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Abstract. A random variable X is said to have a symmetric distribution
(about 0) if and only if X and —X are identically distributed. By considering
various types of partial orderings between the distributions of X and —X, one
obtains various notions of skewness or one-sided bias. In this paper we study
likelihood ratio tests for testing the symmetry of a discrete distribution about
zero against the alternatives, (i) X is stochastically greater than —.X; and (ii)
pr(X = j) > pr(X = —j) for all j > 0. In the process, we obtain maximum
likelihood estimators of the distribution function under the above alternatives.
The asymptotic null distributions of the test statistics have been obtained and
are of the chi-bar square type. A simulation study was performed to compare
the powers of these tests with other tests.

Key words and phrases: Chi-bar square distribution, chi square test for good-
ness of fit, isotonic regression, positive biasedness, skewness, stochastic order-
ing.

1. Introduction

A common assumption underlying many statistical analyses is that the under-
lying distribution is symmetric. The validity of some commonly used procedures
depends heavily upon this assumption. This is particularly true of several non-
parametric procedures, such as the Wilcoxon signed rank test. Moreover, it is well
known that many statistical procedures based on normal theory are robust to the
normality assumption provided that the underlying distribution is symmetric. For
example, in an intensive simulation study Chaffin and Rhiel (1993) have confirmed
that the one sample t-test is approximately valid even for non-normal distributions
provided they are symmetric. However, this approximation may fail very badly if
the underlying distribution is skewed.

Testing for the symmetry of a distribution about a specified or unspecified
point 6 has always been an important topic of interest in statistics. In this paper
we shall focus on the case when the point of symmetry 6 is specified.
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A large number of nonparametric tests arc available in the literature for this
problem against both one-sided and two-sided alternatives. However, most of
the research on one-sided alternatives has focused on developing nonparametric
tests for possible changes in the location of a symmetric distribution. Many of
the suggested tests for symmetry can be described as variations of either sign
tests. Wilcoxon tests, Komogorov-Smirnov tests or Cramer-von Mises tests. Since
symmetry (about 0) is equivalent to F'(t—)+ F(—t) = 1Vt, many tests are phrased
in terms of the empirical CDF and take advantage of the wealth of knowledge
concerning the empirical CDF. A good reference for this and related problems is
Chapter 22 of Shorack and Wellner (1986).

It is our point that if symmetry is to be rejected, then it is important to know
the distributional structure that led to its rejection. Since .X has a symmetric
distribution iff X and —X have the same distribution, one can consider different
one-sided alternatives to symmetry by considering various types of stochastic or-
dering between the random variables X and —X. Certainly the most common and
well understood notion of positive bias (skewness to the right) would be to have
X stochastically greater than —X. This would imply that E(g(X)) > E(g(—X))
for all nondecreasing functions g.

In this paper we discuss this problem when the data is discrete or grouped
and assume without loss of generality that 8 = 0. We let X take on the (2k + 1)
values —k, —(k —1),...,—1,0,1.....(k — 1),k with corresponding probabilities
Pk Do (k1) » P_1-Po-P1s- - Pr—1.Pr although any finite set which equals its
negative would work as well. We shall let p denote the 2k + 1 dimensional vector
of p;’s.

Assuine that we have a random sample of size n from our population and let
n; be the number of times that X takes the value i for i = 0, +1, ..., £k so that
Zf:_k n; = n. Based on this data we consider the problemn of testing the null
hypothesis of symmetry about 0

(1.1) Hy:pj=p_ji Jj=12..... k

against the alternatives H; — Hy and Hs; — Hy where

k k

(1.2) Ho:Y pi2Y poi =12k
i=j 1=j

and

(1.3) Hy:p; >2p_j, j=12...., k.

The criteria of positive bias as represented by H; and Hs have been discussed
by Yanagimoto and Sibuya (1972). If (1.2) holds, we say that X is positively
biased according to criterion By (type I bias) and if (1.3) holds, we say that X is
positively biased according to criterion Bs (type 11 bias).

