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A b s t r a c t .  Two-factor fixed-effect unbalanced nested design model without 
the assulnption of equal error variance is considered. Using the generalized 
definition of p-values, exact tests under heteroscedasticity are derived for test- 
ing "main effects" of both factors. These generalized F-tests can be utilized in 
significance testing or in fixed level testing under the Neyman-Pearson theory. 
Two examples are given to illustrate the proposed test and to demonstrate its 
advantages over the classical F-test. Extensions of the procedure for three- 
factor nested designs are briefly discussed. 
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1. Introduction 

In m a n y  stat is t ical  appl icat ions  involving compar ison  of two normal  popula-  
tions and ANOVA including nested designs, it is cus tomary  to assume tha t  the 
underline error t e rms  have equal variances.  This  a s sumpt ion  is made for lnathe- 
mar i t a l  t rac tab i l i ty  ra ther  than  any th ing  else. Although,  the classical F- tes t  is ro- 
1)ust against  a mode ra t e  depar tu re  fl'om this assumpt ion ,  when the probleln of het- 
eroscedast ic i ty  is serious, apply ing  the classical F - t e s t  with the assumpt ion  of equal 
variance can lead to lnisleading conclusions (Krutchkofl" (1988, 1989)). Krutchkoff  
argued tha t  t r ans fo rmat ions  cannot  resolve the problem and also showed tha t  in 
lnany cases the Kruskal-Wall is  test  is not an a l ternat ive  solution compared  to the 
classical F- tes t ,  a l though it is less sensitive to the tmequal  error variance. 

In one-way ANOVA, Krutchkoff  (1988) and Weerahandi  (1994a, 1994b) pro- 
vided interest ing examples  to demons t r a t e  the repercussions of apply ing  the clas- 
sical F - t e s t  under  serious heteroscedastici ty.  In part icular ,  this problem can be 
very serious when the error variances are negat ively correlated with the sample  
sizes. Using the generalized definition of the p-values (see Tsui  and Weerahandi  
(1989)), Weerahandi  (1994a) obta ined  exact  unbiased tests  for one-way ANOVA 
problems under  heteroscedast ici ty.  

A n a n d a  and \Veerahandi  (1994) showed tha t  the equal variance assumpt ion  
is even more serious in higher-way models  than  in one way-models .  Further lnore,  
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they obtained exact unbiased tests for unbalanced two-way ANOVA problems with 
u n e q u a l  variances. 

In this paper, the fixed level nested design model under heteroscedasticity 
is considered. In nested design models, it is very reasonable to expect different 
variances for different factor levels. For instance, consider the following example. 
Suppose a pharmaceutical company or a software product manufacturing company 
has two factories, each located in two completely different environments. The 
company operates two training schools, one in each factory. Also suppose that  the 
training school in the first factory uses 2 different training methods and the school 
in the second factory uses 3 different training methods. The company is interested 
in the effect of school (factor A) and training methods (factor B) in learning. In 
this two factor fixed level nested design model, it is very likely that  the variances 
on learning achievements for the five different training methods are unequal. 

As in one-way and two-way ANOVA problems, when heteroseedasticity is 
serious, it is likely that  the classical F-tests will result in misleading conclusions. 
Using the generalized definition of the p-values, the classical F-tests are extended 
and exact unbiased tests are obtained for the two factor nested design. These 
resulting p-values can also be expressed explicitly. Furthermore, a brief discussion 
of the extensions for three factor nested designs follows. 

