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Abstract. For the one-sample problem, a two-stage rank test is derived which
realizes a required power against a given local alternative, for all sufficiently
smooth underlying distributions. This is achieved using asymptotic expansions
resulting in a precision of order m™!, where m is the size of the first sample.
The size of the second sample is derived through a number of estimators of
e.g. integrated squared densities and density derivatives, all based on the first
sample. The resulting procedure can be viewed as a nonparametric analogue
of the classical Stein’s two-stage procedure, which uses a t-test and assumes
normality for the underlying distribution. The present approach also general-
izes earlier work which extended the classical method to parametric families of
distributions.
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1. Introduction

Let X, Xo,... be independent identically distributed (iid) random variables
(rv's) from a continuous distribution function (df) F(z—#6) with F(—z) = 1-F(zx)
for all . The hypothesis Hy : § = 0 is to be tested on the basis of a sample
from the sequence X1, Xs,.... In the classical case the problem is specialized to
F(z) = ®(z/o), where ® is the standard normal df. Stein’s two-stage procedure
for this situation is well-known (see e.g. Lehmann (1986), pp. 258-260). An initial
sample of size m is drawn and its sample variance S2, is obtained. In the second
stage a sample of size N — m is selected, where

(1.1) N = max(m, [SZ,/c] + 1),

with ¢ > 0 any given constant and [y] denoting the largest integer < y. Then
NY2(N-1 Zf\il X;—80)/S, has a t,,,_1-distribution and the constant ¢ from (1.1)
can be chosen such that the corresponding two-stage test has a prescribed power
against a given alternative, regardless of the value of the scale parameter o.

Now fixed sample size rank tests, being distributionfree, have levels indepen-
dent of F', but powers directly dependent of F'. Hence it seems worthwhile to try to
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extend the property above of having powers independent (of certain aspects) of the
unknown underlying df, to the rank case. In fact, results in this direction have al-
ready been presented in Albers (1991, 1992). In these papers attention is focussed
on a straightforward extension of Stein’s procedure: using asymptotic expansions
for local alternatives, a two-stage rank test is derived which has to o(m~!) a power
independent of the scale parameter o. Of course, if we are not constrained to the
classical case F(x) = ®(x/0c), there no longer is a special reason to let F' belong
to a scale family. Without essential difficulties, the results for the scale case can
be extended to arbitrary parametric families of underlying df’s. However, it does
not seem particularly rewarding to pursue this: the resulting expressions become
typically more complicated than in the scale case, while lacking the natural appeal
of this latter case as a direct analogue of a well-known classical procedure.

A more appealing extension of the results for the scale case can be achieved
by applying a nonparametric approach, using density estimation techniques. In
this way, a two-stage rank test can be obtained which has, once more to o(m™!),
a power independent of F', for all F' satisfying certain regularity conditions. The
execution of this program will be the purpose of the present paper. Some comments
to be made in advance are the following. Clearly, the idea is not new to estimate
the expression depending on the unknown F' which occurs in the asymptotic power.
see e.g. Sen and Ghosh (1971, 1974) and Schweder (1975). Here we apply it to the
two-stage case, and, more importantly, we use second order approximations based
on asymptotic expansions to o(m_l), rather than on mere first order asymptotic
results. This entails that also second order terms, and hence derivatives of the
density f, have to be estimated.

As a consequence, the results tend to become rather technical. To improve the
accessibility and to allow implementation in practice, we therefore specialize to the
case of Wilcoxon scores from a certain point on. In this situation, the first order

term to be estimated depends on the unknown F' through ffc f?(x)dx, which we

o
will denote by [ f 2 from now on. Fortunately, a multitude of, mostly quite recent,
results are available on rates of convergence in estimating this functional. It occurs
e.g. in Goldstein and Messer ((1992), p. 1318) and in Donoho and Liu ({1991), “an
interesting example”, p. 654). Both these papers refer to Ritov and Bickel (1990),
where it is shown that without sufficient smoothness [ f? is not estimable at rate
m~ for any o > 0. However, if the density has sufficient derivatives, the rate will
be m~1/2. This is the case we shall consider, as the use of asymptotic expansions
to o(m™!) already presupposes the existence of several derivatives of f. A useful
reference for this situation is Hall and Marron (1987), together with subsequent
papers such as Jones and Sheather (1991) and Sheather et al. (1992).

In Section 2 we present the asymptotic expansion for the two-stage rank test,
which we apply in Section 3 to obtain tests with prescribed power. Specialization
to Wilcoxon scores occurs in Sections 4 and 5. First we collect all density-type
estimators involved in Section 4. Then in Section 5, we present and comment
on explicit formulae for the total sample size N required to ensure a given power
to o(m™~!) against a given alternative. An example and some simulation results
conclude the paper.
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2. The asymptotic expansion for the two-stage rank test

In this section we introduce the notation and quote the relevant results from
Albers (1992). Let X3, Xo,... be iid. rv’s with continuous df F(x — ), where F
is such that F'(—z) = 1 — F(x) for all . For a first sample of size m, let Z(,,, =
(Z1....,Zy) denote the vector of order statistics of [X1[,...,|Xm|. Moreover, for
j=1,..., m, introduce Vj, which equals 1 if the X corresponding to Z; is positive
and which equals 0 otherwise. This leads to a rank statistic for testing Hp: 6 =0
given by

m

(2.1) Ty ZZ(IUVJ-,
=1

where a; = (a11,...,a1,) is a vector of scores. We shall typically consider exact
scores ay; = EJ(Uj.,), where J is a continuous function on (0,1)and Uy < -+ <
U, are order statistics for a sample of size m from the uniform distribution on
(0,1).