In the next section we obtain the maximum likelihood estimators (MLE’s)
of p under the hypotheses Hy and H; and theu use these estimators to obtain
the likelihood ratio statistic for testing Hg against H, — Hy. The asymptotic
null distribution of this test statistic is obtained and shown to be of the chi-bar
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square type. The corresponding problem of testing Hy against Hy — Hy is treated
in Section 3. In Section 4, we show that the maximum likelihood estimator of
F, the distribution function of X under Hj, as obtained in Section 2, is strongly
consistent when considered in the class of all univariate distributions. Surprisingly,
the maximum likelihood estimator of F' under Hy obtained in Section 3 is not
consistent when considered in the general setting of all univariate distributions.
In the last section we perform a short Monte Carlo study to compare the powers of
the various tests. For this purpose, we focus on the shifted binomial distribution
for which the uniformly most powerful (UMP) test for testing symmetry against
either H; — Hy or Hy — Hy is to reject the null hypothesis when the unrestricted
MLE of the parameter, p, is too large. We use this UMP test as a benchmark and
show that our nonparametric tests are quite powerful.

2. Testing Hy against H, — Hy

First we obtain the maximum likelihood estimators (MLE) of the vector p
under both Hy and H;. The likelihood function is proportional to

k
(2.1) Lip | n)=pp° [ [0 )
=1

The unrestricted MLE of p; is, of course, p;, = n;/n, i = 0,+1,...,+k and the
MLE of p under Hy is given by
(2.2) P = = (n_y+n)/2m. =12,k
and
]3(()0.) = Pg = np/n.

Under H,, the constraints on the vector p are

k k
Sz v i=1l2. 0k
i=J i=j

These constraints are equivalent to

k k
(2.3) >pi>d poi j=-ko—k+1,.. 0k
i=j i=j

which we write as p > p’, using the notation of Robertson, Wright and Dykstra
(1988) (to be written RWD henceforth). Here p’ denotes the reversed (2k + 1)
dimensional vector (pr, pr—1,-.-.P—x)’, (note that “prime” here means “reversed”
and not vector transposition).

Now, maximizing the likelihood product, L(p | n) under H, is equivalent to
maximizing

k k
(2.4) Lplny= [ p" [] "%
i=—k i=—k
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subject to (2.3). The two-sample problem has been studied by Brunk et al. (1966)
and Barlow and Brunk (1972) and its solution can be used here (throughout this
paper, we assume multiplication and division of vectors is done coordinate-wise).

THEOREM 2.1. Ifp;, >0 fori= —k,...,k then the MLE of p subject to the
restriction, Hy, is given by

. N p+p
(2.5) P(l)szﬁ( % II)

where Ey(x | I) denotes the least squares projection with weights w of the vector
x onto the cone I of nondecreasing vectors.

PROOF. Since

sup L*(p | n) < sup L(p | n)L(q | n')
p>p’ p>q

and the solution to the right side is given by

and

where A is the cone of nonincreasing vectors (RWP, Theorem 5.4.4), the result
directly follows by verifying that ¢ = p(1)’".

There are several algorithms available in the literature for computing E,, (x |
I). The easiest to implement is the pool adjacent violators algorithm (PAVA) as
discussed in Section 1.2 of RWD.

Using (2.2) and (2.5), we can obtain the MLE’s of the distribution function
of X under the restrictions imposed by Hg and H;. It easily follows that the
likelihood ratio test for testing Hy against Hy — Hy rejects for sufficiently large
values of

k
(2.6) T, =2 Z n,-{ln[}gl) - 1111350)}.
i=—k

The asymptotic null distribution of Ty
Expanding In 137(-1) and In ;1550) about p; with a second degree remainder term
and using the fact that S°F__ p!" = 8 59 =1

ie— 1 P , 1t follows that under Hy,
(assuming p; > 0, V;)

k
To= Y o - )2 = 8,776 - pi)?)
i=—k
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where «; and f3; come from the Taylor’s expansion and converge almost surely to
pi- Moreover, since p{9 — p = (p’ — p)/2 and pV) — p = ﬁEﬁ(% | I}, we can
write )

k
1 . v
T = (Z) D> Bilay B = B B | 1)

where ¥ = /n(p’ — p)/p. By the multinomial central limit theorem the random
vector, /n(p — p) converges in law to p(U — UE) where U_, U_ks1,...,.Up are
independent normal random variables with mean zero and respective variances
p:};, s ,p,:l, U= Zf:_kp,-Ui, and E = (1,1,...,1)7.