Each of the generalized tests reported in this article is exact in the sense that  it 
is based on a p-value which is the exact probability of a well defined extreme region 
of the sample space. The test is unbiased in the sense that  the probability of the 
extreme region increases for any departure from the null hypothesis. It should be 
emphasized that these assertions are not valid under the Neyman-Pearson fixed 
level testing. In fact, under the Neyman-Pearson theory, exact tests based on 
the minimal sufficient statistics do not exist for these type of problems. The 
generalized F-tests developed in this paper can be utilized in fixed level testing as 
well. Our linfited sinmlation studies have suggested that rejecting a null hypothesis 
when the generalized p-value is less than a provides an excellent approximate a. 
level test. According to our sinmlation studies, the generalized F-test is readily 
size guaranteed for all values of nuisance parameters. In fact, in view of the results 
in Robinson (1976) and our sinmlation studies, it is conjectured that, at least in 
the balanced case, this test is readily size guaranteed for all values of nuisance 
parameters. However, the proof of such a result is well beyond the scope of this 
paper. According to other simulation studies reported in the literature (see, for 
instance, Thursby (1992), Weerahandi and Johnson (1992), Zhou and Mathew 
(1994)), in many linear models, approximate tests based on generalized p-values 
often outperform more complicated approximate tests available in the literature. 

This generalized p-value approach has also been applied in mixed models 
(Weerahandi (1991), Zhou and Mathew (1994)) and in regression models 
(Weerahandi (1987), Koschat and Weerahandi (1992)). For a complete coverage 
and applications of these generalized p-values the reader is referred to Weerahandi 
(1994b). 
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2. Generalized F-test for two-factor nested designs 

Consider a two-factor nested design model with factors A and B; the factor A 
with I factor levels and the factor B nested within A having ,1(1), , ] ( 2 ) , . . . ,  ,](I)  
levels respectively yielding a total  J = ~ . l ( i )  levels of factor B. Then  one can 
consider the t rue cell mean of the (i, j )  level of factor B, say Itij, as the sum of a 
general mean p., an effect c~i of the i-th level of A, and an effect bij of the (i, j )  
level of factor B, 

l t i j  = 0 -~ (~i -]- ~ij. 

Suppose a random sample of size rtij  i8 available from ( i , j ) - t h  level of B, i = 

1,2 . . . .  , I; j = 1.2 . . . .  , ,I(i) giving a total  sample size N = Y'~.i=l nij .  Let 
X i j k ,  i = 1 . 2 , . . . ,  I; j = 1,2 . . . . .  or(i); k = 1, 2 . . . . .  'hi] represent these random 
variables and 3?ij k represent their observed (sample) values. Sample mean and the 

~2 sample variance of the (i, j ) - t h  t r ea tment  are denoted by -Yi.i and Sij, i = 1 , . . . ,  I; 
j = 1 . . . .  , , l( i)  respectively: tha t  is, 

n ij n i j 

k : l  k : l  

Thei r  observed sample values are denoted by ;l~ij g i l d  82, i = 1 . . . . .  I; j = 
1 . . . . .  J(i.) respectively. Now consider the statistical model with m~equal vari- 
a n c e s :  

(2.1) 
Xijl,. = 0 J- (ti -Jr- 6ij J- {ijl,:, 

eijk ~ N ( O , c * f j ) ,  i =  1,2 . . . . .  I: j =  1,2 . . . . . .  l ( i) ;  k =  1,2 . . . . .  nij .  

In order to have 0, o'i, and bi.i uniquely defined, let. us choose the constraints  

I J(~) 

(2 .2 )  : o .  : o 
i=i j=l  

I V..]( i)  where vi and u,ij are nonnegative weights such tha t  ~ i=~  ui > 0 and z_~j=l tl'iJ > 0 
for each i. 

Consider testing following hypotheses  

(2.a) 
(2.4) 

Ho~s :6ij  = 0 ,  i =  1 . . . . .  I ,  j =  1 . . . . .  J ( i )  

Hoe " ( t  l = 0 2  : " ' "  = Ct I : 0 

against their  natural  al ternat ive hypotheses.  
First,  let us consider testing the hypothesis  Hoe. Testing this hypothesis  can 

be considered as test ing "main effects" of factor B which is equivalent to testing 
whether  the t rue cell means Ire depend only on i. In the unbalanced case when 
variances are equal, it is well known tha t  this hypothesis  call be tested using 
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the p-value based on the usual F - s t a t i s t i c  (see, for instance,  Arnold (1981), pp. 
100-101): 

