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A b s t r a c t .  For the one-sample problem, a two-stage rank test is derived which 
realizes a required power against a given local alternative, for all sufficiently 
smooth underlying distributions. This is achieved using asymptotic expansions 
resulting in a precision of order m-~,  where m is the size of the first sample. 
The size of the second sample is derived through a number of estimators of 
e.g. integrated squared densities and density derivatives, all based on the first 
sample. The resulting procedure can be viewed as a nonparametric analogue 
of the classical Stein's two-stage procedure, which uses a t-test and assumes 
normality for the underlying distribution. The present approach also general- 
izes earlier work which extended the classical method to parametric families of 
distributions. 
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1. Introduction 

Let X1, X 2 , . . .  be independent  identically d is t r ibuted  (iid) r a n d o m  variables 
(rv 's)  f rom a cont inuous dis t r ibut ion function (df) F ( x - O )  with F ( - x )  = 1 - F ( x )  
for all x. The  hypothes is  H0 : 0 = 0 is to be tes ted on the  basis of a sample  
from the sequence X1, X ~ , . . . .  In the classical case the prob lem is specialized to 
F(x)  = ~(x/cr), where (I) is the s t anda rd  normal  dr. Stein 's  two-stage procedure  
for this s i tua t ion  is well-known (see e.g. Lehmann  (1986), pp. 258-260). An initial 
sample  of size rn is drawn and its sample  variance S,2~ is obtained.  In the second 

stage a sample  of size N - m is selected, where 

( i . I )  N = + 1), 

with c > 0 any given cons tant  and [y] denot ing the largest  integer < y. Then  

N1/2(N  -1 ~ iNz  X i -  O)/Sm has a t in_ l -d is t r ibut ion  and the cons tant  c f rom (1.1) 
can be chosen such tha t  the corresponding two-stage test  has a prescr ibed power 
against  a given al ternat ive,  regardless of the value of the scale p a r a m e t e r  or. 

Now fixed sample  size rank tests,  being distr ibutionfree,  have levels indepen- 
dent  of F ,  but  powers direct ly dependent  of F .  Hence it seems worthwhile to t ry  to 
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extend the property above of having powers independent (of certain aspects) of tile 
unknown underlying df, to the rank case. In fact, results in this direction have al- 
ready been presented in Albers (1991, 1992). In these papers attention is focussed 
on a straightforward extension of Stein's procedure: using asymptotic expansions 
for local alternatives, a two-stage rank test is derived which has to o(m -1) a power 
independent of the scale parameter or. Of course, if we are not constrained to the 
classical case F ( z )  = ~ ( z / c r ) ,  there no longer is a special reason to let F belong 
to a scale family. Without  essential difficulties, the results for the scale case can 
be extended to arbitrary parametric families of underlying df's. However, it does 
not seem particularly rewarding to pursue this: the resulting expressions become 
typically more complicated than in the scale case, while lacking the natural appeal 
of this latter case as a direct analogue of a well-known classical procedure. 

A more appealing extension of the results for the scale case can be achieved 
by applying a nonparametric approach, using density estimation techniques. In 
this way, a two-stage rank test can be obtained which has, once more to o(m-*) ,  
a power independent of F,  for all F satisfying certain regularity conditions. The 
execution of this program will be the purpose of the present paper. Some comments 
to be made in advance are the following. Clearly, the idea is not new to estimate 
the expression depending on the unknown F which occurs in the asymptotic power. 
see e.g. Sen and Ghosh (1971, 1974) and Schweder (1975). Here we apply it to the 
two-stage ease, and, more importantly, we use second order approximations based 
on asymptotic expansions to o(rn-X), rather than on mere first order asymptotic 
results. This entails that also second order terms, and hence derivatives of the 
density f ,  have to be estimated. 

As a consequence, the results tend to become rather technical. To improve the 
accessibility and to allow implementation in practice, ate therefore specialize to the 
case of Wilcoxon scores from a certain point on. In this situation, the first, order 
term to be estimated depends on the unknown F through J~_~ .f2(~r)d:r, which we 

will denote by f f2 from now on. Fortunately, a multitude of, mostly quite recent, 
results are available on rates of convergence in estimating this functional. It occurs 
e.g. in Goldstein and Messer ((1992), p. 1318) and in Donoho and Liu ((1991), "an 
interesting example", p. 654). Both these papers refer to Ritov and Bickel (1990), 
where it is shown that  without sufficient smoothness f f'-' is not estimable at rate 
m. -~ for any ct > 0. However, if the density has sufficient derivatives, the rate will 
be m -1/2. This is the case we shall consider, as the use of asymptotic expansions 
to o(rn -1) already presupposes the existence of several derivatives of f .  A useful 
reference for this situation is Hall and Marron (1987), together with subsequent 
papers such as Jones and Sheather (1991) and Sheather et al. (1992). 

