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A b s t r a c t .  A random variable X is said to have a symmetric distribution 
(about 0) if and only if X and - X  are identically distributed. By considering 
various types of partial orderings between the distributions of X and - X ,  one 
obtains various notions of skewness or one-sided bias. In this paper we study 
likelihood ratio tests for testing the symmetry of a discrete distribution about 
zero against the alternatives, (i) X is stochastically greater than - X ;  and (ii) 
pr(.\" = j)  _> pr(X = - j )  for all j > 0. In the process, we obtain maximum 
likelihood estimators of the distribution function under the above alternatives. 
The asymptotic null distributions of the test statistics have been obtained and 
are of the chi-bar square type. A simulation study was performed to compare 
the powers of these tests with other tests. 

Key words and phrases: Chi-bar square distribution, chi square test for good- 
ness of fit, isotonic regression, positive biasedness, skewness, stochastic order- 
ing. 

I .  Introduct ion 

A c o m m o n  assumpt ion  under lying m a n y  stat is t ical  analyses is tha t  the under- 
lying d is t r ibut ion  is symmetr ic .  The  validi ty of some commonly  used procedures  
depends  heavily upon this assumpt ion .  This  is par t icular ly  t rue  of several non- 
pa rame t r i c  procedures,  such as the Wilcoxon signed rank  test.  Moreover,  it is well 
known tha t  m a n y  s ta t is t ical  procedures  based on normal  theory  are robust  to the 
normal i ty  a s sumpt ion  provided tha t  the under lying dis t r ibut ion is symmetr ic .  For 
example ,  in an intensive s inmlat ion s tudy  Chaffin and Rhiel (1993) have confirmed 
tha t  the one sample  t - tes t  is app rox ima te ly  valid even for non-normal  dis t r ibut ions  
provided they are symmet r ic .  However,  this approx ima t ion  may  fail very badly  if 
the under ly ing dis t r ibut ion is skewed. 

Test ing for the s y m m e t r y  of a dis t r ibut ion abou t  a specified or unspecified 
point  0 has always been an i m p o r t a n t  topic of interest  in statist ics.  In this pape r  
we shall focus on the case when the point  of s y m m e t r y  0 is specified. 
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A large number  of nonparamet r ic  tests are available in the l i terature for this 
problem against both  one-sided and two-sided alternatives.  However, most of 
the research on one-sided al ternat ives has focused on developing nonparamet r ic  
tests for possible changes in the location of a symmetr ic  dist.ribution. Many of 
the suggested tests for symmet ry  can be described as variations of ei ther sign 
tests. Wilcoxon tests, Komogorov-Smirnov tests or Cramer-von Mises tests. Since 
symm e t r y  (about  0) is equivalent to F ( t - ) +  F ( - t )  = 1Vt, many  tests are phrased 
in terms of the empirical CDF and take advantage of the wealth of knowledge 
concerning the empirical CDF. A good reference for this and related problems is 
Chapte r  22 of Shorack and Wellner (1986). 

It is our point  tha t  if symmet ry  is to be rejected, then it is impor tan t  to know 
the distr ibut ional  s t ruc ture  tha t  led to its rejection. Since X has a symlnetr ic  
dis t r ibut ion iff X and - X  have the same distr ibution,  one Call consider different 
one-sided al ternat ives to symmet ry  by considering various types of stochastic or- 
dering between the random variables X and - X .  Cer ta inly  the most  common and 
well unders tood  notion of positive bias (skewness to the right) would be to have 
X stochastical ly greater  than  - X .  This  would imply tha.t E ( 9 ( X ) )  >_ E ( 9 ( - X ) )  
for all nondecreasing flmctions g. 

In this paper  we discuss this problem when the da ta  is discrete or grouped 
and assume wi thout  loss of generali ty tha t  0 = 0. We let X take on the (2k + 1) 
values - k . - ( k -  1 ) , . . . , - 1 , 0 ,  1 . . . .  , ( k -  1) ,k with corresponding probabili t ies 
P-~-,P (k- i /  . . . .  , p - l , P o , P l  . . . . .  P~--1,Pk al though any finite set which equals its 
negative would work as well. We shall let p denote  the 2/," + 1 dimensional vector 
of pi's. 

