 'g 'k- l i  vec' T = ( - 1 )  k fR,", ei vec 'T  vec X d~'.fx (X)  d X ,  
d X  k 

wh, ere th, e integral is calculated e lementwise  and th, e derivat ives  are s.upposed to 
exist. 

I f  X is s ymmet r i c ,  th, en 

~ , ~ x ( A T ) ( i  vec A T ) ~  vec' A T  

= (_1)~. ei,,~c ' ~T , ,~caX d f~ . \ - (AX ) d A X .  
,ip+ l l /'2 d A  X '~" 

The  lemma supplies us with the following crucial result. 

COROLLARY 3.1. I f  X is a p • q-m.atriz  and a is an a,rbit'rary 'n.o'nrando'm 
(pq)a-vector,  then th, e Fourier  tr'ansform ( inverse tra'n.~fovm) of  the prod'act 
el' (i vec T)r " (T) equals 

( -1) /"o ' vec d k f x ( X )  - (2rr) -pq JR 
dX ~" ,,,, 

~ x  (T )a ' (  i vec T ) ~ t ' e - i  voc' r ,,e~ X dT" 

I f  X is s y m m e t r i c  and a an avbitrary ( l p(p  + 1) )A:_vector, th, eT~, 

dk f ~ . \ - ( A X )  
( - 1 ) k a  ' vec d A X k  

= (2re) -P(p+I)/2 f P A X  ( A T ) a ' ( i  vec AT)~::~t"e - i  v~,c' ~T ,,~r ZXXdAT. 
p ( p + l  )/2 

PROOF. Lemma 3.1 states tha t  ~ g x ( T ) ( i v e c T ) ' a k - t i v e c ' T  is tile Fourier 

1~ k d * f x ( x )  After vectorizing we get that. q o x ( T ) ( i v e c T )  :;-:'A: is t ransform of ( - ~ j  dX~ �9 

the Fourier t ransform of the vector ( - 1 )  k vec dkf\(X) Then  the inverse Fourier 
d X  ~" 

t ransform is given by 

/, d k f x ( X )  (2re) -pq >gx (T)( i  vec r . . - T )  ~'~ ~ c - ' " ~  T , ,o~ X d T  ( - 1 )  k vec d X  k ?,,,, 
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Prenmltiplying this equality with a/ gives the statement of the corollary. The 
symmetric case is treated similarly. [] 

a v e  

Now we are able to present the main result of the section. 

THEOREIVl 3.1. Let f(.x~)(X) denote the k-th derivative akfx(x) ~ .  If Y and X 
two random p x q-matrices the density f y ( X )  can be presented through th, e 

density f x ( X )  by the folio'wing formal equality: 

f y ( X )  = f x ( X )  - (E[Yl - E[X])'vec f (1) ( ) 

+21 vec'{D[Y] - D[X] + (ELY] - E[XJ)(E[Y] - E[X])'} vec f(x?)(X) 
i 

- ~{vec (c:~[Y] - c3[X]) + 3 vec'(D[Y] - D[X]) O (E[Y] - E[X])' 

+ (E[Y]- E[X]) '| } vec f!<})(X)+.... 

PROOF. Using the expansion (3.2) of the cumulative function we have 

~ i  ~' Z),~2k_ 1 .~,~.('r) - ~/,,~. (T )  = E ( v e c '  (c~.[z] - ~ k [ x ] ) v e c T  
k = l  

and thus 

9)y(T) = 9~x(T) f i  exp { l (i vec' T)| (c~.[YI - ca.IXI)i vec T }  . 
k= l  

By using series expansion of the exponential function we obtain, after ordering the 
terms according to 'i t: , the following equality 

f 
~y(T)  = ~.~ (T) J l  + ,:(cl [ r  I - c., [ X ] ) v e c r  

k 

i 2 
+ F vec' r{c2[Y] - c2[X] 

+ (~1 [Y ]  - c~ [ x ] ) ' ( c ~  [Y]  - c~ I X ] ) }  vec f 
i 3 

+ 6 ( v e c '  T| - ca[X] + (c,,[Yl - c , [X]) '  