In Section 2 we present the asymptotic expansion for the two-stage rank test, 
which we apply in Section 3 to obtain tests with prescribed power. Specialization 
to Wilcoxon scores occurs in Sections 4 and 5. First we collect all density-type 
estimators involved in Section 4. Then in Section 5, we present and comment 
on explicit formulae for the total sample size N required to ensure a given power 
to o(m -1) against a given alternative. An example and some simulation results 
conclude the paper. 
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2. The asymptotic expansion for the two-stage rank test 

In this section we introduce the no ta t ion  and quote  the relevant results from 
Albers  (1992). Let  X ] , X 2 , . . .  be iid. rv ' s  with cont inuous df F ( z  - 0), where F 
is such t ha t  F(- : r )  = 1 - F ( z )  for all z. For a first sample  of size m, let Z(, , /  = 
(Z1 . . . . .  Z, , )  denote  the vector  of order s ta t is t ics  of [X~[ . . . .  , [X,~I. Moreover,  for 
j = 1 . . . . .  m, in t roduce l/i, which equals 1 if the Xi  corresponding to Zj is posi t ive 
and which equals 0 otherwise.  This  leads to a rank s ta t is t ic  for tes t ing H0 : 0 = 0 
given by 

(2.1) T1 = ~ aljVj, 
j = l  

where al  = ( a 1 1 , . . . ,  a im)  is a vector  of scores. We shall typical ly consider exact  
scores a~j = EJ(Uj:,,~), where J is a cont inuous function on (0, 1) and U~:m < . . .  < 
U,,,:m are order s tat is t ics  for a sample  of size m from the uniform dis t r ibut ion on 
(0, 1). 

For the second stage of the test  we select an addi t ional  sample  of size N - rn, 
where N = N ( X t , . . .  , X m )  in general. We shall require tha t  N = N(Z(,~))  in 
what  follows. Since T1 and Z( ,  d are independent  under  H0, this ensures tha t  
the two-stage procedure  remains  dis t r ibut ion-free  as well. The  second sample,  in 
combina t ion  with  scores a2j = EJ(U-j:N-,~), j = 1 , . . . , N  - m ,  leads to a rank 
s ta t is t ic  T~, analogous to T1, from (2.1). The  two separa te  s tat is t ics  are s imply 
combined to the final s ta t is t ic  

(2.2) r = TI + T2. 

Of course, it would be slightly be t t e r  to use a rank s ta t is t ic  of the form (2.1) based 
oil the total  sample  of size N.  But ,  as is argued in more detail  in Albers  (1992), 
it is less tedious to obta in  an a sympto t i c  expansion for the df  of T from (2.2), 
whereas  the loss due to using T is typical ly compensa t ed  by as little as a single 

addi t ional  observat ion.  
Before in t roducing the a sympto t i c  expansion in question, we shall first list the 

condit ions involved on the es t imator  N,  the df F and the score function J .  Let Af 
be the class of es t imators  N = N(Z( , , ) )  such tha t  

(2.3) 
(2.4) 

P( (1  + e) < N / ' m  < c - 1 )  = 1 - o ( m - 1 ) ,  

E I N  - E N I  "2'J = O(m/:~), 

for some e > 0 and /3  > 1. Condi t ion (2.3) ensures tha t  N -  m will tend to infinity 
of the same ra te  as m, except  for a sufficiently small probabil i ty,  while (2.4) implies 
tha t  N - E N  = Op(ml /2 ) .  Let Q be the class of twice cont inuously differentiable 

functions Q on (0, 1) tha t  s a t i s ~  

(2.5) limsupt(1 - t) Q"(t) If 3 

t--0,1 ~ I < 2" 
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Let .7- be the c l~s  of df 's  on [R i with positive densities tha t  are symmetr ic  about  
zero, four times differentiable, and such tha t  for ~bi -- f ( i ) / . f ,  q2i(t) = ~hi ( f - i ( (1  + 
t) /2)) ,  m4 = 6, m2 = 3, ma = 4/3, m4 = 1, we have ~ E Q (see (2.5)) and 

(2.6) lira sup / 1'r + Y ) l " ' . f ( x )  dx  < oo, i = 1 . . . . .  4. 
y~0 

Let J be tile class of nonconstant  functions J on (0, 1) tha t  satisf3.~ ,J C Q and 

Next we give the expansion. Let ~ denote ~ '  and let q5 (~') denote the k- 
th derivative of 0. The Hermite polynonfial of degree k is given by Hk(x )  = 
( - 1 ) ~ r  k = 0, 1 , . . . .  Using the convention tha t  integration will be 
over (0, 1), unless s tated otherwise, we define 