I ( N  I J(i) 2 - ") 
- J )  E i = I  EO=I  ni:~(xiy - x i . ) -  ] 

(2.5) p = 1 - H ( j _ I ) , ( N _ j )  ( , ; - -  . . . .  ~ --,7~. . . . .  _7-~,, 
f )  E L 1 E : 2 :  E ; ' J l ( ' T i j k  --;L.ij)2 J 

where H(j_~),(a~-.l) is the cumula t ive  d is t r ibut ion  function of the F -d i s t r ibu t ion  
with ( J  - I )  and ( N  - J )  degrees of f reedom and .~i. = ~ j  l~,i j;T;ij /E ?),ij. 

2.1 T e s t  f o r  Ho6 w i t h  ou t  the  equal  v a r i a n c e  a s s u m p t i o n  

When  variances are unequal ,  the hypothes is  H0a in (2.3) can be tes ted on the 
basis of the p-value 

J(i) :e2jRi j I Ri  j , i J : i jRi j  
<_, E E �9 

i=1 j = l  i=1 \ j = l  

where G j - I  is the cdf of the chi-squared d is t r ibut ion  with ( J  - I )  degrees of 
9 fi 'eedom and the expec ta t ion  is t aken  with respect  t o  1r~ij ~ ) v n , s _ l ,  i = I . . . . .  [ ,  

j = 1 . . . . .  J ( i )  independent  chi-square r a n d o m  variables.  This  p-value can also be 
wr i t ten  as 

(2.7) : ;': ij ( N  - J)  
p = 1 -- E H ( j _ I ) , ( N _ j )  -(--ff~ ~) 

I - 1  

where Hr  is the cdf of the F -d i s t r ibu t ion  with ( J  - I )  and ( N  - ,J) 

degrees of fi 'eedom and the expec ta t ion  is taken with respect  to Y)j, i = 1 . . . . .  I ,  
j = 1 . . . .  , J ( i )  r a n d o m  variables  which are defined in t e rms  of the independent  
be t a  .Bij r a n d o m  variables as follows: 

(2.8) 

Y l l  = B 1 1 B 1 2  " ' "  B t j ( t ) B 2 1 B 2 2  " "  B 2 j ( 2 )  " "  B I1BI .2  " .  B I . . ] ( I ) - I  

}~2 = (1 - B11)B12 "'" B1. ] ( t )B21B22  �9 

Y]:~ = (1 - B19)B13 " "  B1.I(1)B'21B22 �9 

}]J(1) = (1 - B 1 , j ( 1 ) - l ) B l . j ( 1 ) B 2 1 B 2 2  

�9 B 2 J ( 2 )  " BI1 ]~I2 "'" BI . . ] ( I ) - I  

B 2 J ( 2 )  B I 1 B I 2  "'" BI . , ] (1) - I  

�9 B2j(2) " B l l B 1 2 - " B I . . ] ( I ) - I  

}~21 = (1 - B 1 1 ) B 2 1 B 2 2  " "  B 2 j ( 2 )  "'" B I 1 B I 2  " "  B I . J ( I ) - I  

}/ , . : (I)-1 : (1 - B / , j U ) _ 2 ) B I , j ( I ) _  1 

Y/j( :)  : (1 - B I , J ( I ) _ I )  
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where independent Bij beta random variables are defined as: 

Bij ~ Beta E (nt., - 1)/2 + E (hi., - 1)/2, (ni.j+l - 1)/2 
\ l = l  m = l  m = l  

if i =  1,2 . . . .  I; j =  1,2 . . . .  , J ( i ) - i  
(2.9) ) Bij  ~.. Beta E (n,., - 1)/2, (n,+,,1 - 1)/2 

l=1 m = l  

if i =  1 , 2 , . . . , I - 1 ,  and j = J ( i ) .  

