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Abstract. Two-factor fixed-effect unbalanced nested design model without
the assumption of equal error variance is considered. Using the generalized
definition of p-values, exact tests under heteroscedasticity are derived for test-
ing “main effects” of both factors. These generalized F-tests can be utilized in
significance testing or in fixed level testing under the Neyman-Pearson theory.
Two examples are given to illustrate the proposed test and to demonstrate its
advantages over the classical F-test. Extensions of the procedure for three-
factor nested designs are briefly discussed.

Rey words and phrases:  Nested design, unbalanced models, heteroscedastic-
ity, generalized p-values.

1. Introduction

In many statistical applications involving comparison of two normal popula-
tions and ANOVA including nested designs, it is customary to assume that the
underline error terms have equal variances. This assumption is made for mathe-
matical tractability rather than anything else. Althougl, the classical F-test is ro-
bust against a moderate departure from this assuinption, when the problem of het-
eroscedasticity is serious, applying the classical F-test with the assumption of equal
variance can lead to misleading conclusions (IKrutchkoft (1988, 1989)). Krutchkoff
argued that transformations cannot resolve the problem and also showed that in
many cases the Ixruskal-Wallis test is not an alternative solution compared to the
classical F-test, although it is less sensitive to the unequal error variance.

In one-way ANOVA, Krutchkoff (1988) and Weerahandi (1994a. 1994b) pro-
vided interesting examples to demonstrate the repercussions of applying the clas-
sical F-test under serious heteroscedasticity. In particular, this problem can be
very serious when the error variances are negatively correlated with the sample
sizes. Using the generalized definition of the p-values (see Tsui and Weerahandi
(1989)), Weerahandi (1994a) obtained exact unbiased tests for one-way ANOVA
problems under heteroscedasticity.

Ananda and Weerahandi (1994) showed that the equal variance assumption
is even more serious in higher-way models than in one way-models. Furthermore.
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they obtained exact unbiased tests for unbalanced two-way ANOVA problems with
unequal variances.

In this paper, the fixed level nested design model under heteroscedasticity
is considered. In nested design models, it is very reasonable to expect different
variances for different factor levels. For instance, consider the following example.
Suppose a pharmaceutical company or a software product manufacturing company
has two factories, each located in two completely different environments. The
company operates two training schools, one in each factory. Also suppose that the
training school in the first factory uses 2 different training methods and the school
in the second factory uses 3 different training methods. The company is interested
in the effect of school (factor A) and training methods (factor B) in learning. In
this two factor fixed level nested design model, it is very likely that the variances
on learning achievements for the five different training methods are unequal.

As in one-way and two-way ANOVA problems, when heteroscedasticity is
serious, it is likely that the classical F-tests will result in misleading conclusions.
Using the generalized definition of the p-values, the classical F-tests are extended
and exact unbiased tests are obtained for the two factor nested design. These
resulting p-values can also be expressed explicitly. Furthermore, a brief discussion
of the extensions for three factor nested designs follows.

Each of the generalized tests reported in this article is exact in the sense that it
is based on a p-value which is the exact probability of a well defined extreme region
of the sample space. The test is unbiased in the sense that the probability of the
extreme region increases for any departure from the null hypothesis. It should be
emphasized that these assertions are not valid under the Neyman-Pearson fixed
level testing. In fact, under the Neyman-Pearson theory, exact tests based on
the minimal sufficient statistics do not exist for these type of problems. The
generalized F'-tests developed in this paper can be utilized in fixed level testing as
well. Our limited simulation studies have suggested that rejecting a null hypothesis
when the generalized p-value is less than a provides an excellent approximate a
level test. According to our simulation studies, the generalized F-test is readily
size guaranteed for all values of nuisance parameters. In fact, in view of the results
in Robinson (1976) and our simulation studies, it is conjectured that, at least in
the balanced case, this test is readily size guaranteed for all values of nuisance
parameters. However, the proof of such a result is well beyond the scope of this
paper. According to other simulation studies reported in the literature (see, for
instance, Thursby (1992), Weerahandi and Johnson (1992), Zhou and Mathew
(1994)), in many linear models, approximate tests based on generalized p-values
often outperform niore complicated approximate tests available in the literature.