(2.7) 

m)/20 f J ~ l  
71"' = ( f J 2 ) 1 / 2  ' 

b0=  f J ( 3 ~ - 6 ~ 1 % 2 + ~ a ) J ' J 2  
6( f  J~I/1 ) 3 

bl = f J21uu~21 -- f f J ( s ) eC i ( s ) J ( t )~ i ( t ) ( s  A t - s t )dsdt  

b.2= 

b3 - -  

bo,m - -  

f J3~1 

3 ( f  J2)(J 'Jk~x)  ' 
j" ,]4 

12(f  j2 )2 '  
77~ 711 0 

2 Ej=I  Covj Ej=I  oj 

where Covj = Cov(J(Uj:,, ,),  kol(gj:m) ) and o~ =- (72(j(gj:m)).  I11 addition, for 
r _> (1 + 2e)m, define 

(2.8) 

(2.9) 

Cr = ( N / r )  1/2 - 1, 
1 1 - 

H ( x )  = ~(.~,) + r  _~r- >(bo,., + bo,H_.,) 

3 
+ r - '  E q}a-A')bkHk(z) - q , ,EU 

k=O 
1 9 -- 9 

- ~TITEU-HI(a.  ) 

'v-l'/}'rE( 0 E alj(~-Q(Zj) -- E@I(Zj)) )  ] 

+ j' Jq21 ~ " 

Then we have (see Albers (1992)) 
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THEOREM 2.1. Let N E A/', F E .T and J E f t .  Suppose that 0 < 0 <_ 
C m  -V9  for some C > O. If  r in (2.8) is chosen such that r = E N  + o(m172), 'we 
h, ave .for T from (2.2) that 

(2.1o) P {  2 T - E a U - } - - ~ a 2 j  < z )  H ( x - r / ~ )  = o ( m  -1) 
s,)p \ 7 - / - 

.while all terms in [-I(x - 7h- ) beyond ~ ( x  - rb. ) a r e  O(T/'1,-1/2). 

To illuminate the relevance of Theorem 2.1 for our purpose, we observe the 
following points. The two-stage procedure is performed conditionally. In fact, 
re.iection of H0 : 0 = 0 in favor of H1 : 0 > 0 for large values of T standardized as 
in (2.10), leads to a critical value ~ = ~o + o(N-1 ) ,  where 

(2.11) ~a = ua - N-lb3Ha(uc~) 

with 'u.~ = 4~-t(1 - ~) (cf. once more Albers (1992)). But replacement of N -1 
in this ~ ~ by r -1 such that  r = E N  + o('m)/2) with probability I - o(m-~) ,  
causes differences of o(m-a) .  Hence the power of the unconditional test based 
on the s tandardized T from (2.10) will agree to o(m, -1) with the power of the 
two-stage procedure to be investigated. Consequently, it makes sense to use the 
uncondit ional  expansion presented in Theorem 2.1. 

To shed some light on the expansion itself, we remark tha t  the result is ob- 
tained by first taking the expansion for a fixed sample size rank test, using the 
(to order .m. 1/2) expected sample size r. The expression for H in (2.9) then arises 
by adding three terms involving U from (2.8) to take into account that  N rather 
than  r is used, and by using b0,,,, + bo,{r]-,,~ instead of b0,?] to account for the use 
of two separate rank statistics T1 and T2 (cf. (2.2)) instead of one overall statistic. 

3. Two-stage tests with prescribed power 

Using the results of the previous section we shall indicate for the case of general 
J how a prescribed power can be realized to o(m -1) against a given alternative. 
Before going into some detail we shall give an overview of the steps involved. Let 
rr(0) denote the power of the two-s tage  test which rejects whenever the standard- 
ized T from (2.10) exceeds {a given in (2.11). Suppose we require for certain 
and rq tha t  

(3.1) rr(~.m, -1/2) = rot. 

As Theorem 2.1 amply implies tha t  7r(0) = 1 - O(u ,  -'I?,.) + o(nz-1/2), it follows 
through (2.7) tha t  (3.1) is satisfied to first orcler for 

m(u,,~ - "a~) ~ f j 2  
(3.2) r = ~2(_ j" jffal)2 ' 
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where u~ = ~ - t ( 1  - rq). Note tha t  the requirement tha t  r >_ (1 + 2e)m for some 
e > 0 will be met if ~ in (3.2) is sufficiently small, i.e. if 0 = n m  -1/2 is sufficiently 
close to H0 : 0 = 0. 

The form of the leading term N1 of the desired est imator  is readily suggested 
by (3.2): if W is a suitable est imator for - f  J ~ l ,  then define 

(3.3) N1 = r 
ll.'2 n2 I,V ') 

The next step consists of adding a correction term f,- to N1, selected through 
(2.8)-(2.10) in such a way tha t  all lower order terms in the expansion are precisely 
cancelled, thus ensuring tha t  N1 + f~ will produce the desired realization of (3.1) 
t o  O ( m - 1 ) .  

Obviously this f,. will involve unknown expressions like f J~lvP~ and f Ja~l 
(cf. (2.7)), which will have to be estfinated in their turn. But  as only lower order 

terms are involved, replacement of f,. by a consistent est imator  f,. will lead to 
negligible differences. It. remains to add the final step N = max(m,  [N~ + f,. + 1] 2) 
(cf. (1.1)). 