Assume tha t  we have a random sample of size 'n. from our popula t ion  and let 
7~i be the number  of t imes tha t  X takes the value i for i = 0, +1 . . . . .  ff:k so that  
Y-~,i=_~. 7~i = r~. Based on this da ta  we consider the problem of test ing the null 
hypothesis  of symmet ry  about  0 

(1.1) Ho :pj  = p - j ;  j = 1,2 . . . . .  k 

against the al ternat ives H1 - Ha and H2 - H0 where 

k k 

(1.2) H i :  Z / ) i  ~ Z p _ i ~  j ~- 1,'_ ) . . . . .  /~' 
i=j i=j 

a n d  

(1.3) H2 :p j  >_p-j ,  j = 1,2 . . . . .  k. 

The  cri teria of positive bias as represented by H1 and H~ have been discussed 
by Yanagimoto and Sibuya (1972). If (1.2) holds, we say tha t  X is positively 
biased according to cri terion Bi ( type I bias) and if (1.3) holds, we say that  X is 
positively biased according to cri terion 132 ( type II bias). 

In the next  section we obtain the maximuni  likelihood est imators  (MLE's)  
of p under  the hypotheses  H0 and H1 and then  use these est imators  to obtain 
the likelihood ratio statist ic for testing Ho against Hi  - H0. The  asylnptot ic  
null dis t r ibut ion of this test  statist ic is obta ined and shown to be of the chi-bar 
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square type.  The  corresponding problem of t es t ing /4o  against H2 - H0 is t rea ted  
in Section 3. In Section 4, we show tha t  the maxinmm likelihood es t imator  of 
F ,  the dis tr ibut ion flmction of X tinder HI ,  as obta ined in Section 2, is s trongly 
consistent when considered in the class of all univariate distributions.  Surprisingly, 
the mm',:imum likelihood es t imator  of F under  Ho obtained in Section 3 is not 
consistent when considered in the general set t ing of all univariate distributions.  
In the last section we perform a short  Monte Carlo s tudy to compare  the powers of 
the various tests. For this purpose, we focus on the shifted binomial distr ibution 
for which the uniformly most powerful (UMP) test  for test ing symmet ry  against 
ei ther H~ - H0 or H.;_ - H0 is to reject the null hypothesis  when the unrestr ic ted 
MLE of the parameter ,  p, is too large. We use this UMP test as a benchmark and 
show tha t  our nonparmnetr ic  tests are quite powerful. 

2. Testing H0 against Hi - Ho 

First  we obtain the mm, dmum likelihood est imators  (MLE) of the vector p 
under  bo th  Ho and H1. The  likelihood function is proport ional  to 

(2.1) 
k 

L(p I ")  = Y lrd '  'p",l 
I ..IL L,, - -  i i J" 

i = i  

The  unres t r ic ted  MLE of Pi is, of course, /)i = 7~i/n, i = O, +1 . . . .  , +k  and the 
MLE of p under  H0 is given by 

(2.2) -(o) .(0) = (n_~ + n~)/2n., i = 1.9 k 
P - i  : P i  . . . . . . .  

and 

I = 'bo  = 

Under HI ,  the constraints  on the vector p are 

k k 

i=j i=j 

These  constraints  are equivalent to 

(2.3) 
k k 

i = j  i = j  

j = 1 , 2 , . . . , k .  

j = - k , - k  + 1 , . . . , k  

k k 

(2.4) L2(p  i n)  = 1-I p~'~,. I I  P-i'~-' 
i = - k  i = - k  

which we write as p >> p ' ,  using tile notat ion of Robertson,  Wright and Dyks t ra  
(1988) (to be wri t ten RWD henceforth) .  Here p '  denotes the reversed (2k + 1) 
dimensional vector (Pk, P k - 1 , . . . ,  P -k)  T, (note tha t  <'prime" here means "reversed" 
and not vector transposit ion).  

Now, maximizing the likelihood product ,  L ( p  ] n)  under  H1 is equivalent to 
maximizing 
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subject, to (2.3). The two-sample problem has been studied by Brunk et al. (1966) 
and Barlow and Brunk (1972) and its solution can be used here (throughout this 
paper, we assume multiplication and division of vectors is done coordinate-wise). 

THEOREM 2.1. If  pi > 0 for i = - k  . . . .  k then the MLE of p subject to the 
restriction, HI, is given by 

( i, + io' ) 
(2.5) p(1) : PJ~/5 ~ , T  I f 

where E ~ ( x  [ I )  denotes the least squares projection with. weights w of the vector 
x onto the cone I of nondecreasmg vectors. 