For the second stage of the test we select an additional sample of size N — m,
where N = N(X,,...,X,,) in general. We shall require that N = N(Z(y,)) in
what follows. Since T1 and Z,,) are independent under Hy, this ensures that
the two-stage procedure remains distribution-free as well. The second sample, in
combination with scores az; = EJ(Ujn—m), j = 1,...,N —m, leads to a rank
statistic T, analogous to Ty, from (2.1). The two separate statistics are simply
combined to the final statistic

(2.2) T=T +Ts.

Of course, it would be slightly better to use a rank statistic of the form (2.1) based
on the total sample of size N. But, as is argued in more detail in Albers (1992),
it is less tedious to obtain an asymptotic expansion for the df of T from (2.2),
whereas the loss due to using T is typically compensated by as little as a single
additional observation.

Before introducing the asymptotic expansion in question, we shall first list the
conditions involved on the estimator N, the df F and the score function J. Let A/
be the class of estimators N = N(Z,,)) such that

o

(
(

for some ¢ > 0 and 3 > 1. Condition (2.3) ensures that N —m will tend to infinity
of the same rate as m, except for a sufficiently small probability, while (2.4) implies
that N — EN = Op(m!/?). Let Q be the class of twice continuously differentiable
functions Q on (0, 1) that satisty

3) P((l+€e) < N/m<ely=1-0o(m™"),
A4) E|N — EN|* = O(m"),
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Let F be the class of df’s on R' with positive densities that are symmetric about
zero, four times differentiable, and such that for v; = f/f U;(t) = ¢;(F~1((1+
t)/2)), my =6, my =3, mg =4/3, my = 1, we have ¥; € Q (see (2.5)) and

(2.6) hmsup / iz +y)|™ flr)dr < oo,  i=1,...,4.

Let J be the class of nonconstant functions J on (0,1) that satisfy J € Q and
oy JHt)dt < .

Next we give the expansion. Let ¢ denote ® and let ¢(*) denote the k-
th derivative of ¢. The Hermite polynomial of degree %k is given by Hi(r) =
(=D*eMN(2)/p(x), k = 0,1,.... Using the convention that integration will be
over (O 1), unless stated OthGIWlSG, we define

mi/29 [ J¥,

M = —“W
b - R 3\1!3—6\11 \I/7+\I/3 jJQ
b PR [J VJ(t )\IJ’( )(sAf—st)ds‘dt
1 =
(2.7) 5 B f‘w
by — &
3 IAH( TE)
S
by =
12(] 722
G, 2T Con S
0.m [ J\Pl /‘ ,]2 il

where Cov; = Cov(J(Uj.pm). ¥1(Uj.m)) and J;“? = O'Q(J(U_,';m)). In addition, for
r>(1+ 26)771, define

(2.8) U= (N/r)t/? -1,

1 - .
(29) H(l) - (I)(i) + @1(473){37‘—1777‘([)0,711 + bO.[r]—m)
3
47! Z n 3 b Hi(x) = EU
|
- 5777‘EU Hi(z)

LT B0 S a(n(Z)) ~ Ew1<Zj>>>}
T |

Then we have (see Albers (1992))



A TWO-STAGE RANK TEST USING DENSITY ESTIMATION 679

THEOREM 2.1. Let N € N, F € F and J € J. Suppose that 0 < 8 <
Cm~Y2 for some C > 0. If r in (2.8) is chosen such that r = EN + o(m!/?), we
have for T from (2.2) that

(2.10) sup =o(m™1),

Zal_) +Za2J 1/2

P(zT Yay-Fay )_H(I_m

while all terms in H(x —n,) beyond ®(x — n,) are o(m™1/2).

To illuminate the relevance of Theorem 2.1 for our purpose, we observe the
following points. The two-stage procedure is performed conditionally. In fact,
rejection of Hg : 8 = 0 in favor of Hy : 8 > 0 for large values of T standardized as
in (2.10), leads to a critical value £, = £q + o( N 1), where

(2.11) §a = Ua —N_lbgHg(’(L(y)

with v, = @711 — «) (cf. once more Albers (1992)). But replacement of N ™!
in this & by 77! such that r = EN + o(m'/?) with probability 1 — o{m™!).
causes differences of o(m~!). Hence the power of the unconditional test based
on the standardized T from (2.10) will agree to o(m™!) with the power of the
two-stage procedure to be investigated. Consequently, it makes sense to use the
unconditional expansion presented in Theorem 2.1.