Hence the problem has now essentially been reduced to est imat ing a number 
of integrals involving ~i ,  i = 1, 2, 3. Usually consistency will suffice, but  for the 
est imator W of - f  Jk~x in view of (3.3), (2.8) and (2.9), second order properties 
will be needed. Several approaches are possible for - f  J ~ x .  For exampl< Sen 
and Ghosh (1971, 1974) use rank statistics based on shifted samples. Another  
possibility is to rewrite - f  J ~ l ,  using tha t  ~ l ( t )  = (f ' / . f)(F-l((1 + t)/2)), into 
2fJ '( t ) /q((1 + t)/2)dt, where q = 1/f  o F -1 = ( F - l )  ' is the so-called quantile 
density. Methods  for es t imat ing q are discussed in Jones (1992). Here we shall 
adopt  a rather  direct approach, used e.g. by Schweder (1975). 

Define H = 2F  - 1, h = H '  = 2 f  and introduce the (extended) empirical df 
for I X l l , . . . ,  [Xml and all y: 

(3.4) 
1 

H, , (y )  = F,,~(y) - F , , , ( -y )  = - -  • #{IX~L <_ y} signy- 
?/'1 

Using tha t  vg, = ~ ' o H  -1, the integral - f dq21 can be rewrit ten into J" J'hoH -1 = 
f o  J'(H(x))h(x)dH(x), which can be est imated by 

(3.5) ! 
'Wt 

i=1 

where ]~ is a density est imator for h. We shall use a kernel type choice for ]z. To 
be more precise, let k be a density which is symmetr ic  around zero and which has 
a finite, positive second moment.  For bandwidth  r we then have 

(3.6) 

O 0  

= f z)dH.,(z), 
- -  O O  
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where kr(z)  = r - l t c ( z / r ) .  Using tha t  H m ( - y )  = - H m ( y ) ,  we can transform (3.6) 

intoh(.v)=f0 {k . (y - z )+l~ .@+z)}dH~(z )  m-l~j=l{ .(y-IXjl)+k~(y+ 
IXjl)}. Together with (3.5) this leads to 

(3.7) W -  
1 

m ( m -  1) ~--~'~ ~ J ' (Hm(IXil ) ){ l~ ' ( IXi]  - IXjl) + k,(IX*l + IXal)}- 

Note tha t  we have omit ted  the non-stochastic diagonal term. The interesting 
discussion in itself about  possible advantages of including such a term (cf. Jones 
and Sheather (1991)) is not relevant here, as its contribution in our approach 
would be automatical ly  cancelled again by the second order term involving E U  in 
(2.9). Such a cancellation (at least to first order) also occurs for the bias due to 
having X o fl'om F ( x  - 0), rather than  from F(x) .  In the next section we shall be 
more explicit about  this point (see the remark following (4.2)). 

Next we consider the lower order terms. Those involving hi, i = 0, 1, 2, 3, can 
be dealt with in an analogous way as - f  J ~ l .  For example, letting J(0) = 0 
wi thout  loss of generality, the integral f J(3~al - 6 ~ 9 2  + ~a) in b0 leads to 
f ~ { - 4 J ' ( H ( x ) ) h " ( : r )  - 3J" (H(x ) )h ' ( x )h (x ) }dH( :c ) ,  which can be est imated by 

(3.8) 
n l  

! ]~_~{-4J'(Hm(IXiI))A"(IX~I) - 3J"(H,,~(Ix{I))A'(IX, I)A(IX{I)}, 
WI, 

i=1 

where ]z' and h." are suitable estimators of the derivatives h' and h". To deal 
with the terms involving 0- in (2.9) we observe through (2.8) and (3.2) tha t  U = 
( -  f J ~ ) / W  - 1. Hence E ( f  and E U  2 can be evaluated once we know bias and 
variance of W to o(m- ' l ) .  Results of this type can be found in Schweder ((1975), 
e .g .p .  115, Theorem 1; see Schweder (1981) for a correction note!). 

However, we shall not bother  to present all these estimators here explicitly. 
One reason is tha t ,  like the one in (3.8), they tend to be rather complicated. But,  
rnore importantly,  (3.8) and (3.7) also serve to make clear tha t  rather severe condi- 
tions on J will be needed to ensure tha t  the estimators involved are well-behaved. 
Typically, boundedness of J ,  or even of the derivatives J '  and J "  occurring in 
(3.8), will be imposed, thus ruling out the important  choice J = q~-l, correspond- 
ing to the normal scores test  (cf. the remark to this effect in Schweder (1975), 
p. 115). There are ways of avoiding such assumptions and including J = r -1 (see 
e.g. Albers (1985)), but  tha t  would involve adding a lot of new technicalities on 
top of what  we have already. 