PROOF. Since 

sup L2(p l n) < sup L(p l n )L(q  l n' ) 
p>>p' p>>q 

and the solution to the right side is given by 

and  

(P'+P IA) 0/*) =/5'Ev, 2p' 
where A is the cone of nonincreasing vectors (RVCP, Theorem 5.4.4), the result 
directly follows by verifying that 0 (1) =/~(1)' 

There are several algorithms available in the literature for computing E,~(m [ 
I). The easiest to implement is the pool adjacent violators algorithm (PAVA) as 
discussed in Section 1.2 of RWD. 

Using (2.2) and (2.5), we can obtain the MLE's of tile distribution function 
of X under the restrictions imposed by H0 and H1. It easily follows that the 
likelihood ratio test for testing H0 against H1 - Ho rejects for sufficiently large 
values of 

(2.6) 
k 

T1 = 2 ~ ni{ln/311)- ln131~ 
i = - k  

The asymptotic null distribution of T1 
A1) and ln:51 ~ about/) i  with a second degree remainder term Expanding in p, 

and using tile fact that ~ 41) v,~- /3 (~ = 1, it follows that under H0, i = - k  P i  = / d = - k  i 

(assuming/3i > 0, gi) 

k 
- 2 ,  40)  )2 

rl  = ~ -~L~ t;~ - ~ - / ) / ~ ( p l  ' )  - ~ , ) ~ ]  
i = - k  
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where a i  and/3i  come from the Taylor ' s  expansion and converge ahnost  surely to 

] ) i .  l~/[oreover, s i nce  p(0)  _ p = (p ,  _ p ) / 2  a n d  p(1) _ p = p f i b ( ~  I I ) ,  we  can 
write 

k 

i = - k  

where r = v~( ib  ' - ib)/ib. By the nml t inomia l  central  l imit theorem the r andom 
vector,  x/n(ib - p )  converges in law to p(  U - U E )  where U-k ,  U - ~ - + I , . . . ,  Uk are 
independent  normal  r a n d o m  variables with mean  zero and respect ive variances 

-1  k 
P - k ,  , p k  1 0 (1, 1, 1) T. . . . .  = ~-~i=-kpiUi, and E . . . .  , 

Since we are assuming tha t  H0 is t rue  we can write 

r = v ~ [ ( / ,  - p ) '  - ( / ,  - p ) ]  

f, 
c p ' ( U - O E ) ' - p ( U - O E )  

P 

= ( u ' - u ) = v .  

Thus,  by the cont inui ty  of E ~ ( r  I I )  in p and r  we have tha t  

(2.7) 
k 

i = - k  

Note tha t  Vo = 0 and V-i = - l ,{.  It  follows from this, the assumpt ion  tha t  
Pi = P-i under  H0, and the m a x m i n  formula  for Ep( V I I) in Section 1.4 of RWD 
tha t  Ep( V I I)0 = 0 ahd Ep( V I I ) - i  = - E p (  V I I)i. 

The  isotonic regression Ev(  V I I )  can be compu ted  as follows. Let V,. and p~ 
be the restr ic t ions of V and p to {1,2 . . . . .  k} and let J = {a: = (Zl,X~_ . . . .  , x k ) :  
0 _< :rl _< z2 _< . . .  <_ xk}. C o m p u t e  the isotonic regression, Ev,. ( 11,. I J ) .  Then  

( 9 . s )  { s p , ( v , .  I J ) i ,  

z p ( V l Z ) , =  0, 
- E ,  ( v,. I J ) - ~  

i = 1,2 . . . . .  k 

i = 0 

i = - k  . . . . .  - 1 .  

Thus  

(2.9) 

k 

�9 \ 2 1  
i=1 

k 

i=1 

by (1.3.7) of RWD. Note t l lat  V1, IG . . . .  , Vk are independent  and tha t  Vi is normal  
with mean  zero and variance (2/pi). It  follows from an easy general izat ion of 
T h e o r e m  2.3.1 in RWD tha t  this l imiting r andom variable has a chi-bar square 
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distribution. This distribution depends on the cone J and the unknown values 
of Po, Pl,P2 . . . .  , Pk through its level probabilities. The least favorable distribution 
can be found using the theory derived in Section 3.4 of RWD. These results are 
summarized in the following theorem. 