This generalized p-value approach has also been applied in mixed models
(Weerahandi (1991), Zhou and Mathew (1994)) and in regression models
(Weerahandi (1987), Koschat and Weerahandi (1992)). For a complete coverage
and applications of these generalized p-values the reader is referred to Weerahandi
(1994b).
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2. Generalized F-test for two-factor nested designs

Consider a two-factor nested design model with factors A and B; the factor A
with I factor levels and the factor B nested within A having J(1),.J(2),...,J(I)
levels respectively yielding a total J = > J(i) levels of factor B. Then one can
consider the true cell mean of the (i, j) level of factor B, say ;;, as the sum of a
general mean p, an cffect «; of the i-th level of A, and an effect é;; of the (4. j)
level of factor B,

fij = f + «; + 61']'

Suppose a random sample of size n;; is available from (i, 7)-th level of B, i =

e N e ) . - o I J(i)
1.2,..., 0 j=1.2,...,. J(i) giving a total sample size N = 3., 21:1) ni;. Let
Xijg, 0 =1.2,....1y j =12...., J(i): k = 1,2,....n;; represent these random

variables and x;;;. represent their observed (sample) values. Sample mean and the
sample variance of the (7, j)-th treatment are denoted by X;; and S?j, i=1,...,1;
j=1,...,J(i) respectively: that is,

n,J ”,J’
- ) L
"\ij = Z ‘Y,‘J‘A-/n,'j and Sij = Z()(,‘jk - AX,"J') /nij~
k=1 k=1
Their observed sample values are denoted by Z;; and s,ZJ i = 1...., I, j =
1...... J(i) respectivelv. Now consider the statistical model with unequal vari-
ances:
(21) AX—,‘jk:9+(Yj+(s'ij+€ijka

wk~Nw@®~ i=1.2.....1: j=1,2...... J(i): k=12, ny.

In order to have 6. «v;, and 6;; uniquely defined, let us choose the constraints

1 J(i)
(2.2) Z'uiai = 0. Z wijé;; =0
i=1 i=1

. . I J(i
where v; and w;; are nonnegative weights such that )~;_, v; > 0 and Zjil) wij >0
for each i.

Consider testing following hypotheses

(2.3) Hys 16, =0, i=1...I j=1,...,J()

(24) H()QI(YIIQ’Q:"':(U:O

against their natural alternative hypotheses.

First, let us consider testing the hypothesis Hyps. Testing this hypothesis can
be considered as testing “main effects” of factor B which is equivalent to testing
whether the true cell means y;; depend only on i. In the unbalanced case when
variances are equal, it is well known that this hypothesis can be tested using
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the p-value based on the usual F-statistic (see, for instance, Arnold (1981), pp.
100-101):
N J Zz 1ZJ(I - 'T"iv.)g
Zz 12 =1 2:11 (wijp — Tij)?

where H(;_;y (~—) is the cumulative distribution function of the F-distribution
with (J = I) and (N — J) degrees of freedom and z; = ZJ. T/ 20N

(2.5) p=1-Hy_nw-n

2.1 Test for Hys with out the equal variance assumption
When variances are unequal, the hypothesis Hys in (2.3) can be tested on the
basis of the p-value

-1

10 2 p r(10 o 2 0 p

T;

(26) p=1-E{G,_; § § ‘2 D > S;J
i=1 j=1 Sij i=1 \j=1 IJ j=1 i

where Gj_; is the cdf of the chi-squared distribution with (J — I) degrees of
freedom and the expectation is taken with respect to R;; ~ \';’,u_l, i=1,....1,
jg=1..... J(i) independent chi-square random variables. This p-value can also be
written as

(2.7) p=1 —E{H(J—I).(N { (ZZ

i=1 j=1 1J

&) E3)))

where H(;_py (v—y) is the cdf of the F-distribution with (J — I) and (N — J)
degrees of fleedom and the expectation is taken with respect to Yi;, i = 1,.... 1,
j = 1,...,J(i) random variables which are defined in terms of the 1ndependent
beta B;,; random variables as follows:

,
I_]}'J

Y11 = BB ByyyBa1Bax - Boyy - BriBra - Broyny-
Yio=(1—=B11)Bia--BijyBa1Baa - Boyoy - BriBra- By -
Yis = (1 - B12)Bis- - Byj)Ba1Baa - Boyay - BriBra- By -

Yis0) = (1= By yy-1)BryyBaiBaz - Boyzy - BniBra - B jy-1

Yoy = (1= Bi)Ba1Bas - Bayzy - BriBra- - Byroyy-

Yigy-1= (1= B yuy-2)Bru-1
Yy == B yy-1)
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where independent B;; beta random variables are defined as:

i—1 J)

J
Bij~Beta | > > (nm = 1)/2+ ) (mim = 1)/2. (i 01— 1)/2
=1 m=1 m=1
if i=1,2. .1, j=1,2,...,J6)—1
(2.9) —_—
Bjj ~ Beta Z Z (TL[m — 1)/2, ('n"i—i-l.l — 1)/2
=1 m=1
if i=1,2,...,I1-1, and j = J(i).