Since we are assuming that Hy is true we can write

4 Villb =) - (b~ p)
p
. p'(U-UE) - p(U - UE)
' p
(U -U)=V.

Thus, by the continuity of E5(9 | I) in p and 9, we have that

Av
c (1 9 2
.1 T4 () X n2 - By 0
Note that Vo = 0 and V_, = —V;. It follows from this, the assumption that

pi = p—; under Hp, and the maxmin formula for E£,(V | I) in Section 1.4 of RWD
that E,(V | I)g =0anhd E,(V | I)_; = —E,(V | I),.

The isotonic regression E,(V | I) can be computed as follows. Let V, and p,
be the restrictions of V and p to {1,2,..., k} and let J = {x = (21, 20,...,24) :
0<a <ay <--- <} Compute the isotonic regression, E, (V, | J). Then

E, (V. ]J)i, 1=1,2,..., k
(2.8) E(V|I),=1<0, =0
—Ep,_(Vr |J)_,'. i:—]\7,...,—1.
Thus
k )
£ 72 21 (Pi
(2.9) 153V - B (Ve | IR ()

I
—

Vi — Ep (V, | J)i)? (&)

|
M"

i
_

by (1.3.7) of RWD. Note that V1, Vs, ...,V are independent and that V; is normal
with mean zero and variance (2/p;). It follows from an easy generalization of
Theorem 2.3.1 in RWD that this limiting random variable has a chi-bar square
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distribution. This distribution depends on the cone J and the unknown values
of pg, p1, P2, ..., Dk through its level probabilities. The least favorable distribution
can be found using the theory derived in Section 3.4 of RWD. These results are
summarized in the following theorem.

THEOREM 2.2. If p satisfies Hy and if p; > 0, t = —k,...,k, then for any
real number t

k

(2.10) lim pr[T} >t] = Zp(f,k,pr)pr[xi_e > ¢

where p(0, k, p,) is the probability that E, (V.. | J) is identically zero and p(¢, k, p;)
for€=1,2,... k is the probability that E, (V. | J) has ¢ distinct non-zero values.
Furthermore,

1 1
(2.11) sup lim pr(Ty > f = 5 prlxi_y 2 6 + 5 prlid 2 1]

p " p

A test based upon the least favorable distribution given above is likely to be
conservative (depending upon the true values of p;,ps,...,px). There is consid-
erable evidence that if the values of p1,p2,...,pr do not vary too much (say the
ratio of the largest p; to the smallest p; is less than 3) then a test based upon
the equal weights (p; = p2 = - -+ = pg) critical value will have a significance level
reasonably close to the reported value. These equal weights level probabilities are
discussed in Section 3.3 of RWD and are tabled in A.12 of RWD. (When using
these tables, the value of k should be increased by 1 to account for 0 as a lower
bound. It is like having k& 4+ 1 normal variables indexed by 0,1,2,...,k with the
weight associated with the variable indexed by 0 being oc.)

If we have the additional information that p; > ps > -+ > px then the least
favorable distribution is given by

(2.12) i (E) (%)kpr[x? > 1]

£=0

(see Lee et al. (1993)). A critical value chosen from this distribution would result
in a much less conservative test than if we choose our critical value from the least
favorable distribution (2.11).

Another alternative is to approximate pr [Ty > t] by Z?:o p(,k, pO) -
pr(x?_, > t] where 9 is as given by (2.2). This expression has the same asymp-
totic distribution as 77 under Hy and provides a good approximation. For k < 4,
the level probabilities in this approximation can be computed using the formulas in
Section 2.4 of RWD, again letting the weight associated with the variable indexed
by 0 go to infinity. For & > 4 no closed form expressions for these level proba-
bilities exist. One could approximate them using Monte-Carlo methods. Another
approach would be to use a pattern approximation such as the one developed in



LRT FOR SYMMETRY 725

Section 3.4 of RWD. This would use approximate level probabilities which are
obtained by interpolating between the equal weights level probabilities mentioned
above and level probabilities obtained by letting the weights associated with the
large p; go to infinity. These limiting level probabilities would have the generating
function

1
s+71—-1 -s+B -1
Poo(s):( I ) 2 B

where I is the number of large weights and B is the number of small weights having
indices larger than that of the largest index corresponding to a large weight. The
interpolation uses the % 3 power of the ratio of the average of the small weights to
the average of the large weights. Pillers et al. (1984) provide a Fortran program
for computing these level probabilities.