The p-value serves to measure the evidence in favor of H0~. Moreover, it is an exact 
probability of a well defined extreme region of the sample space and it increases 
for any departure from the null hypothesis. Practitioners who prefer to take the 
Neyman-Pearson approach and perform tests at a nominal level a can also find an 
excellent approximate test by rejecting the null hypothesis when the generalized 
p-value is less than a. 

The derivation of this test is based on the F-test when ~,j values are known 
and the extended definition of the p-values given in Tsui and Weerahandi (1989), 
and therefore this test is referred to as the generalized F-test for testing H0a. The 
formal derivation of this test is given in Section 4. 

This p-value can easily be computed using Monte Carlo simulations or nu- 
merical integrations. While it is easy to use Monte Carlo simulations on the first 
chi-squared representation numerical integration work better for the later repre- 
sentation. Also for a problem with large number of factor levels, the Monte Carlo 
simulation method is computationally more efficient. However, the later represen- 
tation is necessary to show the unbiasedness property of this test. 

In Monte Carlo ;simulation, evaluating the expected value in (2.7) is done 
by simulating a large nmnber of data sets from the beta distributions defined in 
(2.9). Each of these data sets consist of J -  1 random numbers, exactly one random 
number from each of the beta random variables defined in (2.9). After transforming 
these random numbers to ~ j  random numbers using the transformation in (2.8), 
the expression appearing in the expected value must be evaluated for each data 
set and then the expected value can be estimated by using their sample mean. 
The accuracy of this approximation can be assessed by the Monte Carlo variance 
of the estimate a~/L ,  where L is the number of simulations used and ah is the 
sample (simulated) standard deviation of H values. 

Now let us consider testing the hypothesis H0~ given in (2.4). Unlike the 
previous hypothesis, this hypothesis depends on the weights chosen for wij,  so 
that these weights must be chosen prior to choosing the sampling scheme. In the 
case of equal variances, it is well known that this hypothesis can be tested using 
the usual F-test and, in particular with the weights 'luij = 7 l i j  this F-statistic can 
be written in a closed-form formula (cf. Arnold (1981), pp. 101 102) which yields 
the p-value 

( N -  J) ' 1 
(2.10) p = 1 - H(t -~) , (N- j )  (I  1) I V,J(S) v-,,~,~ ~ . ,[: ~_/ 

-- E i = I  Z-~j=l 2 - . ~ k - - l k ; I J i J k  - -  " ' J )  I 
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In tile case of general weights wij  and proportional weights wij = ?Zij/O'2j ill 
particular, the generalized F-tests with out the assumption of equal variances are 
derived and the resulting p-values are expressed explicitly. 

2.2 Generalized F - t e s t  for  Ho~ with general weights wi j  
Consider the testing problem of H0~ with the constraint given in (2.1) with a 

given set of weights wij .  Let us define the generalized sum of squares o5~,, 

(2.11) 
I J(i) 

- ' ~ ~ "~_ZJ ( . v c ~  - ~ - ~ j ) "  

i=l j=l 

where 

(2.12) 
Z '  r - "(') 

[ ' u ) i J [ f k = l  W i k X i k ) l ( E k  1 W o k O - 2 k / ? ? ' i k ) ]  {) ~ i = 1  ' . =  

wi~.)/(E~,=~ Wk%/mk)] 

and 

(2.13) ~ij ~- X ' i j  -- 0 -- i ju iJ[L '*k=l  - -  : =  
v- ,J( i )  I 9 9 * 

nij  2_, k= 1 Uw'[k cr'[k ~nit,. ) 

for all i =  1 , 2 , . . . , I ;  j =  1, 2 , . . . , J ( i ) .  