In view of the above we prefer to specialize from this point on to the case 
of Wilcoxon scores J(t)  = t, as announced in the introduction. In this way we 
regain relatively simple est imators which will typically be well-behaved without  
addit ional  effort or conditions. 
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4. Wilcoxon scores: the estimation 

For the choice J(t) = t the integral - f J ~ t  reduces to 2 f _ ~  f2, while (3.7) 
simplifies to 

1 
(4.1) w - , , . ( , -n-  1) X - x j )  + k . ( x ,  + x j ) } .  

Note that  in (4.1) we have replaced the absolute values by the rv's themselves, 
which is allowed by virtue of the symmetry of k~. Nevertheless, it remains true 
that  W, and hence N, depends on X 1 , . . . ,  X.,  only through Z(,,) as required. 
Expressions for bias and variance of W are easily derived using results of Hall and 
Marron (1987). To be totally explicit, we specialize from now on, unless stated 
otherwise, to the Parzen-Rosenblatt kernel estimator, using the uniform kernel 

1 for Isl < 1 and k(s) = 0 otherwise. Then we have k ( s )  = 

(4.2) v.r..:lO{l:' (I:'>'} 'I" _ _  _ + - -  + 0 (1)~ ,  - 1  + 'm.-2r--1), 
177, ?l?~ 2 T 

where we adopt the convention that integrals involving f will be from - o c  to oc, 
unless stated otherwise. 

Some comments are useful here. In the first place, W contains two types of 
bias. As the Xj are from F(x - O) rather than from F(x), we in fact estimate 
2 f f2(x -O)dx rather than 2 f f2. This produces the term 202f f f "  in (4.2). A 
remedy might seem to be the use of Xj - ~m-U2 rather than Xj, as this would 
precisely eliminate this bi~us in the point of interest 0 = ~rn -1/2. However, this 
alignment destroys the property that W depends on X1, . . .  ,X  .... through Z(,,,) 
only, and is therefore not allowed. Obviously, the term r 2 f f f ' / 3  represents the 
"genuine" bias, due to the estimation. As concerns the variance in (4.2), note 
that  it is of order rn -1 + m--% --~ rather than the more customary order m - i T  -~. 
This better rate is due to the fact that we are estimating integrated squared 
smooth densities, rather than densities themselves. Under these circumstances 
it is clear that  Theorem 2.1 is applicable when using W from (4.1). To avoid 
lengthy expositions, we leave verification of the remaining minor technicalities to 
the reader. 

Next we consider the choice of bandwidth r in (4.1). The usual approach 
of minimizing the squared bias plus variance is not relevant here. By expanding 

= 2 f f 2 / W - 1  in terms of ( W - 2  f f2) /(2 f f2), we observe from (2.9) that  bias 
and variance should be balanced, rather than squared bias and variance (cf. Hall 
and Sheather (1988), p. 384 for the same phenomenon). However, for the leading 
terms in either case we shall compensate by estimating f f f "  and {J' f3 _ ( f  f2)2}, 
respectively. The actual error committed will thus be 0(04 + 74) + O(rrt-2w) -t- 
o(m-1). This will be minimized with respect to 7- by letting r ~ m -2/5. Just as in 
the mean integrated squared error case, we could try to estimate the appropriate 
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coefficient c in 7- = cm -2/5. But in the present case this will even be harder than  
for MISE. More importantly,  as m is the size of the first sample, it will typically 
be rather small, e.g. 10 < m < 20. Referring once more to Hall and Sheather 
(1988), we prefer to use m -2/5 as a qualitative guide only, as for m = 10, values of 
m -2/5, m -1/2 and m -z/3 do not differ greatly (Hall and Sheather (1988), p. 382). 
As 7- ~ m -2/5, while 0 ~ m -U2, an explicit proposal is to let ~- = ct~m -1/2 with 
c e [1 .a  21. 

Summarizing for a moment,  we have introduced W in (4.1), found its bias and 
variance in (4.2) and also determined a reasonable choice of bandwidth  7-. Wha t  
remains concerning W is to find estimators for f f f "  and f f3 (cf. (4.2)) and of 
course, to deal with the last term in (2.9) which is a mixed term involving U- and 
thus W. Following Schweder (1975) or Hall and Matron (1987) we have for f f f "  
the est imator 

m 

(4.3) --1 E f"(X~),  
i=1 

where / "  is a suitable est imator for f " .  One possibility is to use / " ( x )  = 
m-~ ~ = l k ~ ( x  - Xj) ,  with k sufficiently smooth,  e.g. k = r Here we shall 
simply use 

(4.4) 1/~ - 
1 

~ 

1 where ~:~o(s) = T(~3k(s/To), k(s) = - 4  for Isl }, = 4 for ~ < Isl 1 and 

~:(s) = 0 otherwise. We use w0 rather than 7- for the bandwidth  to stress tha t  
for IV from (4.1) and V0 from (4.4) different choices of bandwidth  are possible. 
Es t imat ion of f fa  is more straightforward: use 

(4.5) ~ = _1 ~ )/2(Xi), 

i=1 

17t w i t h / ( x )  = (2m) -1 }-~j=l{k~, (x - Xy) + k~ (x + Xj )}  for suitable bandwidth 71. 