3. Testing Hy against H,

Recall that the likelihood function is proportional to

L(p|n)=py le Pl

To find the MLE’s of p under Hy and H,, we reparametrize as follows. Let

(3.1) 0 =pi/(p-i +p:) and ;= (pi+p-i), 1=12,....k
so that
(3.2) pi:Gicpi and p_iztpi(l—t’?i), 1= 1,2,...,]6.

The likelihood function in terms of the new parameters is proportional to

(3.3) NCRARD [H g (1—6 } {ﬁ o (1 - i%) n} .

i=]

The MLE’s under Hy are

N 1 . n; +n_; .
(3.4) 0 =~ and $V =T 20 i=1,2,.. .k
2 n
Under the H5 alternative, 6; > %, 1=1,2,...,k and there is no restriction on

the values of the y;’s. Thus, the MLE of p is the same as the estimate under Hp.
The MLE of 8 under H, is given by

i(2) ni 1
(3.5) 6! <ni - n_) :

where a V b (a A b) denotes the maximum (minimum) of a and b.
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Using (3.4) and (3.5), the MLE of p under Hs is given in the following theorem.

THEOREM 3.1.

The MLE of p subject to Hy is given by

(Bt () s
n Tlri + n’—i 2
ni +n_; M 1 '
T s VN
( n ) (”i + N 2> ! ( |

125

3
n

The asymptotic null distribution of T,
The negative of twice the log of the likelihood ratio statistic for testing Hp

against Hy

k
Ty =2 Z {n,i {ln 9,52) —In
i=1

— Hj is given by

(3)}+n-i{ma -6 -m(3) it

By following the techniques used in Section 2, it can be shown that

(3.7)

where Z7,25,...,

(Z: v 0)?

-

il
—

C
T2 —

13

Z, are independent standard normal variables. By Theorem

5.3.1 of RWD the following result follows.

THEOREM 3.2.

(3.8)

for all real t (\3

Under Hy

k k
nh—I»];opI [Ty > t] :Z< > < > pr[x; > {]

=0

=0).

A nice feature of this test is that its null, asymptotic distribution is free of p.

4. Consistency of the MLE under type | bias

Strong consistency of the maximum likelihood estimators obtained under the
constraints of type I bias (as described in Section 1) will guarantee that the test

developed in Section 2 will be a consistent test.

Actually, a more interesting

question is whether the restricted maximum likelihood estimator of the CDF will
be consistent when the type I bias coustraint is generalized to the class of all

univariate distributions by the restriction F(z—

)+ F(—x) < 1, Vz. We take our

definition of the maximum likelihood estimator to be the generalized version of
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Kiefer and Wolfowitz (1956) which effectively allows probability to only be placed
on observation points (and hence reduces to the discrete case).

We first prove a stronger theorem of independent interest; namely that the
maximum likelihood estimates of the CDF’s under the constraints of stochastic
order and independent samples are strongly consistent when the underlying dis-
tributions satisfy the stochastic ordering constraint. This is not at all obvious
since Rojo and Sameniego (1991) have shown that maximum likelihood estimates
under the more stringent condition of uniform stochastic ordering need not even
be weakly consistent. Moreover, maximum likelihood estimates under the imposed
constraints of type Il bias also need not be consistent in the class of all univari-
ate distributions. Our proof is a refinement of one given by Brunk et al. (1966).
Note that strong consistency actually holds without the condition of independent
samples for these estimators.

To set notation, we assume that X;,..., X, is a random sample from a distri-
bution with CDF F, that Y7,...,Y, is a second random sample from a distribution
with CDF G and that F(z) < G(z) for all . We let F,, indicate the usual em-
pirical CDF from the first sample, and let Fm!n denote the (generalized) MLE for
the first population CDF under the constraints of the given stochastic ordering
and independent samples. In addition, we let § = {s1,..., st} denote the distinct
values for the F' sample and let m;(n;) denote the number of F/(G) observations
at s;. The theorem we shall prove is stated as follows:

THEOREM 4.1. The constrained MLE me converges uniformly to F' a.s. as
m — oo if F(x) < G(x) for all x.