.~ (c~ [Y] - ~ [ x ] ) ' ( c ,  IF]  - c~ I X ] ) }  vec T 

+ 3(~.~ IF] - c ~ [ X ] ) v ~ c  T vec' v 

• (~2[Y] - ( ,~ [x ] )  vec T )  + . . . ~ .  
J 

Repeatedly applying the equality 

vec(ABC) = (C' @ A) vec B 
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we obtain 

( 
~v(T) = g.v(T){l + ,:(c,[Y]- o,[X]) vec T 

. 9  

' v~c ' {~ [v ]  - ~ [ x ]  +-y 

+ (C 1[}7] __ C1 [X])'(C] [~'] - -  C] [X])}(vec T )  Q2 

i3 
+ g(v~c'(~:~[v]- c~[X]) 

+ 3 vec'(c2[Y] - c2[X]) Q (C1 [}'] - -  C1 [X]) 

q- (el [Y] - Cl [w~'])@3)(vec T) %33 q--.. ~. 
J 

This equa.lity can be inverted by applying the inverse Fourier t ransform given in 
Corollary 3.1. The characteristic functions turn then into density fimctions and 
taking into account tha t  cl [.] = E[.]' and c2['] = D[.] the theorem is established. [] 

For sylnmetric matrices we can rephrase the theorem in t, he following way. 

COROLLARY 3.2. / f ] "  and X are symmetr ic  random p • p-matrices,  then. the 
density J'A~ (AX) can be presented th, ro'ugh th, e density ,fLxx (AX) by the followi'n,g 
forreal cqualit'y: 

(3.3) .fAy (AX)  = fA.V (AX) - (E[AY] - E[AX]) '  vec ].~1.{. (AX)  

1 vec'{D[AY] - D[AX]  + (E[AY] - E[AX])  + ~  

• (E[AY] - E[AX])'} vec/~2)v (AX) 

i {v~c'(c~ [Az] - ~3 [ax]) 
6 

+ 3 vec'(D[AY] - D[AX]) #~ (E[AY] - E[AX])' 

_ ~(3) (AX) +-... + (<~Y] s[Ax]) '~ v~c.~.u 

In the following we shall use the notat ion 

fu  - fAx(exx) 

for the density flmction of a symmetric  random matr ix  X analogously to the 
characteristic function in (2.7). 
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4. On Wishart approximation 

If in Theorem 3.1 f x ( X )  is a normal density we shall get, as a special case, 
a matr ix Edgeworth expansion of the density flmction f y ( X ) .  We shall, however. 
not deal with the Edgeworth expansion in this paper. For us the s tar t ing point 
is Corollary 3.2 and we are going to assume tha t  X is Wishar t  distributed. To 
get an expansion for f A u  we have to replace the derivatives and cunmlants 
for X with the explicit expressions for moments and cunmlants  of the Wishart  
distribution. 

Let W be a p x p Wishart  distr ibuted matr ix with n. degrees of freedom, 
W ~ Wp(E, n). If 2 > 0, the matr ix  W h~s the density flmction 

{ i) (4.1) / w ( W ) =  2P"/2Fp ~ IEI 

0, 

[I'VI(n-P-1)/2e -tr(E-1W}/2 l,l" > 0 

otherwise 

where the nmltivariate gamma function r'p(.~) takes the value 

Fp (71,)2 = 7FP(P-I)/4 I-I ( ' / t -~ -1 - -  i) . 