When variances are unequal, tile hypothesis H0~ can be tested using tile p- 
value 

(2.14) 
p = 1 - E GI -1  go k R l l  ' R 1 2  ' ' ' ' '  I~I 'J ( I )  

where Gz-1 is tile cdf of the chi-squared distribution with ( I - 1 )  degrees of freedom 
and expectation is taken with respect to independent I~ij  "~ )(-~iji--1 variables. 
With respect to Yij variables, this can be written as 

(2.15) f 
P = 1 - EJHu_I) , (N_, ]  ) 

k 

\ r,, 
7~12s72 'n/,.j(~)s~,.j(~) 

Yi2 ) I,J(i) 

Here H is the cdf of F-distribution with degrees of freedom (I - 1) and (N - J). 
The sketch of proof is also given in Section 4. 

Now consider a special set of weights wij  = r t i j /~ i  2.  In equal variance set up, 
these weights reduce to Wij  = ~,ij which is an attractive set of weights due to the 
simple formula of the F-statistic (see Arnold (1981), p. 102). Also, in the balanced 
case, using the weights Wij  = Ttij ( =  7t) is same as using the weights wij  = 1, which 
implies that  every nested factor is equally important. With these set of weights 
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wij = nij/o2j, the generalized sum of squares S~ given in (2.11) can be written 
more compactly as 

(2.16) 
I .i 

i = l  

i = l  j = l  ] i = l  j = l  

and therefore the p-value for testing H0~ can be computed conveniently using the 
formula 

(2.17) p = l - E  G 1~15:ijRij/s'~j I~lRij/s~j 
i= 1 j = j = 

- E E 
i=1 j = l  \ i = 1  j = l  J 

One can use the solution given in (2.12) and (2.13) to obtain an explicit solution 
for the unbalanced case of the conventional F-test (with the assumption of equal 
variance) with general weights wij. The explicit solution for the conventional 
F-test  can be written as 

(2.18) 
(N-J) ~ s(i) ] 

P= 1--'H(I-1)'(N-J) ~---1)~-E E Enij(Xij --~--~iJ)2 
i=1 3=1 

where 0, ~ i j  and, SE are identical to 0, ~ and, sE (defined in equations (2.12), 
(2.13) and (4.2), respectively) except that the crij values in all expressions equal 1. 

3. Examples 

The objective of this section is to demonstrate the usefulness of the proposed 
exact tests over the classical F-tests when heteroscedasticity is serious. Let us 
consider a problem with a moderate heteroseedasticity. 

Example 1. Consider the fixed effect nested design data set given in Table 1, 
with two factors A and B; A with 2 levels A1, A2 and; B nested within A having 
2 (say B1, B2) and 3 (say B3, B4, B5) levels respectively. 

This is a typical data set with a moderate heteroscedasticity. This data set 
was generated by the following two-factor nested design model with following pop- 
ulation parameter configurations: 0 = 50.0, (21 = 1.0,  a 2  = - - 1 . 0 ,  5 i j  : 0 for all 
ij. Then their cell means are # u  = 51.0, ~t12 = 51.0, ]_t21 : 49.0, #22 = 49.0, 
#23 = 49.0. Cell standard deviations (population) were taken as a n  = 1.0, 
crt2 = 2.2, (~2a = 2.9, a22 = 2.5, G23 = 1.0. 
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Sample means and sample standard deviations. 

Sample Size Mean Standard Deviation 

A1 /31 : rill = 10 .~11 = 51.13 s11 = 1.29 
B 2  : ri12 = 7 .~12 = 49.15 SF2 = 2.49 

A2 Ba : n21 = 6 ~'21 = 50.01 $21 = 2.58 
B 4  : ri22 = 9 -r22 = ,,19.26 S2'2 = 1.19 
/75 : n2a = 8 ~23 = 48.99 s23 = 0.99 

Table 2. p-values with and without the assumption of equal variance. 

Hypothesis Generalized p-vahm Classical p-value 

Ho~ 0.334 0.144 
Ho~ 0.009 0.117 

We analyze this da ta  using both  methods,  tile proposed generalized p-values 
and the classical p-values (with the assumpt ion of equal variance). Recall, while 
tile p-value for testing (Sij = 0 is independent  of the chosen weights, the p-value 
for test ing ai = 0 is dependent  on them, and therefore to test the later hypothesis  
weights proport ional  to the sample sizes rU'ij = 'l~ij/O'2j were used in this analysis. 
Results are given in Table 2. 