To evaluate I = E ( 5 ~ - ~ a u ( ~ , z ( Z j ) -  E ~ I ( Z j ) ) ) / J ' J ~ I  to first order, we 
note tha t  the leading term in the expansion of U- is - ( W - 2 f / 2 ) / ( 2 J ' f 2 ) ,  

7 7 L  

w h e r e a s  77~ -1  E I " I  a l j ~ ' l ( Z J )  = (??l -~- 1) - 1  Ej=l( j /m)~, l (H,~Z( j /m))  ---- ( .m + 

1) - 1 .  ~--]~im 1 Hm(Xi)g,l(Xi) .  A straightforward but tedious computat ion shows 
tha t  Cowu'(l'K Y~'J~'~=I H,,(Xi)g,~ (Xi)) = - 1 2  f f3 + 16(f  f2)~ to first order. Com- 
bination of these facts leads to 

which quant i ty  can be est imated using W from (4.1) and 1/1 from (4.5). 
It remains to deal with the terms involving the b's in (2.9). As concerns b0, we 

already saw tha t  J' J ( 3 ~  3 - 6q21~2 + ~3) can be est imated through (3.8), which 
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reduces here to - 4 m  -1 ~ ' ~ f l - l f i " ( I X ~ l )  = - 8 v 0  (cf. (4.3) and (4.4)). In bl, we 

encounter  ] = f , 1 ~  - f . f  J ( ~ ) % ( s ) J ( t ) % ( t ) ( ~  A t - s t ) d s d t .  For J ( t )  = t,  the  
latter integral reduces after some tedious steps to f j 2 ~  + 8 f fa  _ 16 ( f  f2)2. 
Hence / :  boils down to 16 ( f  f ' ) ) 2 _  8 f . f3 which can be es t imated using W and V1. 
Note that  the specialization to Wilcoxon scores indeed heavily reduces matters! 
For b.~, we need f Ja~Pl which can be rewrit ten to 6 f H2fdF, to be es t imated by 
6 �89  where (cf. (3.4)) 

JTl 

(4.7) ~ = _1 Z H;~(X~)/(X~), 
77/ 

i= 1 

with f as in (4.5), but  again with suitable bandwid th  7-.2. As b3 reduces to a con- 
stant,  it renlains to consider t)0 ...... There we encounter  ~ j = l  Covj,  which to first 

order equals jF x-x/N1/N J '  (~)kI/~ (t)t(1 - t )d t . .  which can be rewri t ten to 2 f ( 0 ) -  4 f f2.  

Obviously. f (0 )  and I'V suffice fox" estimation.  To summarize,  after s t raightforward 
computat.ion we arrive at 

(4.s) 
b0- 4 1,5 b~=9-4V1 b2-6V2 

9 l,I "3' " I.V 2" W ' 

3 and b0. 7 4f (0)  
b3 = 2---0 ' - 2 1'1." ' 

where W and V~., k = 0 .1 .2  are given by (4.1), (4.4), (4.5) and (4.7) and, for a 
suitable bandwidth  7-3, 

(4.9) f(O) = _1 ~--~k~(Xi). 
i=1 

5. Wilcoxon scores: sample size determination 

Ill Section 3 we observed that  the total sample size N required to ensure that  
our two-stage test realizes rr(r~m -1/')) = 7rl to o(m -1) for given ~ and 7cl, has the 
f o r m  

(5.1) N = max (.m, [Nx + f,. + l ] )  . 

Here N1 is as given in (3.3), while f,. is a consistent es t imator  for the correction 
f,., selected through (2.8)-(2.10) such that  all lower order terms cancel. The step 
from f,. to .[,. turned out  in general to involve rather  complicated est imators,  
valid under unduly restrictive conditions. Therefore we specialized in Section 4 to 
the case J(t) = t and obta ined explicit and relatively simple expressions for all 
es t imators  required. 

W h a t  remains now is to use these explicit results from the previous section to 
evaluate fr  explicitly as well. However, this step completely parallels Theorem 3.1 
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in Albers (1992). Hence we omit  this derivation and .just present the resulting N. 
In fact, we have 

( 1]) 
(5.2) N = m a x  m, [ 3,,.2(W.)2 + f ) + ~  , 

where 

(5.3) IIT*={I,V- (202 
f,* = - (u,,, - 'U,~)- 

�89 
+ 12(.s - 1) 

IV 

+ 7 I.l" 

+ V0 1 - - -  - 1 (u ;  - 
m \ tl, "2 

( 2v1) 
+ 4(.,~ -~ , .~) .~  1 - ~ 7  

2 - 3 )  
10 

+ 8 li; 2 , 

u ~  ~L~ - 2 )  } , 

1 
in which 0 = h~m -~- for the given ~ and where W, f (0 )  and Vk, f" = 0 .1 .2  are 
given by (4.1), (4.4), (4.5), (4.7) and (4.9). 