The characteristic function of the nonrepeated elements of l.I" equals (e.g. see 
Muirhead (1982)) 

(4.2) cpw (T) = lip - i M ( T ) E  1-"/2, 

where 
l l i (T)  = E tij(eie} + ejeli), 

i,je I 

ei is the i-th column o f l p  and I = { i , j ;1  < i < j <_p}. Furthermore,  we need 
the first derivatives of the Wishart  density. Straightforward calculations yield 

LEMMA 4.1. The derivative d~fw(u') dAWk is o.f the Jb'lwt 

(4.3) d k f w ( H ' )  dAi,I, ~. - (--1)A'LL,(II.2 E ) f w ( W ) ,  k = 0, 1,2 . . . .  

where f u (W) .is the density of the Wish.art distribution ll"t,(E, n). For k = O. 1.2, 3 
the 'matrices L~:(W, E) are of the form 

(4.4) 

(4.8) 

Lo(W, E) = 1, 
1 

L1(14'~ E) = - ~  vec'(sI'V - t  - E - l ) H G ,  

L2(W, E) = - ~ G ' H { s ( I , I  ,'-1 @ I,I , '-1) 
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(4.6) 

1 
2 v e e ( s W - '  - Z -L) vec'(.sW -~ - E - ' ) } H G ,  

L3(I'I"; ~) = ~(H(7 @ HG)'  { ( ~ { v e c ( s l l ' - l  - z - 1 )  @ Ip2 

+/p-- @ vec(sW -1 _ E - l ) }  

- (6, r K,,,,, o g){(z,,_~ ,~> vec w - ' )  

Jr-(vecl'y -1 @, //,2)})s(11"-1 @ lI "-1) 
/ 

1 vecf ! vects[,} r-1 _ y]-l)vec/tsl,V -1 _ S -I) 
2 (2  

--8(II 7-1Q-)'"--1)} vec ' (s l lT-I-  E - I )}HG,  

where .s = n - p - 1, Kp,p is the commutation ma.t'rix and G and H are defi.n, ed by 
(2.4) and (2.5), respectively. 

In order to apply Corollary 3.2 to tile \Vishart  dis tr ibut ion we need also expres- 
sions for the first three cumulants  of the Wishar t  distr ibution.  These  matr ices can 
be found by differentiating the cunmlat ive function &~.~-(T) where 1.1" ~ l l) ,(E,n,) .  
From (4.2) we obtain 

(4.7) 'r (T) = - r2 In lip - iAI(T)EI. 
2 

The  ext)ectat ion and covariance of W are well known and equal 

(4.s) 
(4.9) 

E[AII ' ]  = 'n vec' AE,  

DIAII ' ]  = nC'(Id,_ + K,,4,)(E ,~ E)G. 

To find the third order  cumulant  of AI,I" we haste to take tile third order derivative 
fl'om the cunmlat ive function (4.7). It follows from (2.5) and the definition of 
AI(T) in (4.2) tha t  

dM(T)  
d A T  - -  (Ij;,_ + I(>p)G 

and then after some calculations we obtain 

(4.10) ~3[ /x w]  = . .(C(z,,~ + I,:,,,,~) o G')(Ip ,~ I(,,,,. o I,~) 
x (E C~ E G~vecE + v eeE  ~) E ~J E)(Ip._, + Kp,p)G. 

A minor complicat ion with the Wishar t  approximat ion  is tha t  the derivatives of 
the density of a Wishar t  d is t r ibuted matr ix  i n c r e ~ e  with n. If the differences 
between cumulants  are small this will not mat ter .  However, in the general case, 
it seems wise to adjust  the expansion so tha t  derivatives decrease with .it. Indeed, 
some authors  have not observed this negative p roper ty  of the Wishar t  distr ibution.  
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One way to overcome the p rob lem is to t rans la te  the Wisha r t  ma t r ix  so tha t  a 
centred version is obta ined,  i.e. 

V = W - hE.  

From (4.1) it follows tha t  the ma t r ix  V has the densi ty function 

(4.11) 

1 
,/g 

2."/'F. "/2 

f~.(V) = • Jr- ' n . g l ( n - P - Z ) / 2 e  - 

O, 

t r ( E - l ( V + l l E ) ) / 2  V + n E > O  

otherwise. 

The  first cumulan t  of V equals zero and the other  cunmlants  are identical to the 
corresponding cmnulan ts  of the Wisha r t  dis tr ibut ion.  In par t icular ,  the second 
anti third order  cumulan ts  are equal to those given by (4.9) and (4.10). 