To shed some light on the expansion itself, we remark that the result is ob-
tained by first taking the expansion for a fixed sample size rank test, using the
(to order m!/?) expected sample size . The expression for H in (2.9) then arises
by adding three terms involving U from (2.8) to take into account that N rather
than r is used, and by using by ., + bo (r]—m instead of bo (] to account for the use
of two separate rank statistics 77 and T, (cf. (2.2)) instead of one overall statistic.

3. Two-stage tests with prescribed power

Using the results of the previous section we shall indicate for the case of general
J how a prescribed power can be realized to o(m™!) against a given alternative.
Before going into some detail we shall give an overview of the steps involved. Let
7(#) denote the power of the two-stage test which rejects whenever the standard-
ized T from (2.10) exceeds £ given in (2.11). Suppose we require for certain &
and 7 that

(3.1) m(km~ V%) = 7.

As Theorem 2.1 amply implies that 7(#) = 1 — ®(uq — 7) + o(m~/?), it follows
through (2.7) that (3.1) is satisfied to first order for

3.9) o om(ug — ur)? [ J?
(3. r= K= U2
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where u, = ®7 (1 — 7). Note that the requirement that r > (1 + 2¢)m for some
€ > 0 will be met if x in (3.2) is sufficiently small, i.e. if § = km~1/2 is sufficiently
close to Hyg : 6 = 0.

The form of the leading term N of the desired estimator is readily suggested
by (3.2): if W is a suitable estimator for — [ J¥q, then define

—[JU)? mlug —ug)? [ J?
w2 o KW 2 '

(33) N1 = 7‘(

The next step consists of adding a correction term f, to Nj, selected through
(2.8)—(2.10) in such a way that all lower order terms in the expansion are precisely
cancelled, thus ensuring that Ny + f, will produce the desired realization of (3.1)
to o(m™1).

Obviously this f, will involve unknown expressions like [ J¥;¥5 and [ J3T,
(cf. (2.7)), which will have to be estimated in their turn. But as only lower order
terms are involved, replacement of f. by a consistent estimator fr will lead to
negligible differences. It remains to add the final step N = max(m, [N; + fr+ %])
(cf. (1.1)).

Hence the problem has now essentially been reduced to estimating a number
of integrals involving ¥;, ¢ = 1,2,3. Usually consistency will suffice, but for the
estimator W of — [ J¥; in view of (3.3), (2.8) and (2.9), second order properties
will be needed. Several approaches are possible for — [ J¥;. For example, Sen
and Ghosh {1971, 1974) use rank statistics based on shifted samples. Another
possibility is to rewrite — [ J¥q, using that ¥1(¢) = (f'/f)(F~1((1+1)/2)), into
2 [ J'(t)/q((1 +t)/2)dt, where ¢ = 1/f o F~! = (F~!)' is the so-called quantile
density. Methods for estimating ¢ are discussed in Jones (1992). Here we shall
adopt a rather direct approach, used e.g. by Schweder (1975).

Define H = 2F — 1, h = H' = 2f and introduce the (extended) empirical df
for | X1],...,]Xm| and all y:

(3.4) Honly) = Fuly) ~ Ful-y) = — % #{1Xi] < y}signy.

Using that ¥; = %OH_I, the integral — f J¥ can be rewritten into j J'hoH™ ! =
fooo J(H(z))h{(z)dH (z), which can be estimated by

T

LS T H X IRAX D,

m <
i=1

(3.5)

where h is a density estimator for h. We shall use a kernel type choice for h. To
be more precise, let k be a density which is symmetric around zero and which has
a finite, positive second moment. For bandwidth 7 we then have

(3.6) h(y) = / ko (y — 2)dH, (2).
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where k. ( ) =77Yk(z/7). Using that H,,(— y) = — H,,(y), we can transform (3.6)
into h(y) = [ {k+(y — 2) + k- (y + 2) }dHom( m= ST Lk (y — 1K) + k(v +
| X1 Togethe1 w1th (3.5) this leads to

(37) W= ZZ T (Hn (1 X)) Tk (1X] = 1XG]) + k- (1X] + XD
i#j

Note that we have omitted the non-stochastic diagonal term. The interesting
discussion in itself about possible advantages of including such a term (cf. Jones
and Sheather (1991)) is not relevant here, as its contribution in our approach
would be automatically cancelled again by the second order term involving EU in
(2.9). Such a cancellation (at least to first order) also occurs for the bias due to
having X from F(x — ), rather than from F(z). In the next section we shall be
more explicit about this point (see the remark following (4.2)).

Next we consider the lower order terms. Those involving b;, i = 0,1, 2,3, can
be dealt with in an analogous way as — [ J¥,. For example, letting J(0) = 0
without loss of generality, the integral [ J(3¥3 — 6¥¥5 + ¥3) in by leads to
Jo {47 (H(x))h""(x) — 3J"(H(x))h'(z)h(z) }dH (), which can be estimated by

(3.8) —Z{ AT (Hon (|X DR (1 X)) = 307 (Ho (| X))R (1 X RAXG])Y,

where A’ and h" are suitable estimators of the derivatives h’ and h”. To deal
With the terms involving U in (2.9) we observe through (2.8) and (3.2) that U =

(— [ J¥:)/W — 1. Hence EU and EU? can be evaluated once we know bias and
variance of W to o(m~1). Results of this type can be found in Schweder ((1975),
e.g. p. 115, Theorem 1; see Schweder (1981) for a correction note!).