It is remarkable that ,  while the generalized p-value obtained for H0~ is nmch 
larger than the classical p-value, the p-value for H0~ is smaller than  the classical 
p-value. According to the actual  popula t ion parameters  for which the da ta  were 
generated, this is exactly what  one would expect fl'om a bet ter  test. Tile classical 
F - t es t  has failed to detect significant differences between a:'s despite the fact tha t  
tile da ta  actually provides sufficient information to do so. Lack of the power of a 
test at this magni tude  is unacceptable  in practical applications. 

Ezample  2. This is a sinmlation s tudy  to compare  classical p-values and 
generalized p-values. The simulation is based on 5000 iterations from popula t ion 
parameter  confgura t ions  and sample sizes based on the previous example, i.e., 
0 = 50.0, a'l = 1.0, c~2 = -1 .0 ,  (Sij = 0 for all i j ,  cq, = 1.0, o-v) = 2.2, c>2i = 2.9, 

0"22 ~-  2 . 5 ,  0"23 = 1.0, n n  = 10, '~z12 = 7, 7~,21 = 6 ,  7Z22 ~-  9, n23 = 8. 
According to the popula t ion parameters  on which the simulation is based, 

larger p-values are preferable for testing H0~ and smaller p-values are preferable 
for test ing H0a. These results clearly show tha t  for both  hypotheses,  even un- 
der modera te  heteroscedasticity,  the tests based on generalized p-values are more 
efficient in detect ing the true state than the classical p-values. 

According to these findings, in si tuations where tile equal variance assumpt ion 
is not reasonable, it is very impor tan t  to carry out these generalized tests to avoid 
misleading conclusions. We also recommend these procedures even if there is no 
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Hypothesis Average Average Percentage of trials with 

generalized classical generalized p-values l e s s  

p-values p-values than classical p-values 

H0~ 0.49 0.45 39% 
Hoa 0.004 0.03 87% 

strong evidence to support  the equal variance assumption. In any case, if one can 
detect  a significant difference using the generalized p-values and cannot detect it 
using the classical p-values, the former conclusion must be used than  the latter, 
since the former conclusion is based on weaker assumptions. 

4. Derivation of tests 

Tsui and Weerahandi (1989) extended the definition of the p-value and extreme 
regions by means of a test variable (a function defined on the sample space), so 
tha t  one can get exact solutions for problems such as the Behrens-Fisher problem, 
where the solution otherwise does not exist. To test H0 : 0 = 00 against H~ : 0 r 00 
based on an observable random vector X ,  they defined a test variable-T(X; z, () 
with the following two properties: 1. The distribution function of T(X; x, (o) and 
robs = T(m; m, () both  do not depend on nuisance parameters 6, where (0 = (00, ~5); 
2. P r ( T ( X ;  a:, () > t) _> P r ( T ( X ;  x, r > t) for all 0 and given any fixed t, a: and 
~. Here ( = (0, ~) is ehe vector of unknown parameters,  f the vector of nuisance 
parameters  and, z the observed value of X. Then, the generalized p-value is 
defined as p = P r ( T ( X ;  x, (0) -> tob.~). F{equirement 1 is imposed to ensure tha t  
the p-value is computable and Requirement 2 ensures tha t  tests based on this 
p-value are unbiased. 

A generalized p-value serve to measure the evidence in favor or against a null 
hypotheses. It is the exact probability of a well defined extreme region of the 
sample space. Furthermore,  this probability increases for any departure from the 
null hypothesis. This concept of generalizing p-values is consistent with the way 
Fisher t reated the problem of significance testing rather than Neyman-Pearson 
t rea tment  of fixed level testing. 