In T h e o r e m  4.1 given below we are going to present  the densi ty %nct ion f y ( X )  
th rough  the centred Wisha r t  densi ty f v ( X )  on the basis of Corol lary 3.2. Once 
again it follows tha t  expressions for the first derivat ives are needed. The  derivatives 
of f y ( X )  can easily be ob ta ined  by simple t r ans format ions  of Li(X, E) if we take 
into account  the expressions of the densities (4.1) and (4.11). Analogously to 
L e m m a  4.1 we have 

LEMMA 4.2. Let V = I.'I" - nE  where IV ~ I4~(E, n). The'n 

(4.12) .f~) (1/) - dA'f~" (V) dAV# -- ( - 1 ) k L ~ . ( V , Z ) f v ( V ) ,  

wh, ere 
f "  f , . . . .  Lk(I, ,  E) = L/,.(V + ~g ,  E), k = 0, 1, 2 

Th.e matrices L#(V, E), k = 1,2, 3 a're 9iven by (4.4)-(4.6) and for ~ >> p 

1 
(4.13) L [ ( I / \  E)  ~ - - -  vec'(B1)HG, 

2 n 

(4.14) L.*_,(V, E) ~ - , C ' H B o H G -  ~ G  Hvec(B~)vec'(B1)HG, 

'UlheT'c 

B ~ = E - I V a / 2 ( 1 V ~ / 2 E - ~ V ~ / 2 + I p l  

B,, = ( V ~ .  + X ) - 1 0 ( W '~ + E)  - 

- 1  
V1/2E - 

For k = 3, 4 . . . .  the 'mat'riz L*A.(V, E) is of order 'n -(k-l) . 
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PROOF. The  first s t a t emen t  of t, he l e m m a  follows direct ly  from (4.3) in 
L e m n m  4.1 if we replace I1" with t, he expression V + 7~.E since W = V + .hE. 
For L~(H', ~)  we have 

1 
/_,~(V, E) = - ~  v e c ' { ( , , -  p - 1)(V + , , ~ ) - '  - P.-'}HG 

- vec' (V/n + 2) -1 HG. 
2 n 

I f 'n  >> p w e  have 

1 
LI( I ,  , * :  ~ )  ~ -72 vp('l{(V/'/ ,  -{- ~_,)-1 _ ~ p - 1 } H  C 

and using the mat.rix equal i ty  (e.g. see Sr ivastava and Kha t r i  (1979), p. 7) 

(A+BEB') -I =,4 I_A IB(B'.4-1B+ E-I)-IB'A -t, 

where A and E are posit, ire definite nmtriees of orders p and q, respectively, and 
B is a p x q-matr ix ,  we get tha t  

1 { < ) } L*I(I"\ E) m - - -  vee'  E 1V1/2 ! I ' l / 2 E - 1 V 1 / 2  + 1/, V1/2E -1 G. 
211 17 

Hence, (4.13) has been proved. 
For/c  = 2 we obta in  in a sinfilar way (.s = n - p - 1) 

1 
- - vec(s (V + 'hE) - [  - ]~]-1) 

'2_ 

x vec'( .s(V + '~E) -1 - E - I ) } H G  

,-~ -1G'H(V/I~_ + E) -1 <', (V/'n + r ) - l  HG 

1 
4n 2 G ' H ( v e e  Bl vec' B1 )HG. 