However, we shall not bother to present all these estimators here explicitly.
One reason is that, like the one in (3.8), they tend to be rather complicated. But,
more importantly, (3.8) and (3.7) also serve to make clear that rather severe condi-
tions on J will be needed to ensure that the estimators involved are well-behaved.
Typically, boundedness of J, or even of the derivatives J' and J” occurring in
(3.8), will be imposed, thus ruling out the important choice J = ®~*, correspond-
ing to the normal scores test (cf. the remark to this effect in Schweder (1975),
p. 115). There are ways of avoiding such assumptions and including J = ®~! (see
e.g. Albers (1985)), but that would involve adding a lot of new technicalities on
top of what we have already.

In view of the above we prefer to specialize from this point on to the case
of Wilcoxon scores J(t) = t, as announced in the introduction. In this way we
regain relatively simple estimators which will typically be well-behaved without
additional effort or conditions.
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4. Wilcoxon scores: the estimation

For the choice J(t) =t the integral — [ J¥ reduces to 2 [~ f?, while (3.7)
simplifies to

(4.1) W= —— —— SO {k(X D+ k(X + X))

m(
i#]j

Note that in (4.1) we have replaced the absolute values by the rv’s themselves,
which is allowed by virtue of the symmetry of k.. Nevertheless, it remains true
that W, and hence N, depends on X,..., X, only through Z,,) as required.
Expressions for bias and variance of W are easily derived using results of Hall and
Marron (1987). To be totally explicit, we specialize from now on, unless stated
otherwise, to the Parzen-Rosenblatt kernel estimator, using the uniform kernel
k(s) = % for |s] < 1 and k(s) = 0 otherwise. Then we have

EW—?/f2 = (202 + g) /ff”+o((%l +74),
2
var W = % {/f3 - (/f2> }+ 771227 /f'2 +o(m™t +m73r7 ),

where we adopt the convention that integrals involving f will be from —oc to oo,
unless stated otherwise.

Some comments are useful here. In the first place, W contains two types of
bias. As the X; are from F(z — 6) rather than from F(x), we in fact estimate
2 [ f%(z — 6)dz rather than 2 [ f2. This produces the term 262 [ ff” in (4.2). A
remedy might seem to be the use of X; — rm~1/2 rather than X, as this would
precisely eliminate this bias in the point of interest § = xm 1/2. However, this
alignment destroys the property that W depends on Xi,...,X,, through Z,,
only, and is therefore not allowed. Obviously, the term 72 f f1"/3 represents the
“genuine” bias, due to the estimation. As concerns the variance in (4.2), note
that it is of order m~! +m™27 ! rather than the more customary order m=!7~1.
This better rate is due to the fact that we are estimating integrated squared
smooth densities, rather than densities themselves. Under these circumstances
it is clear that Theorem 2.1 is applicable when using W from (4.1). To avoid
lengthy expositions, we leave verification of the remaining minor technicalities to
the reader.

Next we consider the choice of bandwidth 7 in (4.1). The usual approach
of minimizing the squared bias plus variance is not relevant here. By expanding
U=2[f?/W-1intermsof (W-2 [ f2)/(2 [ f%), we observe from (2.9) that bias
and variance should be balanced, rather than squared bias and variance (cf. Hall
and Sheather (1988), p. 384 for the same phenomenon). However, for the leading
terms in either case we shall compensate by estimating [ ff” and { [ f3—(J f%)?}
respectively. The actual error committed will thus be O(64 + 7*) + O(m~27) +
o(m~'). This will be minimized with respect to 7 by letting 7 ~ m~=2/5. Just as in
the mean integrated squared error case, we could try to estimate the appropriate

(4.2)




A TWO-STAGE RANK TEST USING DENSITY ESTIMATION 683
coefficient ¢ in 7 = cm~2/%. But in the present case this will even be harder than
for MISE. More importantly, as m is the size of the first sample, it will typically
be rather small, e.g. 10 < m < 20. Referring once more to Hall and Sheather
(1988), we prefer to use m~2/% as a qualitative guide only, as for m = 10, values of
m~%/5, m~1/2 and m~/3 do not differ greatly (Hall and Sheather (1988), p. 382).
As 7~ m™2%/5 while § ~ m~1/2 an explicit proposal is to let T = ckm~1/2 with
ce(15.2).