First let us derive the test for Hoe given in (2.6) and (2.7). Define the stan- 
dardized error sum of squares SE and standardized error sum of squares Se a s :  

(4.1) 

(4.2) 

- 2 2 '~ 
S6(O ' l l ,G12 , . . . ,CrT , j ( I ) )  

I .J( n - )2  i i j _Ycu  , 

i=1 j = l  k/ i=1 
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I J(i) nia 1 I J(i) 

i=1 j = l  k= l  z3 i---=1 j = l  

= }-~. 3-~. 2 2 
?~'ij S i j / O ' i j .  

Since nijS~j/0-~j has a chi-squared distr ibution with TI, ij - -  1 degrees of freedom 

for all i j ,  the s tandardized error sum of squares oOE has a chi-squared distr ibution 
with N - J degrees of freedom. When Hoe is true, it can easily be shown that ,  
056 has an independent  chi-squared distr ibution with J - I degrees of freedom and 
therefore (oOe/(k- 1 ) ) / ( S E / ( N -  k)) has a F-dis t r ibut ion with degrees of freedom 
(J  - I) and (N - J) .  Now define 

B i j  = 

B i J ( i  ) = 

i - 1  N-.,.l(p) ~ .~2 10.2 J 7~ ~2 / 0  -2 
E p = l  Z-~q=l P q ~ p q /  pq q- E q = l  t q ~ z q l  iq 

i - 1  ~- . ,J(p)  2 2 ~-,j  + 1 2 2 
~ v = l  ~ v = l  77.pqSpq/0-pq + ~ q = ~  7~..iv&q/0-iq 

if i =  1 , 2 , . . . , I ;  j = 1,2 . . . .  , J ( i ) -  1 
i V,J(p) 2 2 

Ep----1 .d-~q=l '~ ,pqSpq/O-pq 

E q = l  TtpqSpq /0 -pq  "Jr- 17 . i+1 .1S i+1 ,1 /0 - i+1 ,1  

if i = 1 , 2 , . . . , I - 1 .  

Then it can be shown tha t  the densities of these Bij random variables are beta  
random variables defined in (2.9). Furthermore,  these Bij random variables and 

SE are all independent  random variables. Also notice tha t  nl3 ~ij/~2/o_2ij = SE}~ ~ij for 
all i = 1, 2 , . . . ,  I;  j = 1, 2, . . . ,  J( i) ;  where }]j 's are the product  of beta. random 
variables defined in (2.8). Now define a potential  test variable as 

(4.3) T ( X )  S e ( ~ ' ~ ,  .2 2 2 .2 .2 2 '2 = ( < l ~ l / S n  . . .  ) .  . .  0 - I , . ] ( Z ) ) / g e  , , ., si,d(~)o-z,j(1)/S1,d(1) 

The observed value of T ( X )  is t (x)  = 1. Also notice tha t  the expression in 
the above equation can be wri t ten as Se(0-~t,.. .  , 0 -2 j ( l ) ) / ( SEge (n t l s~ l / }q l , . . . ,  

2 nx,a(I)Sz, j(I) /Yi , j( i))  ). Under the null hypothesis, clearly the distr ibution of 

Se /SE does not depend on any nuisance parameters.  Since I'~ o terms are products  
of beta  random variables, the distr ibution of T ( X )  (under the null hypothesis) 
does not depend on any nuisance parameters.  If the null hypothesis is not true, 
then Se has a noncentral  chi-squared distr ibution and consequently T tends to 
take larger values for deviations from Hoe. Hence, T is a test variable tha t  can be 
employed to test the null hypothesis Hoe and the p-value is given by 

(4.4) p Pr[S~(a~l, 2 2 2 "" ' 0 - I , J < I ) )  ~ 'S6(8110-11/$21' 2 2 ,c,2 . . . .  , Si ,y(l)o-I , j (~)/~, j( i))]  