PrOOF. Since the generalized MLE of F only puts probability on values in
the set S (and possibly at observation points from the second sample that are
larger than all elements of ), we can use a variant of Theorem 5.4.4 of RWD to

state
- - m; m m+n
Frnlt) = Enlt) = 3 H{Em Km+n) m IIJV—I}

i;s; <t

for m sufficiently large and 0 < F(t) < 1. It then follows that F,, ,,(t) < F,.(t) by
the monotonicity of the least squares projection. Thus for m sufficiently large,

Fm.n(t) - Fm(t) = Z mi ( m )Em {mﬁ—n _m+n ”]

A m \m+n m m ;
is; <t
n n/n—m/m
= E mEm | ——— |1
n+m m ,
is, <t 4

r—1
n
- n+m {Z Z i

Jj=la;_1<s;<a;

(Gole;) = Gula;_1)) — (Fnlay) - F‘m<aj-1)>}

Zaj_ 1<si<a; m;
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Zar_1<sl-5t K
Zar—1<SiS(lr m;

: [(én(ar) — Gnlar—1)) — (Fm (ar) - Fm(ar—l))]}

+

where a; < az < --- < a, are upper endpoints (ag = —o0) of ievel sets (see RWD,
Section 1.4) and a,_; <t < a,.
Labeling the two factors of the last term as R and @, we can write
Emn(t) = Fn(t) = ——[Gn(ar-1) — Fm(a,_1) + BQ]., (0<R<1)
n+m

nlill[én(a,._l) - Fm(ar_l), Gnlar) — Fr(ay)]

v

n+m

(if @ < 0, replace R by 1, if @ > 0, replace R by 0). If m and n — oo, then
Gn — Gand F,, » F uniformly (a.s.) and hence the limit of the right side is
nonnegative (a.s.). The result now easily follows by noting that F,(t) — F(t)
(a.s.). Note that if m — oo but n remains finite, we still have strong consistency
of Fm,n.

For the type I bias situation, we have only to take as our G sample the nega-
tives of the values from the F random sample, and then compute the MLE F,,,m
as in the two sample problem.

Type II bias extends naturally to arbitrary distributions and is equivalent to
pr(0 < X < z)— pr(—z < X < 0) being nondecreasing in z for z > 0. A general-
ized MLE for the CDF can be easily found for this restriction, but unfortunately
this estimate need not be consistent except in the case of a discrete distribution.
The problem is that an observation at a negative x must be “shared” with —x to
preserve monotonicity while an observation at a positive z need not be. This in-
consistency is rather surprising in that the constraints for the two types of bias are
really quite similar being F(t—)+F(—t) < 1 fort > 0 for type I and F(t—)+F(—t)
nondecreasing in ¢ for ¢t > 0 for type II.

5. A simulation power study

In this section we perform a simulation study to compare the powers of the
newly proposed tests 77 and Tp with two other tests. For this purpose, we focus
on the shifted binomial distribution

2k itk _ )
P = <j+k>p’+’”(1—p)"_1, 3=0,%£1,..., £k,
with &k = 3 so that there are a total of 7 cells. This distribution is symmetric when
p = .5 and it satisfies the alternatives H; and Hs when p > .5. In our study, the
sample size is fixed at n = 100 and the replication size is 10,000. We take oo = .05
and let Xq,..., X, denote the binomial random variables.

For the shifted binomial distribution, the UMP test is to reject Hy in favor
of Hy (and Hy) if >°7 X; is too large. We use this UMP test as a benchmark.
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A = restricted likelihood ratio test T1
B = most powerful test

C = restricted likelihood ratio test T2
D = unrestricted likelihood ratio test

Fig. 1. Power curve for k = 3, n = 100, ALPHA = 0.05.

For comparison purposes we also consider the unrestricted likelihood ratio test for
testing symmetry vs. non-symmetry (which is essentially equivalent to the usual
chi square goodness of fit test for symmetry). Let us denote these two tests by T3
and Ty, respectively. Using the asymptotic 5% critical points, we find that under
the null hypothesis the p-values of these tests are .0374, .0597, .0486 and .0610,
respectively. Thus it appears that the 71 test is slightly conservative, while the T
test is slightly liberal, asymptotically. To put matters on an even footing, we used
simulated critical values for power comparisons. The power functions of the four
tests are shown in Fig. 1. It is clear from this figure that the newly proposed tests
are much better than the unrestricted likelihood ratio test and that they perform
favorably with respect to the UMP test. The T, test performs better than the
T, test as expected since the H» alternatives are more restrictive than the H,
alternatives. We expect similar behavior for other alternatives.
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