Thus  relat ion (4.14) is established.  
To comple te  the proof  we r emark  that. fl'om (4.6) we have, with tim hell) of 

* Z (4.13) and (4.14), t ha t  L 3 ( I ,  E) is of order n -2.  From the recursive definition of 
the ma t r ix  derivat ive the last, s t .atement of the l emma  is established.  [] 

Now we shall fornmlate  the result  at)out representat,  ion of a densi ty . fv (X)  
th rough  the Wisha r t  d is t r ibut ion D),(E, 'n). 
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THEORElVI 4.1. Let W,  Y and V be p x p random symmetric matrices with, 
W ~ 14~)(E, n) and V = W - n . E .  Then for th, e density f y  (X )  the following formal 
ezpansio'n, holds: 

r 
(4.15) fy  (X) = fv (X) / 1 + E[Ay] '  vec L~ (X, 5-i,) 

i vee ' (D[A}']  - D[AV] + [  

+ E[AY]E[AY]')vee L2(X,  E) 

1 ' [AY] c3[AV]) + g (vee (c3 

+ 3 vec'(D[AY] - D[AV]),:Z, E[AY]' 

+ SLAY] ''~3) vec Z:~(X, s) +... [ X O. 
) 

PROOF. The  theorem follows directly from (3.3) if applying Lemma 4.2. [] 

5. Applications 

In tile following we are going to utilize Theorem 4.1 when considering an ap- 
proximat ion of the density of the matr ix  'nS by the density of a centred Wishart  
distr ibution,  where S is the sample covariance matrix.  The  possibility of ap- 
proximat ing tile distr ibution of the sample covariance matr ix  with the Wishar t  
dis tr ibut ion wax probably  first noted by Ta.n (1980), but  he did not present ex- 
plicit expressions in general. Only in the two-dimensional case formulas for the 
approximat ion  were derived. 

THEOREM 5.1. Let Z = Z 1 , . . . ,  Z,, be a sample of .size n from. a p-dime'n- 
sio'nal population with, E[Z~] = It, D[Z;] = E and finite eentral mo'm.er;t.~: riO,.[Z,] < 
oo, k = 3,4 . . . .  : let S denote th.e sample covariance m, atr'i:r. The'n. the density 
fwnetio'n fs" (X )  of S* = n ( S -  E) has the follo'wi'ng rep.rese'n, tatior;, th.'ro'u.gh th.e 
een.t'red Wishart densit~j .f~. (X) ,  where V = ll" - nE  and H" ~ I.I)~(E, n ): 

(5.i) 
1 

f.~., (X) = ] ] - (X)  1 - ~ vec'(G'{fit_l[Zi] - vec E vec' 

- (i,,._, + <,,.)(~ ,::> ~)}c) 
• veo(G;H((V/~, + E)-~ :& (V/~  + < ) - I ) H G )  

+O ~ x > 0 ,  

wh.e.re G a'nd H are defined by (2.4) and (2.5), respectively. 

PROOF. To obtain (5.1) we have to insert the expressions of" LA*.(X, E) and 
cumulants  ck[AS*] and ck[AV] in (4.15) and examine tile result. At first let us 
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remark  tha t  C 1 [ A S * ]  = 0 and in (4.15) all terms including s  vanish. By I<ollo 
and Neudeeker ((1993), Appendix  I) 

1 
D[v"77vec S] = ' ,h4[Zi ] -  vecGvec'G 4- ([i,2 + A,,4,)(G @ G ) 

n -  1 (1) 
= ' m ~  [ Z i ]  - vec E vec' 2 + O Q 

Hence. by the definition of G, we have 

(s.2) D[AS*] = nG'(',h4 [Zi] - vec P, vec' E2)G + O(1). 

In Lemma 4.2 we have shown tha t  for n >> p, L2(](  , ~) is of order  ~-1  and in the 
approximat ion  we can neglect the second te rm in (4.14). Mult.iplying vectors in 
(4.15) and using (4.9), (4.14) and (5.2) give us 

! vec'(m[as*] - m[av]) vec L.;(X, 
2 

1 v e c ' ( a ' { , , 4  [Z,] - vec ~ vec' E - (Z,,2 + G, , , , ) (E  G ~)}O)  
4 (1) 

x vec(G'H((V/ , ,  + E) -1 @ (V/.n + E ) - t ) H O )  + O 7~ " 

To complete  the proof  we have to show tha t  in (4.15) the remaining par t  of the sum 
within curly brackets is O(�88 Let  us first show tha t  the t, erm including L.*a(X, G) 
in (4.15) is of order  'n -1. From Lemma 4.2 we have tha t  L~(X, G) is of order  '7~ -2 
From (4.10) it follows tha t  the cumulant  c3[AV] is of order fT. Traa t  (1984) has 
fomld a matr ix  Ma, which is independent  of n, such tha t  

c3(vec S) = n-2_~la 4- O(.n-3). 