Summarizing for a moment, we have introduced W in (4.1), found its bias and
variance in (4.2) and also determined a reasonable choice of bandwidth 7. What
remains concerning W is to find estimators for [ ff” and [ f3 (cf. (4.2)) and of
course, to deal with the last term in (2.9) which is a mixed term involving U and
thus W. Following Schweder (1975) or Hall and Marron (1987) we have for [ f f"
the estimator

(4.3) 1 >,

where f” is a suitable estimator for f”. One possibility is to use f"(z) =
n~t S K (x — X;), with k sufficiently smooth, e.g. k = ¢. Here we shall
sunply use

(4.4) Vo= m_12§3M) J) ey (X + X)),
i#j

where ky, (s) = 75 2k(s/70), k(s) = —4 for |s] < z, k(s) = 4 for 3 <|s|<1and
k(s) = 0 otherwise. We use 7y rather than 7 for the bandwidth to stress that
for W from (4.1) and V; from (4.4) different choices of bandwidth are possible.
Estimation of [ f3 is more straightforward: use

m

(4.5) Zfz (X:)

with f(z) = (2m)™! >k (x Xj) + ke (2 + X } for suitable bandwidth 7.
To evaluate I = E(UY. a1;(¥1(Z;) — Ev1(Z;)))/ [ J¥1 to first order we
note that the leading term in the e*(panslon of U is — W’ fo (2[5,
wheleab m= Y (Zy) = (mo4+ )7L (G/m)n (B (i/m) = (m o+
LS Ho(X)dn (X;). A straightforward but teleUb computation shows
that Covar (W, Z?;l Ho (X1 (X0)) = =12 [ f2 4+ 16( £?)? to first order. Com-
bination of these facts leads to

(46) I=4—3/fW</fﬁ{

which quantity can be estimated using W from (4.1) and V; from (4.5).
It remains to deal with the terms involving the b’s in (2.9). As concerns by, we
already saw that [ J(3W$ — 60U, + ¥3) can be estimated through (3.8), which
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reduces here to —4m~1 "7 A7(|Xi|) = -8V (cf. (4.3) and (4.4)). In by, we
encounter [ = [ J2U? — [ [ J(s)W}(s)J(t)T}(t)(s At — st)dsdt. For J(t) = t, the
latter integral reduces after some tedious steps to [ J2¥% + 8 [ f3 — 16([ f2)2.
Hence I boils down to 16( [ f%)?2 =8 [ f3, which can be estimated using W and V.
Note that the specialization to Wilcoxon scores indeed heavily reduces matters!
For by, we need f J3W, which can be rewritten to 6 f H2fdF, to be estimated by
6V,, where (cf. (3.4))

m

(47) Vo= = ST HAKAN,
i=1

with f as in (4.5), but again with suitable bandwidth 7. As b3 reduces to a con-
stant, it remains to consider bg ,,,- There we encounter Z}"zl Cov;, which to first

1/7\,1/N J' ()W (t)t(1 —t)dt, which can be rewritten to 2f(0) —4 [ f2.

Obviously. f(0) and 1 suffice for estimation. To summarize, after straightforward
computation we arrive at

order equals |

) A A v . 6V
bo=-gs bB=2-32 =5

(4.8) 3911 : 7u 1£(0) "
by = % and  by. = 2T T

where W™ and Vi, & = 0,1.2 are given by (4.1), (4.4), (4.5) and (4.7) and, for a
suitable bandwidth 73,

m

(49) F(0) = =5 k(X
i=1

5. Wilcoxon scores: sample size determination

In Section 3 we observed that the total sample size N required to ensure that
our two-stage test realizes 7(km™'/2) = 7 to o(m™!) for given & and 1, has the
form

(5.1) N = max ('m, [Nl + fr+ %}) ,

Here N; is as given in (3.3), while fr is a consistent estimator for the correction
fr, selected through (2.8)—-(2.10) such that all lower order terms cancel. The step
from f, to f, turned out in general to involve rather complicated estimators,
valid under unduly restrictive conditions. Therefore we specialized in Section 4 to
the case J(t) = t and obtained explicit and relatively simple expressions for all
estimators required.

What remains now is to use these explicit results from the previous section to
evaluate fr explicitly as well. However, this step completely parallels Theorem 3.1
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in Albers (1992). Hence we omit this derivation and just present the resulting N.
In fact, we have

. — 1 2 A
(52) N = max (771, [% T f: + %J> ’

where

2 2[4V, .
(5.3) W* = {W - <292 + %) VO} {1 - <W12‘ - 1) (u? — uquy — 2)} ,

. 8 Vi 2
fr=—=(uy — 'u,,T)Q—?— + 4(tg — ug)ug <1 - Vl)

9 w3 w2
2 2 3 2 2
12002 = 1)=2 — (W2 + uqtug + ul =
+ 12(u; )“/_ 10(uO + Uqtn +uy — 3)

_ 8f(0) 241,
+ <’ - T) * (8_ w2 ) ’

in which § = xm~% for the given & and where W, f(0) and Vi, k = 0.1.2 are
given by (4.1). (4.4), (4.5), (4.7) and (4.9).

Some explanatory remarks are the following. The term involving 4 in (5.3)
corrects for the bias, whereas the one involving Vi corrects for the variance. Ob-
viously, W* in (5.2) can be replaced by W if we also replace f* by f., which is f}
supplemented with two terms to correct for bias and variance. The form involving
W* and f* is given, as it seems easier to interpret. As concerns (5.4), we remark
that half of the term (7 — 8_}5(0)/11*") is the additional penalty due to splitting (cf.
(2.2)). while (8 — 24V;/W7?) represents the interaction term occurring at the end
of (2.9). As an example, consider the logistic df F(x) = 1/(1 4+ e~"). Then
(5.5) EW = } EV,=FEV, = -FEVy = i f(0) = l

3 - 30 4
It follows that f* estimates f* = (5u2 — 3uquy +u2 +2)/10 + 1/2 + 4/5, where
we have kept separate 1/2 due to splitting and 4/5 due to the interaction term.
Typically, fr will attain values between 3 and 5. Comparison of (5.5) to (5.3) will
also give some impression of the effect of the bias and variance corrections.