The p-value serves to measure the evidence in favor of Hys. Moreover, it is an exact
probability of a well defined extreme region of the sample space and it increases
for any departure from the null hypothesis. Practitioners who prefer to take the
Neyman-Pearson approach and perform tests at a nominal level o can also find an
excellent approximate test by rejecting the null hypothesis when the generalized
p-value is less than a.

The derivation of this test is based on the F-test when o;; values are known
and the extended definition of the p-values given in Tsui and Weerahandi (1989),
and therefore this test is referred to as the generalized F-test for testing Hgs. The
formal derivation of this test is given in Section 4.

This p-value can easily be computed using Monte Carlo simulations or nu-
merical integrations. While it is easy to use Monte Carlo simulations on the first
chi-squared representation numerical integration work better for the later repre-
sentation. Also for a problem with large number of factor levels, the Monte Carlo
simulation method is computationally more efficient. However, the later represen-
tation is necessary to show the unbiasedness property of this test.

In Monte Carlo simulation, evaluating the expected value in (2.7) is done
by simulating a large number of data sets from the beta distributions defined in
(2.9). Each of these data sets consist of J—1 random numbers, exactly one random
number from each of the beta random variables defined in (2.9). After transforming
these random numbers to Y;; random numbers using the transformation in (2.8},
the expression appearing in the expected value must be evaluated for each data
set and then the expected value can be estimated by using their sample mean.
The accuracy of this approximation can be assessed by the Monte Carlo variance
of the estimate oj /L, where L is the number of simulations used and oy, is the
sample (simulated) standard deviation of H values.

Now let us consider testing the hypothesis Hy, given in (2.4). Unlike the
previous hypothesis, this hypothesis depends on the weights chosen for w;;, so
that these weights must be chosen prior to choosing the sampling scheme. In the
case of equal variances, it is well known that this hypothesis can be tested using
the usual F-test and, in particular with the weights w;; = n;; this F-statistic can
be written in a closed-form formula {(cf. Arnold (1981), pp. 101-102) which yields
the p-value

(N-DN)S_ ni (32 -z.)?

i

I J(i ni, . =
(I—=1)> i ZJLJ 2oy (@ije — &ij)?

(2.10) p=1-Hy_nn-u
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In the case of general weights w;; and proportional weights w;; = ny; /Ufj in
particular, the generalized F-tests with out the assumption of equal variances are
derived and the resulting p-values are expressed explicitly.

2.2 Generalized F-test for Hyoo with general weights w;;
Consider the testing problem of Hy, with the constraint given in (2.1) with a
given set of weights w;;. Let us define the generalized sum of squares S,

7 J)
G p Nii, & ~ - .
(211) Sa(o-izl,ai?z, PR ‘O--]?,](])) = ZZ O,—‘ZJ(‘XL] - 6i_j)2
i=1j=1 1
where
I J( J( = Jii) -
(2.12) G- i1 Zjif[wu(zkii wir X))/ (S0 wio? i)
. - 1 J(i J(i SO
2zt Zj:z [wij(z;.-(:i wik)/( ,\(:q wi o2 /nix))
and
2 J (i) % A s (i)
N _ . w; ;o2 o rLL)‘.XA‘ _9 AR
(2.13) by = Xy — 6= 24 i (k=1 Wik Xak — 03250y wik)

16
g S (w2 o2 /na)

forall i=1,2,...,I; j=1,2,...,J(i).

When variances are unequal, the hypothesis Hy, can be tested using the p-
value

. 2 2 n 52
= [ T11811 12813 LI 1.J(1)
(2.14) p=1-FEcGi_1 |5 . ey
“\ Ru ' Rn Ry )

where ;1 is the cdf of the chi-squared distribution with (/—1) degrees of freedom
and expectation is taken with respect to independent R;; ~ Xi,,i,—1 variables.
With respect to Y;; variables, this can be written as

(215) pP= 1— E{H(I—l),(N—.])