Therefore  
ca[AS*] = rdC3 4- O(1), 

where the matr ix  K:~ is independent  of/~.. Thus.  the difference of' the third order 
cunmlants  is of order 7~ and mult iplying it with vec L~(X, E) gives tha t  the product  
is  O(11-1). 

All the other  terms in (4.15) are scalar products  of" vectors whieh dimension- 
ality does not depend on 'n. Thus,  when examining the order of these terms 
it is sufficient to consider products  of L~*.(X, E) and differences of eumulants  
cA-[AS*] - ck[AV]. Remember  tha t  it. was shown in Lemma 4,2 that  L;.(X, E), 
k >_ 4 is of order  7~ - a+ l .  Fur thermore ,  from (4.7) and propert ies  of sample cumu- 
lants of k-statistics it ibllows tha t  the diffe,'ences c~,.[AS*] - ca.[AV], k _> 2 are of 
order ~.. Then  from the construct ion of the formal expansion (3.3) we have that  for 
k = 2p, p = 2, 3 . . . .  , the te rm including L~ (X, s  is of order 71'x 7~, -2j'+l = .n -p+I , 
where the main te rm of the cunmlant  differenees is the t e rm where the seeond o f  
der cumulants  have been multiplied p times. Hence, the L](X,  E)-terln,  i.e. the 
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expression including L,*~(X, E) and the produc t  of D[AS*] - D[AV] with itself, is 
O ( n - x ) ,  the La(X, E)- te rm is O ( n - 2 ) ,  etc. 

For k = 2p + 1, p = 2, 3, . . .  the order of the L~(X, E)- te rm is de termined by 
the produc t  of L*k(X, E) and the (p - 1) products  of the differences of the second 
order cumulants  and a difference of the third order cumulants.  So the order of the 
L;(X, E)- te rm (k = 2p + 1) is n -2p • n p-1 x n = n -p. Thus,  the L;(X, E)- te rm 
is O ( n - e ) ,  the L*(X, E)- te rm is O(n  -3) and so on. The  presented arguments  
complete the proof. [] 

Our second applicat ion is about  the non-central  Wishar t  distribution.  It turns 
out tha t  Theorem 4.1 gives a very convenient way to describe the non-central  
Wishar t  density. Previously the approximat ion of the non-central  Wishar t  distri- 
but ion by the Wishar t  distr ibutions has, among others,  been considered by Steyn 
and Roux (1972) and Tan (1979). Both  Steyn and Roux (1972) and Tan (1979) 
pe r tu rbed  the covariance mat r ix  in the Wishar t  distr ibution so tha t  moments  of 
the Wishar t  distr ibution and the non-central  Wishar t  distr ibution should be close 
to each other.  Moreover, Tan (1979) based his approximat ion on Finney 's  (1963) 
approach but  never explicitly calculated the derivatives of the density. It was not 
considered tha t  the density is dependent  of n. Although our approach is a matr ix  
version of Finney 's  there is a fundamental  difference with the approach in Steyn 
and Roux (1972) and Tan (1979). Instead of per turb ing  the covariance matr ix  we 
use the idea of centr ing the non-central  Wishar t  distribution. Indeed, as shown 
below, this will also simplify the calculations because we are now able to describe 
the difference between the cumulants  in a convenient wa.v, instead of t reat ing the 
cumulants  of the Wishar t  distr ibution and non-central  Wishart  distr ibution sepa- 
rately. 