To conchude the paper, we present some simulation results. As underlying df’s
we shall use normal mixtures

(5.6) F(x)=(1—-7)®(x/o1) +vP(x/0o3).

It is easily verified that for given p = ¢2/01 the kurtosis in the family given by
(5.6) is maximized for v = 1/(1+4 p?). Hence F is made as non-normal as possible
in this respect for such . We shall consider the values p =1 (i.e. F = ®), 2 and 3
here, leading to mixtures with v = .5, .2 and .1, respectively. For o we choose 1, .8
and .75, respectively, leading to values of a2 = (1 — 7)o} +v03 of 1, 1.02 and 1.01,
respectively. This is by no means necessary, but it facilitates mutual comparison.
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Hence we shall consider for p = 1, 2, 3 the triples (v,01,02) = (.5,1,1), (.2,.8,1.6)
and (.1,.75,2.25), respectively in (5.6).

The initial sample sizes are m = 10, 20, 30 and 40, while the levels are o = .05,
.025 and .01. The required powers 7; will range from .6 to .9 and the alterna-
tives § = km~1/2 are chosen such that N/m is at least about 2, where N is the
average total sample size in a simulation run. For each (m,«, 7,0, p) we use 104
simulations. In a simulation step, a sample of size m is drawn from (5.6) for the
(7.01,02) under consideration. It is shifted over 6, upon which 7} from (2.1) and
N from (5.2) are computed. For the latter we need W, Vi, k = 0,1,2 and f(0) for
suitable bandwidths 7 and 7, ¥ = 0,1,2, 3, respectively. On the choice of T we
have already commented extensively in Section 4 and we shall use 7/8 between
1.5 and 2, as advocated there. Comparable considerations can be given for the 7.
Together with some experimentation in practice, this leads to the rule of thumb

(5.7) T9=Te =27, T =T3=T,

which we used throughout the simulations.

The resulting N leads to an additional sample on which T3 is based. Finally, we
reject if T = Ty +T5 (cf. (2.2)) exceeds the critical value N/4+((N ~1)/3)1/?{u, —
3(u —3uy)/(20N)}/2 (cf. (2.11)), thus leading in the end to a realized power 7. To
check the performance of the procedure under Hy, each simulation run is repeated
for 6 = 0, using the same starting point of the random generator, thus leading to
the realized level & as well. The results are collected in Table 1.

Inspection of Table 1 shows that the two-stage procedure behaves reasonably
well. The realized levels are quite satisfactory: ave(d@ — «), the average difference
between & and «, equals .08, —.01, —.06 and —.06% for m = 10, 20, 30 and
40, respectively. As concerns the power requirement, the procedure is slightly
conservative, which effect decreases as m gets larger. In fact, the ave(# — 1) equals
2.2, 1.8, 0.8 and 0.4% for m = 10, 20, 30 and 40, respectively. The convergence is
somewhat slower than in the parametric case considered in Albers (1992). This is
according to expectation, as the density estimation approach is more ambitious.
It covers a much wider range of df’s, but requires more estimation. Due to the
combined variation in the estimators involved, a small fraction of the simulations
will produce values of Ny + f, + % which fall below m, after which (5.1) leads
to N = m after all. The resulting positive bias is o(m™!) asymptotically, but
especially for m = 10 and 20 still noticeable in our simulation results. Indeed,
closer inspection of these results reveals that 7 — 71 is heavily correlated with the
number of times the second sample is empty during a run. A final remark about
Table 1 is that N,, the average sample size under § = 0, is clearly smaller than
N, the corresponding value under § = km~/%2. To explain this phenomenon,
we observe that the bias correction term for W involving V;, in (5.3) is typically
positive, as EVy = — [(f’)? < 0. Hence its effect on N from (5.2) is a decrease.
But under Hy there is no bias to correct for as far as 6 is concerned and therefore
N turns out lower than under § = km™/2.

Next we turn to a slight modification of the procedure above. As was men-
tioned after (2.2), it would be marginally better to use a single Wilcoxon statistic
based on the total sample, rather than the combined statistic T = T} + T5. The
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Table 1. The realized power & and realized level & for the Wilcoxon two-stage procedure using
density estimation, under normal mixtures from (5.6). We have: m=sample size, § = shift,
7 = bandwidth, p = 02/01, a = level, m; = prescribed power and N, (Nx) = realized average
total sample size under § = 0 (§ = km~1/2). Each run for # consists of 10% simulations.