THEOREM 2.2. I f  p satisfies Ho and if  pi > O, i = - k , . . . , k ,  then for  any 
real number t 

(2.1o) 
k 

lim pr[Tl_>t] = E  p( f 'k 'p~)pr[X2 e_>t] 
71,~ CO p 

g = 0  

wh, ere p( O, k, Pr ) is the probability that Ep,. ( Vr I J) is identically zero and p( f, k, p~ ) 
for f = 1, 2 , . . . ,  k is the probability that Epr ( V~ I J) has ~ distinct non-zero values. 
Furthermore, 

(2.11) 
1 2 1 

sup lim pr[T1 _> t] = ~ pr[xk-:  _> t] + ~ pr[x 2 _> t]. 
p n ~ e c  p 

A test based upon the least favorable distribution given above is likely to be 
conservative (depending upon the true values of Pl ,P2 , . . .  ,Pk). There is consid- 
erable evidence that if the values of p : , p 2 , . . . , p k  do not vary too much (say the 
ratio of the largest Pi to the smallest Pi is less than 3) then a test based upon 
the equal weights (Pl = P2 . . . . .  Pk) critical value will have a significance level 
reasonably close to the reported value. These equal weights level probabilities are 
discussed in Section 3.3 of RWD and are tabled in A.12 of RWD. (When using 
these tables, the value of k should be increased by 1 to account for 0 as a lower 
bound. It is like having k + 1 normal variables indexed by 0, 1, 2 , . . . ,  k with the 
weight associated with the variable indexed by 0 being oo.) 

If we have the additional information that P: _> P2 _> "'" _> Pk then the least 
favorable distribution is given by 

(2.12) 
k k 

E ( k f )  ( ~ ) p r [ x e  2 > t ]  
f = 0  

(see Lee et al. (1993)). A critical value chosen from this distribution would result 
in a much less conservative test than if we choose our critical value from the least 
favorable distribution (2.11). 

k g . Another alternative is to approximate prp[T: >_ t] by ~'~e=0P( ,k, i5(~ 

pr[x~_ e _> t] where p(0) is as given by (2.2). This expression has the same asymp- 
totic distribution as T1 under H0 and provides a good approximation. For k < 4, 
the level probabilities in this approximation can be computed using the formulas in 
Section 2.4 of RWD, again letting the weight associated with the variable indexed 
by 0 go to infinity. For k > 4 no closed form expressions for these level proba- 
bilities exist. One could approximate them using Monte-Carlo methods. Another 
approach would be to use a pattern approximation such as the one developed in 
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Section 3.4 of RWD. This would use approximate level probabilities which are 
obtained by interpolating between the equal weights level probabilities mentioned 
above and level probabilities obtained by let t ing the weights associated with the 
large pi go to infinity. These limiting level probabilities would have the generating 
function (1 ) 
where I is the number of large weights and /3  is the number of small weights having 
indices larger than  tha t  of the largest index corresponding to a large weight. The 

1 interpolation uses the 5 power of the ratio of the average of the small weights to 
the average of the large weights. Pillers et al. (1984) provide a Fortran program 
for computing these level probabilities. 

3. Testing H0 against H2 

Recall tha t  the likelihood function is proportional to 

k 

= no I I p ? ~ p : : '  n ( p  [ n)  Po 
i = 1  

To find the MLE's  of p under Ho and H2, we reparametrize as follows. Let 

(3.1) O i = p { / ( p - i + p i )  and c p i = ( p { + p _ i ) ,  i = 1 , 2 , . . . , k  

so tha t  

(3.2) Pi = Oig)i and P-i  = g)i(1 - Oi), i = 1, 2 . . . .  , k. 

The likelihood function in terms of the new parameters  is proportional to 

(3.3) 
n ,  -I-n_ i 

Co(O, ~o r n )  = O7 ~ (1 - Oi) n-' ~ 1 - ~ ~ 
i = l  i = 1  i = l  ,/ 

The MLE's  under H0 are 

ni + n - i  
1 and @I ~ = i =  1 , 2 , . . . , k .  (3.4) t)}~ = 2 n ' 

Under the H~ alternative, Oi >_ 1, i = 1, 2 , . . . ,  k and there is no restriction on 
the values of the ~oi's. Thus, the MLE of ~o is the same as the est imate under Ho. 
The MLE of 0 under H2 is given by 

(3.5) 

where a V b (a A b) denotes the maximum (minimum) of a and b. 
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Using (3.4) and (3.5), the MLE of p under H2 is given in the following theorem. 