Some explana tory  remarks are the following. The  term involving V0 in (5.3) 
correctts for the bias, whereas the one invohdng ~'~ corrects for the variance. Ob- 
viously, IV* in (5.2) can be replaced by lI" if we also replace f2 by f,., which is f,.* 
supplemented with two terms to correct  for bias and variance. The  form involving 
W* and f,? is given, as it seems easier to interpret .  As concerns (5.4), we remark 

tha t  half of the terln (7 - 8 f ( 0 ) / I I ; )  is the additioiml penal ty  due to split t ing (cf. 
(2.2)), while (8 - 24V1/11 "2) represents the interact ion term occurring at the end 
of (2.9). As an example,  consider the logistic df F(.r)  = 1/(1 + e-:"). Then  

I I i 
(5.5) E l . V =  5 '  ElS2 = El/]  = -El/}) = 30' f (0 )  = ~. 

I t  follows that  ./,,* estimates f,* = (51,.~, - 3~,~,'u.,, + u.~ + 2) /10 + 1/2 + 4/,5, where 
we have kept separate 1/2 due to sp l i t t ing and 4/5  due to the interact ion term. 
Typically, f,.* will a t ta in  values between 3 and 5. Comparison oF (5.5) to (5.3) will 
also give some impression of the effect of the bias and variance corrections. 

To conclude the paper,  we present some simulation results. As underlying df 's  
we shall use normal mixtures  

(5.6) 

It is easily verified tha t  for given p = o_o/ol the kurtosis in the Family given by 
(5.6) is maximized for h ,=  1/(1 + p2). Hence F is made as non-normal  as possible 
in this respect  for such 7. We shall consider the values p = 1 (i.e. F = ~),  2 and 3 
here, leading to mixtures  with 7 = .5, .2 and .1, respectively. For a l  we choose 1, .8 
and .75, respectively, leading to values of cr ~ (1 '~ '_~ �9 = - "7)o[ + 7~.~ of 1, 1.02 and 1.01, 
respectively. This  is by no means necessary, but  it facilitates mutual  comparison. 
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Hence we shall consider for p = 1, 2, 3 the triples (% cyl, a~) = (.5, 1, 1), (.2, .8, 1.6) 
and (.1, .75, 2.25), respectively in (5.6). 

The  initial sample sizes are m = 10, 20, 30 and 40, while the levels are a = .05, 
.025 and .01. The  required powers 71-1 will range fi'om .6 to .9 and the al terna- 
tives 0 = ~m -~/-~ are chosen such tha t  19 /m is at least about  2, where 19 is the 
average total  sample size in a s inmlat ion run. For each (m, ct, 7rl, 0, p) we use 104 
simulations. In a s imulat ion step, a sample of size m is drawn from (5.6) for the 
(% ~1, cry) under  consideration.  It  is shifted over 0, upon which T1 from (2.1) and 

N from (5.2) are computed.  For the la t ter  we need I.'K Vk, k = 0, 1, 2 a n d / ( 0 )  for 
suitable bandwidths  r and ~-k, k = 0, 1, 2, 3, respectively. On the choice of r we 
have already commented  extensively in Section 4 and we shall use T/0 between 
1.5 and 2, as advocated  there.  Comparable  considerat ions can be given for the T~.. 
Together  with some exper imenta t ion  in practice,  this leads to the rule of t humb 

(5.7) T0 = 7 2  =-2T,  r l  : 7 3  = T  , 

which we used th roughou t  the simulations. 
The  resulting N leads to an addit ional  sample o11 which T2 is based. Finally, we 

reject if T -- T1 +T2 (cf. (2.2)) exceeds the critical value N / 4 +  ( ( N - 1 ) / 3 ) 1 / 2 { u ~ -  
3(u~-3u~) / (20N)} /2  (cf. (2.11)), thus leading in the end to a realized power #. To 
check the per formance  of the procedure  under  H0, each s imulat ion run is repea ted  
for 0 = 0, using the same s tar t ing  point  of the r andom generator ,  thus leading to 
the realized level & as well. The  results are collected in Table 1. 

Inspect ion of Table 1 shows tha t  the two-stage procedure  behaves reasonably 
well. The  realized levels are quite satisfactory: ave(& - c~), the average difference 
between & and a,, equals .08, - . 01 ,  - . 0 6  and - . 0 6 %  for m = 10, 20, 30 and 
40, respectively. As concerns the power requirement ,  the procedure  is slightly 
conservative, which effect decreases as m gets larger. In fact, the ave(~r-7rl)  equals 
2.2, 1.8, 0.8 and 0.4% for m = 10, 20, 30 and 40, respectively. The  convergence is 
somewhat  slower than  in the parametr ic  case considered in Albers (1992). This  is 
according to expecta t ion,  as the densi ty es t imat ion approach is more ambitious.  
It covers a much wider range of dr's, but  requires more est imation.  Due to the 
combined variat ion in the es t imators  involved, a small fract ion of the simulations 