Let Y ~ Wv(E,n , .p) ,  i.e. the non-central  Wishar t  distr ibution with a non- 
central i ty  parameter  E-lp.p ~. If E > 0 the matr ix  Y has the characterist ic  flmction 
(see Muirhead (1982)) 

(5.3) ~5-(T) = F~t" (T)e- tr(x-lplJ)/2etr(Z-lpp'(l,,-iM(T)E)-l)/2 

where M(T) and ~ w ( T ) ,  the characterist ic  function of W ~ I,lp(E, n), are given 
by (4.2). 

We shall consider centred versions of Y and IF again, where IY ~ II'/)(E, n). 
Let Z = Y - nE  - t t p  ~ and V = W - hE. Since we are interested in the differences 
ck [Z]-c t .  IV], k = 1, 2, 3 , . . .  we can, by the similarity of the characterist ic flmctions 
~z(T) and ~..(T), obtain by (5.3) the difference of the cumulat ive flmctions 

1 1 tr{M(T)pp/} "~/;z(r) -!/.'v (T) = - ~ t r ( ~ - l p #  ') - i ~  

+[1  t r { ~ _ l l t p , ( i  _ iA f ( r ) z )_ l}  

After expanding the matr ix  (I - iM(T)2) -1 we have 

1 ~ ij (5.4) I[ 'z(T)- ~'v(T)= ~ tr{~-lpp'(ll f(T)~)J}. 
j=2 
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From (5.4) it follows tha t  cl [Z] - Cl [V] = 0, which, of course, must  be t rue because 
E[Z] = E[V] = 0. In order to obtain the difference of the second order cmnulants  
we have to differentiate (5.4) and obtain 

1 d 2 t r ( t L p ' M ( T ) E M ( T ) )  
(5.5) c2[Z] - c2[V] = 2 d A T  2 

= c'(•  o ~,~,.'r + 6, e z~,.S)(%.-, + ,'q,.~)c. 

Moreover, 

(5.6) c3[z] - c3[v] = (C(%.,  + E,~,,,) ~.~ c')(I , ,  r I,:p,,~ ~ I,~)(/,., + E,,~,,~) 
x {x: c, E C, vec #p'  + (E e p#'  + F P / e  E) ~=~ vee E} 

• (z,,~ + K,,,,JG. 

Hence the next  theorenl  will easily follow. 

THEOREM 5.2. Let Z = Y - 'hE - tttt', where Y ~ II'I~(E, 71,p) and V = 
l'l" - hE,  wh, ere W ~ IVp(E, 7~). Th, en 

1 vec'{tlp o # / z  + 6, ,% z# / ) (%~ + < , , , j }  (5.7) , f z ( X )  = . f v ( X )  1 + ~ 

x ( G < g G ) v e c L ~ ( X , E )  

1 vec,(c3[AZ ] _ c3[AV] ) +g 

vecL~(X,Z) + o(.-~)} X > x 0, 

where L*~.(X,E), k = 2,3 are give,, by (4.14), (4.6) and (4.12), ( c 3 [ A Z ] -  c3[AV]) 
i.s determined by (5.6) and G i.s defined by (2.4). 

PROOF. The  proof  follows from (4.15) if we replace the difference of the 
second order cumulants  by (5.5) and take into account  tha t  by Lem m a  4.2 L*~. (X,  E) 
is of order n -k+~, k > 3, and tha t  the differences of cmnuhmts  ck[AZ] -cA.[AV]  
do not depend on 7~. [] 

For an approximat ion  of order n -1  we get from Theoreul  5.2 the following 

COROLLARY 5.1. 

vec'{(Ip + I,, - rp# ' ) (6~  + A'p.,~)} 
1 

f z ( X )  -- f v ( X )  1 4~ m'J p p ' E  c:> 

• ( G G ' H  C, G G ' H )  (1)} 
• ,,ec((Vl, + ~)-1 ~ (Vl, + ~)-') + o ~ x > o. 

PROOF. The statement follows fronl (5.7) if we omit the L:](X,E)-term, 

which is of order n -2 and use the 'n -I term fl'om (4.14) for L~(X, E). [] 
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