m 8 T p o & i3t T Nea Ni

10 5 1.0 1 .05 .0517 .750 .773 27.0 33.8
10 4 8 2 .05 .0504 .600 .635 25.0 29.8
10 4 6 3 .025 .0265 .700 .725 36.9 @ 48.7
10 .6 9 2 .025 .0255 .900 .906 35.5 55.0
10 6 1.0 1 .01 .0104 .800 .817 34.3 48.4
10 4 .8 3 .01 .0102 .700 .725 46.3 59.1
20 .5 1.0 3 .05 .0480 .900 .924 29.1 40.6
20 4 8 2 .05 .0502 .750 .778 33.6 40.3
20 5 1.0 1 .025 .0255 .800 .814 35.3 44.3
20 .3 6 3 .025 .0246 .700 .716 55.8 63.5
20 6 1.0 1 .01 .0105 .900 .903 39.3 55.9
20 4 8 2 .01 .0105 .750 .777 55.5 67.1
30 .3 5 3 .05 .0491 .800 .808 53.5 61.5
30 4 8 2 .05 .0497 .900 .908 51.5 62.7
30 4 6 1 .025 .0240 .800 .803 52.7 62.1
30 3 6 3 .025 .0218 .700 .717 53.1 61.1
30 .5 8 1 .01 .0110 .900 .897 554 70.9
30 4 6 2 .01 .0107 .750 .763 52.0 63.5
40 25 5 1 .05 .0492 .700 .703 81.0 86.1
40 .3 5 3 .05 .0493 900 .897 73.1 84.4
40 3 6 2 .025 .0234 .750 .758 71.8 80.0
40 35 6 3 .025 .0251 .900 .908 653 79.5
40 6 2 .01 .0105 .900 .904 T74.5 92.2
40 6 1 .01 .0095 .700 .704 96.1 105.2

reason we nevertheless preferred the latter approach was its better asymptotic
tractability. However, it is interesting to investigate the other possibility empiri-
cally. Hence, we repeat the simulations leading to Table 1, but now we add the
additional sample of size N — m to the first one and compute the full Wilcoxon
statistic Tr based on the sample of size N. Only two minor adjustments are
required. As no splitting occurs, the corresponding penalty (cf. the discussion fol-
lowing (5.4)) can be lifted, which means that (7 — 8£(0)/W) in (5.4) is replaced

by half this amount. In addition, as 3 7, (j/(N +1))* + ij:_lm(j/(N +1))? =
(N = 1)/3+ O(m™1) is replaced by Y-/_  (j/(N + 1))* = N/3 - 1/6 + O(m™"),
the corresponding replacement of (N —1)/3 by (N/3 — 1/6) should be made in
the critical value used above. Using the same simulation runs as in Table 1, we
obtain realized powers 7r and realized levels &g as collected in Table 2.

In comparing the contents of Table 2 to those of Table 1, the following points
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Table 2. Results as in Table 1, but now for the full statistic T, rather than for the combined
statistic T = 71 + T» from (2.2).

m 0 T p a & m fp Narp Nop
10 5 1.0 1 .05 .0491 750 .759 25.8 33.0
10 4 B 2 .05 0472 .600 .621 24.6 29.5
10 .4 6 3 .025 .0268 .700 .716 38.1 48.2
10 6 9 2 025 .0229 .900 .897 35.2 54.3
10 6 1.0 1 .01 .0083 .800 .816 33.3 48.0
10 4 8 3 .01 .0095 700 .727 45.8 58.4
20 .5 10 3 .05 0367 900 .876 28.1 39.6
20 4 8 2 .05 0433 .750 744  32.6 39.5
20 .5 1.0 1 .025 .0227 .800 .804 344 43.7
20 .3 6 3 .025 .0246 .700 709 54.9 63.3
20 6 1.0 1 .01 .0096 900 .898 38.5 55.0
20 4 82 .01 .0100 .750 .767 54.4 66.4
30 S5 3 .05 .0455 800 .791 527 60.8
30 4 8 2 .05 0449 900 .892  51.1 61.8
30 4 61 .025  .0231 .800 .795 520 61.3
30 .3 6 3 .025 .0222 .7T00 .712 523 60.5
30 .5 8 1 .01 .0096 .900 .892 54.0 70.0
30 4 6 2 .01 .0095 .750 751 51.2 62.9
40 25 5 1 .05 .0504 700 697 80.1 85.5
40 .3 S5 3 .05 0476 900 .886 72.3 83.7
40 .3 6 2 .025 .0230 .750 .746 71.2 79.7
40 .35 .6 3 .025 .0226 .900 .896 64.8 78.8
40 4 6 2 .01 .0106 .900 .898 73.6 91.0
40 6 1 .01 0088 .700 .702 959 104.7

can be noted. ave(dgp — a) equals —.12, —.39. —.25 and —.12% for m = 10, 20,
30 and 40 respectively. Hence dr seems to be less close to o than &. On the
other hand, the error typically occurs on the safe side, i.e. the resulting procedure
is conservative. As concerns the power requirement, we obtain that ave(ng — 7y)
equals 1.4, .0, —.3 and —.5% for m = 10, 20, 30 and 40, respectively. Hence 7 in
its turn is closer to 7y than #. Furthermore, ave(N, — N, r) = 0.7, which agrees
well with e.g. the value 7/2 — 2v/2 = 0.672 of 1(7—8f(0)/EW) in the normal case
(p =1). All in all, the full statistic procedure provides an interesting competitor
to the original splitted proposal. In addition, it is more simple conceptually, as
splitting is avoided.