2
(N — J)g n1183; ni2si, Ry ST 0
(I-1)°° o Y U Y

Here H is the cdf of F-distribution with degrees of freedom (I — 1} and (N — J).
The sketch of proof is also given in Section 4.

Now consider a special set of weights w;; = n;;/ a'fj. In equal variance set up,
these weights reduce to w;; = n;; which is an attractive set of weights due to the
simple formula of the F-statistic (see Arnold (1981), p. 102). Also, in the balanced
case, using the weights w;; = n;;(= n) is same as using the weights w;; = 1, which
implies that every nested factor is equally important. With these set of weights
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Wi; = Ny /U”, the generalized sum of squares S, given in (2.11) can be written
more compactly as

J(0) -t

2
I J (i)
(2.16) Sk = Z Zninij/U?j Znij/o-?j
i=1 j=1

i=1
. 2 -1
I J() I J)
% 2
E E ni; Xij/oy; E E:nu/a,]
i=1 j=1 i=1j=1

and therefore the p-value for testing Ho, can be computed conveniently using the

formula
I J(3) 2 /J(1) -1
(2.17) pzl—E{G Z((Ziinij/s?j> (ZRH/S?J) )
i=1 j=1 j=
1 J() 2 /1 J@) -1
(e ) )

i=1j=1 i=1j=1

One can use the solution given in (2.12) and (2.13) to obtain an explicit solution
for the unbalanced case of the conventional F-test (with the assumption of equal
variance) with general weights w;;. The explicit solution for the conventional
F-test can be written as

%»)
0\))

2
= 8i;)

J(i
N-J) ¢
(218) —l—HI 1, (N=J) (( ZZ iy .’L‘U -

where é, 5ij and, sg are identical to é, 6 and, g (defined in equations (2.12),
(2.13) and (4.2), respectively) except that the o;; values in all expressions equal 1.

3. Examples

The objective of this section is to demonstrate the usefulness of the proposed
exact tests over the classical F-tests when heteroscedasticity is serious. Let us
consider a problem with a moderate heteroscedasticity.

Ezample 1. Consider the fixed effect nested design data set given in Table 1,
with two factors A and B; A with 2 levels A;, A; and; B nested within A having
2 (say B, B2) and 3 (say Bs, B4, Bs) levels respectively.

This is a typical data set with a moderate heteroscedasticity. This data set
was generated by the following two-factor nested design model with following pop-

ulation parameter configurations: 6 = 50.0, a; = 1.0, ap = —1.0, é;; = 0 for all
7. Then their cell means are p1; = 51.0, p12 = 51.0, por = 49.0, pg2 = 49.0,
paz = 49.0. Cell standard deviations (population) were taken as o117 = 1.0,

g2 = 2.2, Ja1 = 2.9, 029 = 2.5, g93 = 1.0.
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Table 1. Sample means and sample standard deviations.

Sample Size Mean Standard Deviation
Ay By ny; = 10 11 = 5Hl.13 s11 = 1.29
By ni2 =7 T2 = 49.15 s12 = 2.49
Az Bs: na; =6 To1 = 50.01 s21 = 2.58
By : ngp =9 Too = 49.26 s220 = 1.19
Bs : no3 =8 To3 = 48.99 s23 = 0.99

Table 2. p-values with and without the assumption of equal variance.

Hypothesis Genecralized p-value Classical p-value
Hos 0.334 0.144
Hoa 0.009 0.117

We analyze this data using both methods, the proposed generalized p-values
and the classical p-values (with the assumption of equal variance). Recall, while
the p-value for testing 6;; = 0 is independent of the chosen weights, the p-value
for testing o; = 0 is dependent on them, and therefore to test the later hypothesis
weights proportional to the sample sizes w;; = 'n,-j/a?j were used in this analysis.
Results are given in Table 2.

It is remarkable that, while the generalized p-value obtained for Hys is much
larger than the classical p-value, the p-value for Hg, is smaller than the classical
p-value. According to the actual population parameters for which the data were
generated, this is exactly what one would expect from a better test. The classical
F-test has failed to detect significant differences between a’s despite the fact that
the data actually provides sufficient information to do so. Lack of the power of a
test at this magnitude is unacceptable in practical applications.