THEOREM 3.1. The MLE of p subject to H2 is given by 

(3.6) /~I 2) 

(77.i + ~,-i 
,/~, 

= 7~,.i -I- 77--i 
7l, 

77. 

( ni V ~ ) ,  i = 1 , 2  . . . . .  k 
~, i  + 7~,_ i ' 

n . i + n - i  A , i = - k , - ( k - 1 ) , . . . , - 1  

i = 0  

The asymptotic n'ull distribution of 
The negative of twice the log of the likelihood ratio statistic for testing H0 

against H.2 - H0 is given by 

[ { { (1)}1 T 2 = 2  Z ni ln0.}2)- ln  +7~-i l n ( 1 - 0 } 2 ) ) - l n  ~ �9 
i=1 

By following the techniques used in Section 2, it can be shown that  

k 
(3.7) T . 2 ~ Z [ Z i  V0] 2 

i=1 

where Z1, Z: . . . . .  Zk are independent s tandard normal variables. By Theorem 
5.3.1 of RWD the following result follows. 

THEOREM 3.2. Under Ho 

(3.8) 
k k 

lim p r [ T 2 _ > t ] = Z ( ~ ) ( ~  ) pr[\~,_>t] 
n ~ O ~  

for all real t (~('~ =- 0). 

A nice feature of this test is that  its null, asymptotic distribution is flee of p. 

4. Consistency of the MLE under type I bias 

Strong consistency of the maximum likelihood estimators obtained under tile 
constraints of type I bias (as described in Section 1) will guarantee that  the test 
developed ill Section 2 will be a consistent test. Actually, a more interesting 
question is whether the restricted maxinmm likelihood estimator of the CDF will 
be consistent when the type I bias constraint is generalized to the class of all 
univariate distributions by the restriction F ( z - )  + F ( - z )  _< 1, Vz. We take our 
definition of the maxinmm likelihood estimator to be the generalized version of 
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Kiefer and Wolfowitz (1956) which effectively allows probability to only be placed 
on observation points (and hence reduces to the discrete case). 

We first prove a stronger theorem of independent interest; namely that the 
maxinmm likelihood estimates of the CDF's under the constraints of stochastic 
order and independent samples are strongly consistent when the underlying dis- 
tributions satisfy the stochastic ordering constraint. This is not at all obvious 
since Rojo and Sameniego (1991) have shown that maximum likelihood estimates 
under the more stringent condition of uniform stochastic ordering need not even 
be weakly consistent. Moreover, maximum likelihood estimates under the imposed 
constraints of type II bias also need not be consistent in the class of all univari- 
ate distributions. Our proof is a refinement of one given by Brunk et al. (1966). 
Note that strong consistency actually holds without the condition of independent 
samples for these estimators. 

To set notation, we assume that X1,. �9 �9 X,~ is a random sample from a distri- 
bution with CDF F,  that }~ , . . . ,  I/;. is a second random sample fi'om a distribution 
with CDF G and that F ( x )  <_ G(x)  for all x. We let -Pro indicate the usual em- 
pirical CDF fi'om the first sample, and let Fm,~ denote the (generalized) MLE for 
the first population CDF under the constraints of the given stochastic ordering 
and independent samples. In addition, we let S = { s l , . . . ,  s~.} denote the distinct 
values for the F sample and let ?hi(hi) denote the number of F ( G )  observations 
at si. The theorem we shall prove is stated as follows: 

THEOREM 4.1. The constrained M L E  F,,~,,~ converges uniforvnly to F a.s .  as 
m ---* cx~ 'if F(x)  < G(x)  for  all x. 

PROOF. Since the generalized MLE of F only puts probability on values in 
the set S (and possibly at observation points fi'om the second sample that are 
larger than all elements of S), we can use a variant of Theorem 5.4.4 of RWD to 
state 

{ [ ( r n ) m + n  ] } I 
, , , ( t ) -  f ; , , ( t )  -- Em --m I - 1  

i;.s, _< t i 

for ?n sufficiently large and 0 < F( t )  < 1. It then follows that [',,,,~(t) _< l+,,,(t) by 
the monotonicity of the least squares projection. Thus for m sufficiently large, 

z  +nm 
i;.s, <_t i 

77, ~-'~ ln iEm [ n / , t  ~_m/,71, , i 1 
?2. -~- Tl?, m i;s, <_t i 

?z Jr- 'n~, k j = l  a j  _ 1 < s i  _<aj 

- d,, 2 - 1 E a j _  I <si <aj 
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Ear-l<si<t 77%i 

�9 [ (G, , (a , . )  - G, , . (a , . -1 ) )  - ( /#~ (a~) - / ~ , , , ( a ~ - l ) ) ]  ~ 
J 

where al < a2 < .- .  < a~ are upper  endpoints  (a0 = - o o )  of level sets (see RWD, 
Section 1.4) and a~-z < t < a~. 