At the end, let us return to the starting point: Stein’s two-stage procedure.
This procedure is of course applicable for p = 1. Moreover, it is known to be
robust to certain forms of non-normality, see e.g. Ramkaran (1983). Hence it also
makes sense to investigate its behaviour for p = 2 and p = 3. From Albers (1992),
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p. 350, we obtain that ¢~! in (2.2) satisfies to o(1)

m(tg — ur)? - (1+u2 + uquy +u2)
2 m :

(5.8) =

Using once more the same simulation runs as in Table 1, we collect realized powers
7s¢ and realized levels ég; for Stein’s two-stage procedure in Table 3.

Table 3. Results as in Table 1, but now for Stein’s two-stage procedure.

m 6 p a &5y m Fs Ng
10 5 1 .05 0523 750 .762 25.2
10 4 2 .05 .0628 .600 .613 27.3
10 4 3 .025 .0295 .700 .701 47.8
10 .6 2 .025 .0289 .900 .907 36.5
10 6 1 .01 0116 .800 .797 35.7
10 4 3 .01 .0166 .700 .686 65.4
20 .5 3 .05 0481 .900 .918 38.0
20 4 2 .05 0507 .750 .763 37.5
20 .5 1 .025 .0233 .800 .803 35.1
20 .3 3 .025 .0286 .700 .708 77.8
20 .6 1 .01 .0113 .900 .906  41.2
20 4 2 .01 0118 .750 .749 65.8
30 .3 3 .05 .0522 .800 .800 73.6
30 4 2 .05 0503 .900 .903 58.1
30 4 1 .025 .0257 .800 .811 52.8
‘30 3 3 .025 .0255 .700 .699 74.6
30 5 1 .01 0111 .900 .903 56.9
30 4 2 .01 0086 .750 .755 63.7
40 25 1 .05 .0500 .700 .707 788
40 .3 3 .05 0546 900 .905 100.9
40 .3 2 .025 .0231 .750 .751 83.6
40 .35 3 .025 .0237 .900 .901 91.8
40 4 2 .01 0091 .900 .894 89.1
40 1 .01 0098 .700 .705 97.1

A summary as before in this case produces that ave(ds; — a) equals .35, .06,
.06, .0% for mn = 10, 20, 30 and 40, respectively. Hence, for smaller m, the
procedure can be markedly anti-conservative. To investigate this phenomenon a
bit further we introduce t, g, the critical value of Student’s test for underlying
distribution F. From Albers et al. ((1976), p. 135, eq. (5.23)) it follows that, for
sample size m,
ud — Uy (Kyp +3)

(59) t(x.F = Uq + a{)’m - 12m (Uui - 3Ua) + 0(77?‘—1)1




690 WILLEM ALBERS

where k4 p = f_ococ m4dF(I)/(ff°oo z2dF(z))? — 3, the fourth cumulant of F. This
result in its turn readily implies that the error &@ — « in «, due to using the normal
critical value under nonnormal F', to first order equals

R4 F

= o var 3 _ ;
(5.10) &—a= 12m(u“ 3ug)P(ua)-

For the normal mixtures under consideration, x4 r equals 3(p? — 1)2/(4p?). To-

gether with (5.10) this e.g. produces for m = 10, & = 0.01 and p = 3 a value
0.67% for & — «. This indicates that the value 0.0166 for &g; is Table 3 for this
configuration of m-, a- and p-values, is not an outlier. In fact, for this particular
triple we performed 8 additional simulation runs, using varying m; and 0, resulting
in values of &gy which varied from .0134 to .0193, with an average of .0154.

As concerns the power requirement, we obtain that ave(7g; — m) equals .3,
.8, 4 and .2% for m = 10, 20, 30 and 40, respectively. Hence in this respect,
Stein’s procedure performs very well. As far as power and level are concerned,
the nonparametric procedures above are preferable mainly in the sense that they
provide better control of the level, as should be the case.

The remaining aspect for comparison is the average sample size. As S2, is
translation invariant, we deal with a single value Ng;. Roughly speaking, the
picture is as follows: for p = 1, we have that Ng; is comparable to N, and
substantially lower than N, while for p = 2 we find that Ng; is comparable to N,
and substantially larger than N,. For p = 3, we even see that Ng; is substantially
larger than N,. An obvious explanation for this behavior is obtained by looking at
the ARE of the Wilcoxon test with respect to the ¢t-test under the normal mixtures
from (5.6). For v = 1/(1 + p?), this ARE equals

(5.11) g{(l_7)5/2+75/2+[2,7(1_,),)]3/2}2’

which attains the values .955 (=3/7), 1.136 and 1.373 for p = 1, 2 and 3, respec-
tively.

Summarizing, the simulation results confirm that under normality (i.e. for
p = 1) Stein’s two-stage procedure is best, but also strongly suggest that the
picture changes as p increases. For p = 3, the nonparametric procedures are to be
preferred, both with respect to control of level as to sample sizes required.
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