Ezample 2. This is a simulation study to compare classical p-values and
generalized p-values. The simulation is based on 5000 iterations from population
parameter configurations and sample sizes based on the previous example, i.e.,
6= 500, ) = 10, g = —1.0, 61‘]' = 0 for all L], o11 = 10, g12 = 22, On] = 29,
T2 = 2.5, 093 — 1.0, ny = 10, T2 = 77 Nop = 6, TNoy = 9, Noz = 8.

According to the population parameters on which the simulation is based,
larger p-values are preferable for testing Hps and smaller p-values are preferable
for testing Hpo. These results clearly show that for both hypotheses, even un-
der moderate heteroscedasticity, the tests based on generalized p-values are more
efficient in detecting the true state than the classical p-values.

According to these findings, in situations where the equal variance assumption
is not reasonable, it is very important to carry out these generalized tests to avoid
misleading conclusions. We also recommend these procedures even if there is no
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Table 3. Simulation results based on 5000 iterations.

Hypothesis Average Average Percentage of trials with
generalized classical generalized p-values less
p-values p-values than classical p-values

Hys 0.49 0.45 39%
Hoya 0.004 0.03 87%

strong evidence to support the equal variance assumption. In any case, if one can
detect a significant difference using the generalized p-values and cannot detect it
using the classical p-values, the former conclusion must be used than the latter,
since the former conclusion is based on weaker assumptions.

4. Derivation of tests

Tsui and Weerahandi (1989) extended the definition of the p-value and extreme
regions by means of a test variable (a function defined on the sample space), so
that one can get exact solutions for problems such as the Behrens-Fisher problem,
where the solution otherwise does not exist. To test Hy : 8 = 8y against H; : 0 # 8,
based on an observable random vector X, they defined a test variable-T(X; . ()
with the following two properties: 1. The distribution function of T(X; z, () and
tors = T(z; x, ) both do not depend on nuisance parameters 8, where {y = (6, 6);
2. Pr(T(X;z,0) >t) > Pr(T(X;z,(p) > t) for all § and given any fixed ¢, & and
6. Here ¢ = (0,96) is the vector of unknown parameters, § the vector of nuisance
parameters and, = the observed value of X. Then, the generalized p-value is
defined as p = Pr(T(X; z, (o) > toss). Requirement 1 is imposed to ensure that
the p-value is computable and Requirement 2 ensures that tests based on this
p-value are unbiased.

A generalized p-value serve to measure the evidence in favor or against a null
hypotheses. It is the exact probability of a well defined extreme region of the
sample space. Furthermore, this probability increases for any departure from the
null hypothesis. This concept of generalizing p-values is consistent with the way
Fisher treated the problem of significance testing rather than Neyman-Pearson
treatment of fixed level testing.

First let us derive the test for Hps given in (2.6) and (2.7). Define the stan-
dardized error sum of squares Sg and standardized error sum of squares Sy as:

/ 502 2 2
(4.1) 56(011s012‘~~-‘71,.1(1))
(Xs) I U 2 a0 . -1
n (Xiy)® iy X i
‘ZZ B NI =3 >3
i=1 =1 i=1 =1 % = %0

(4.2) SE(Uthfz»”-va,Ju))
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J(i) ngj I J(@)

=22 %(Xz:jk—)_(ij)QZZZ"US’ZJ’/U?J"

i=1 j=1k=1 ¢ i=1 j=1

S

Since n.l-jS?j / U?j has a chi-squared distribution with n;; — 1 degrees of freedom
for all 77, the standardized error sum of squares Sg has a chi-squared distribution
with V — J degrees of freedom. When Hys is true, it can easily be shown that,
Ss has an independent chi-squared distribution with J — I degrees of freedom and
therefore (Ss/(k —1))/(Sg/(N —k)) has a F-distribution with degrees of freedom
(J—=1I)and (N — J). Now define

i-1 <.J(p) 2 2 J Q2 /a2
B = p=1 q=1 anSpq/qu + Zq:l nlqsiq/giq
LV Zi—l J(p) n 52 /0_2 +ZJ+1 .y 52/ 2
p=1 22q=1 pg=pq/Tpq q=1 g iq/ Tiq
if ¢=1,2,...,; 3=1,2,...,J(i)~1
¢ J(p) 2 7.2
Zp:l Zq.—_l n”Pquq/qu
i J 2 /42 _ 2 2
Zp:l Zq:l n’Pquq/az)q + 77“1‘+1~1‘5"i—+—1,1/0i+1,1

if i=1,2,...,1~-1.