= Pr[S6 > SE,Se(rZllS21/Yll, 2 �9 . . ,  ? I . I , J ( I ) S I , J ( I ) / Y I , . I ( I ) )  ] 

which can be writ ten in the form of (2.7). The representation (2.6) can be obtained 
from equation (4.4) by replacing Sij variables in terms of chi-squared Rij variables 

and rewriting the probabili ty as an expectat ion with respect to chi-squared S~ 
variable. This completes the proof of (2.6). 
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Now let us consider the derivation of the test given in (2.14). One can show 
that the minimum of 

I .l(i) n,9 

i=1 j = l / c = l  

subject to the constraints }--~j w i j 6 i j  = O, i = 1 . . . .  , I occurs at /} and ~ij given 
in (2.12) and (2.13) respectively. So it can easily be shown that the generalized 
sum of squares S~ given in (2.11) has a chi-squared distribution with degrees of 
fi'eedom (I - 1), and it is independent of the standardized error sum of squares 
SE given in (4.2). Now considering the t e s t  variable given in (4.3) by replacing S~ 
and g~ in the place of Sa and g6 respectively, the rest of the proof follows similarly. 

5. Generalized F-test for three factor nested design 

Consider the three-factor nested design model with factors A, B, and C; A 
with I factor levels; B is nested within A having factor levels J(1), J ( 2 ) , . . . ,  J ( I )  

respectively; C is nested within B having factor levels K ( i , j ) ,  i = 1 , . . . ,  I ;  j = 

1 . . . .  , J ( i ) .  Also suppose a random sample of size 7zij k is available from each level 
of C and Xijk and s~j k be the sample mean and sample standard deviation. Then 
the model can be written as 

(5.1) X i j k m  : 0 -]- ct i -]- ~ i j  -]- ~ijk Jr- Eijkm, 

Eijkm N ( 0 ,  ') 1, 2, ., I; j 1, 2, J(i);  ~ % , . ) ,  i . . . . . . .  , 

k =  1 , 2 , . . . , K ( i , j ) ;  m =  1 . . . . .  n o t . .  

In order to define the model uniquely, let us impose the restriction 

J(i) 

i=1 j=l 
A'(i,j) 

E lt~ij~ijlc = 0 f o r  a l l  i , j .  
k:=l 

for all i, and 

Suppose we are interested in testing the hypothesis H0 : 6ijk  = O. Testing of 
this hypothesis is independent of the chosen weights and when variances are equal 
this can be done using the usual F-test  (Scheffe (1959)). Under heteroscedasticity, 
this hypothesis can be tested using the/)-value 

( 5 . 2 )  p = l - E  G 
i=1 STJ k 

I J ( i )  f ) 2 ) \ - 1  
_ : ijkR j . % k  
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w h e r e  G is t he  cd f  of  c h i - s q u a r e d  d i s t r i b u t i o n  w i t h  de g re e s  of  f r eedo ln  

(Y~ij K ( i , j ) -  }-~i J ( i ) )  a n d  e x p e c t a t i o n  is t a k e n  w i t h  r e s p e c t  to  i n d e p e n d e n t  

R i j k  ~ 3(7~ijk--12 c h i - s q u a r e d  r a n d o m  va r i ab le s .  

T e s t i n g  of  t h e  h y p o t h e s e s  H0 : a i  = 0, for all  i a n d  H0 : /3ij = 0, for al l  i, j 
can  a lso  be  done  in a s i m i l a r  m a n n e r .  

A c k n o w l e d g e m e n t s  

I w o u l d  like to  t h a n k  Dr .  S a m a r a d a s a  W e e r a h a n d i  of  Bel l  C o m m u n i c a t i o n s  

R e s e a r c h  for r e a d i n g  t h e  f irst  draft,  of  t h i s  p a p e r  a n d  m a k i n g  s u g g e s t i o n s  to  i m p r o v e  

t h e  p r e s e n t a t i o n  of  t he  r e su l t s ,  a n d  a lso  t h e  referees  a n d  the  a s s o c i a t e  e d i t o r  for 

t h e i r  v a l u a b l e  c o m m e n t s .  
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