Labeling the two factors of the last t e rm as R and Q, we can write 

- -  - -  " 

n + m 
fl, 

> - -  
- n + m  

- - [ O n ( a T - 1 ) - - / W m ( a r _ l ) + R ( ~ ] ,  ( O _ < R <  1) 

m i n [ d n ( a r - 1 )  --/s ( a t - l ) ,  On(a,.) --/w,,, (ar)] 

(if Q < 0, replace R by 1, i f Q  > 0, replace R by 0). I f m  a n d . n  --~ oo, then 
G~ ~ G and FTn ~ F uniformly (a.s.) and hence the limit of the right side is 
nonnegat ive  (a.s.). The  result now easily follows by noting tha t  _~,~(t) ~ F(t)  
(a.s.). Note tha t  if rn -~ cc but  n remains finite, we still have s t rong consistency 
of Fm, . 

For the type  I bias si tuation,  we have only to take a~s our G sample the nega- 
tives of the values from the F random sample, and then compute  the MLE F,,,,,~ 
as in the two sample problem. 

Type  II bias extends  na tura l ly  to a rb i t ra ry  dis tr ibut ions and is equivalent to 
pr(0 < X < x) - p r ( - x  < X < 0) being nondecreasing in x for x > 0. A general- 
ized MLE for the CDF can be easily found for this restr ict ion,  bu t  unfor tuna te ly  
this es t imate  need not be consistent except  in the case of a discrete distr ibution.  
The  problem is tha t  an observat ion at a negative x must  be "shared" with - x  to 
preserve monotonic i ty  while an observation at a positive x need not  be. This  in- 
consistency is ra ther  surprising in tha t  the constraints  for the two types of bias are 
really quite similar being F ( t - ) + F ( - t )  _< 1 for t _> 0 for type  I and F ( t - ) + F ( - t )  
nondecreasing in t for t _> 0 for type  II. 

5. A simulation power study 

In this section we perform a simulat ion s tudy  to compare  the powers of the 
newly proposed tests  T1 and T2 with two other  tests. For this purpose,  we focus 
on the shifted binomial dis t r ibut ion 

\3 -f ~ /  
j = 0, + 1 , . . . ,  +k ,  

with k = 3 so tha t  there  are a to ta l  of 7 cells�9 This  dis t r ibut ion is symmetr ic  when 
p = .5 and it satisfies the al ternat ives H1 and /-/2 when p > .5. In our study, the 
sample size is fixed at n = 100 and the replicat ion size is 10,000. We take c~ = .05 
and let X 1 , . . . ,  X~ denote  the binomial r andom variables. 

For the shifted binomial distr ibution,  the U MP  test  is to reject H0 in favor 
n 

of H2 (and H1) if ~'~1 Xi is too large. We use this UMP test  as a benchmark.  
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Fig. 1. Power  cu rve  for k = 3, n = 100, A L P H A  = 0.05. 

For comparison purposes we also consider the unrestricted likelihood ratio test for 
testing symmetry vs. non-symmetry (which is essentially equivalent to the usual 
chi square goodness of fit test for symmetry). Let us denote these two tests by T3 
and Ta, respectively..Using the asymptotic 5% critical points, we find that under 
the null hypothesis the p-values of these tests are .0374, .0597, .0486 and .0610, 
respectively. Thus it appears that  the Tz test is slightly conservative, while the T2 
test is slightly liberal, asymptotically. To put matters on an even footing, we used 
simulated critical values for power comparisons. The power functions of the four 
tests are shown in Fig. 1. It is clear from this figure that the newly proposed tests 
are much better than the unrestricted likelihood ratio test and that they perform 
favorably with respect to the UMP test. The T2 test performs better than the 
Tz test as expected since the /-/2 alternatives are more restrictive than the H1 
alternatives. We expect similar behavior for other alternatives. 
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