By =

Then it can be shown that the densities of these B;; random variables are beta
random variables defined in (2.9). Furthermore, these B;; random variables and
Sg are all independent random variables. Also notice that n;; S?J/ JI-QJ- =S Y, for
alli=1,2,...,1: j = 1,2,...,J(i); where Y};’s are the product of beta random
variables defined in (2.8). Now define a potential test variable as

(43) T(X)= 5‘6(0%1, - ~vU?.J(!))/gé(sﬂff%/s%l» R S%J(J)U?..JU)/S}Z,J(I))-

The observed value of T(X) is t(z) = 1. Also notice that the expression in
the above equation can be written as Ss(o?,,. .. ,U%JU))/(SEéé(n,llsfl/)’ll, e
n],J(])-SgyJ(I)/YI‘J([))). Under the null hypothesis, clearly the distribution of

5’5/ Sg does not depend on any nuisance parameters. Since Y;; terms are products
of beta random variables, the distribution of T(X) (under the null hypothesis)
does not depend on any nuisance parameters. If the null hypothesis is not true,
then Ss; has a noncentral chi-squared distribution and consequently T' tends to
take larger values for deviations from Hgs. Hence, T is a test variable that can be
employed to test the null hypothesis Hys and the p-value is given by

(44) p="Pr[Ss(oty,...,07 51)) = 3s(s51051 /S - ST oty / St )]

= Pr[Ss > Sds(niist /Y, ... a8t/ Yramn))

which can be written in the form of (2.7). The representation (2.6) can be obtained
from equation (4.4) by replacing S;; variables in terms of chi-squared R;; variables
and rewriting the probability as an expectation with respect to chi-squared S
variable. This completes the proof of (2.6).
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Now let us consider the derivation of the test given in (2.14). One can show
that the minimum of

I J@) n,
J 1 2
§ 3 T?_/A _6ij)
£ L o
i=1j=1k=1 "1
subject to the constraints Zj wij0;; = 0,4 = 1,...,1 occurs at § and 6;; given

in (2.12) and (2.13) respectively. So it can easily be shown that the generalized
sum of squares S, given in (2.11) has a chi-squared distribution with degrees of
freedom (I — 1), and it is independent of the standardized error sum of squares
Sg given in (4.2). Now considering the test variable given in (4.3) by replacing S
and §, in the place of 5’5 and 55 respectively, the rest of the proof follows similarly.

5. Generalized F-test for three factor nested design

Consider the three-factor nested design model with factors A, B, and C; A
with I factor levels; B is nested within A having factor levels J(1), J(2),...,J(I)
respectively; C' is nested within B having factor levels K(i,7), t = 1,...,[; j =
L,...,J(@). Also suppose a random sample of size n;;; is available from each level
of C and Z;; and s ik be the sample mean and sample standard deviation. Then
the model can be w11tten as

(5.1) Xijkm = 0 + a; + Bij + Oijk + €ijkm
€ijkm ~ N (0, O'ij) 1=1,2,...,I; y=1,2,...,J();
E=12,...,K(@J): m=1... 1.

In order to define the model uniquely, let us impose the restriction

!
Zu,:m =0, Z'vijﬂij =0 forall i, and

K(i,j)
Z wijéijk =0 for all Z,]
k=1

Suppose we are interested in testing the hypothesis Hy : 6;;, = 0. Testing of
this hypothesis is independent of the chosen weights and when variances are equal

this can be done using the usual F-test (Scheffe (1959)). Under heteroscedasticity,
this hypothesis can be tested using the p-value

T JWKGD 2 b
ij

Yy e

(5.2) p=1- {

i=1 j=1 k=1 Uk
IJ() K3 2 /K (i) -1
Sy (3t (5 B )
- 2.
i=1 j=1 \ k=1 Sijk k=1 "k
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where (G is the cdf of chi-squared distribution with degrees of freedom
(22 B (i,7) = >2; J(i)) and expectation is taken with respect to independent
Riji ~ )(727” .—1 Chi-squared random variables.

Testing of the hypotheses Hy : a; = 0, for all i and Hy : 3;; = 0, for all 4, j
can also be done in a similar manner.
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