1 which fall below m, after  which (5.1) leads will produce  values of N1 + f~ + 
to N = m after  all. The  resulting positive bias is o(m -1) asymptotical ly,  but  
especially for m = 10 and 20 still noticeable in our s inmlat ion results. Indeed, 
closer inspection of these results reveals tha t  # - 7q is heavily correlated with the 
number  of t imes the second sample is empty  during a run. A final remark  about  
Table 1 is tha t  N,~, the average sample size under  0 = 0, is clearly smaller than  
19~, the corresponding value under  0 = ~m -1/2. To explain this phenomenon,  
we observe tha t  the bias correct ion t e rm for W involving V0 in (5.3) is typical ly 
positive, as EVo = - f ( f , ) 2  < 0. Hence its effect on N fl'om (5.2) is a decrease. 
But  under  H0 there  is no bias to correct  for as far as 0 is concerned and therefore 
N turns  out  lower than  under  0 = t~m -1/2. 

Next  we turn  to a slight modificat ion of the procedure  above. As was men- 
t ioned after  (2.2), it would be marginal ly be t t e r  to use a single Wilcoxon stat ist ic 
based on the total  sample, ra ther  than  the combined stat ist ic T = T~ + T2. The  



A T W O - S T A G E  RANK T E S T  USING DENSITY E S T I M A T I O N  687 

Table 1. The  realized power # and realized level & for the  Wilcoxon two-stage procedure using 
densi ty  es t imat ion,  under  normal  mixtures  from (5.6). We have: r e = s a m p l e  size, 0 = shift, 
r = bandwid th ,  p = o"2/al, a = level, rq = prescribed power and  N~ (N~) = realized average 
total  sample size under  0 = 0 (0 = ~ m - 1 / 2 ) .  Each run  for ~r consists of 10 4 simulations.  

rrt 6 r p a & ul  ~1 ~ r  N~ 

10 .5 1.0 1 .05 .0517 .750 .773 27.0 33.8 

10 .4 .8 2 .05 .0504 .600 .635 25.0 29.8 

10 .4 .6 3 .025 .0265 .700 .725 36.9 48.7 

10 .6 .9 2 .025 .0255 .900 .906 35.5 55.0 

10 .6 1.0 1 .01 .0104 .800 .817 34.3 48.4 

10 .4 .8 3 .01 .0102 .700 .725 46.3 59.1 

20 .5 1.0 3 .05 .0480 .900 ,924 29.1 40.6 

20 .4 .8 2 .05 .0502 .750 .778 33.6 40.3 

20 .5 1 0  1 .025 .0255 .800 .814 35.3 44.3 

20 .3 .6 3 .025 .0246 .700 .716 55.8 63.5 

20 .6 1.0 1 .01 .0105 .900 .903 39.3 55.9 

20 .4 .8 2 .01 .0105 .750 .777 55.5 67.1 

30 .3 .5 3 .05 .0491 .800 .808 53.5 61.5 

30 .4 .8 2 .05 .0497 .900 .908 51.5 62.7 

30 .4 .6 1 .025 .0240 .800 .803 52.7 62.1 

30 .3 .6 3 .025 .0218 .700 .717 53.1 61.1 

30 .5 .8 1 .01 .0110 .900 .897 55.4 70.9 

30 .4 ,6 2 .01 .0107 .750 .763 52.0 63.5 

40 .25 .5 1 .05 .0492 .700 .703 81.0 86.1 

40 .3 .5 3 .05 .0493 .900 .897 73.1 84.4 

40 ,3 .6 2 .025 .0234 .750 .758 71.8 80.0 

40 .35 .6 3 .025 .0251 .900 .908 65.3 79.5 

40 .4 .6 2 .01 .0105 .900 .904 74.5 92.2 

40 .3 .6 1 .01 .0095 .700 .704 96.1 105.2 

r e a s o n  we  n e v e r t h e l e s s  p r e f e r r e d  t h e  l a t t e r  a p p r o a c h  w a s  i t s  b e t t e r  a s y m p t o t i c  

t r a c t a b i l i t y .  H o w e v e r ,  i t  is i n t e r e s t i n g  t o  i n v e s t i g a t e  t h e  o t h e r  p o s s i b i l i t y  e m p i r i -  

ca l ly .  H e n c e ,  we  r e p e a t  t h e  s i m u l a t i o n s  l e a d i n g  t o  T a b l e  1, b u t  n o w  we  a d d  t h e  

a d d i t i o n a l  s a m p l e  o f  s i ze  N - m t o  t h e  f i r s t  o n e  a n d  c o m p u t e  t h e  fu l l  W i l c o x o n  

s t a t i s t i c  TF b a s e d  o n  t h e  s a m p l e  o f  s ize  N .  O n l y  t w o  m i n o r  a d j u s t m e n t s  a r e  

r e q u i r e d .  A s  n o  s p l i t t i n g  o c c u r s ,  t h e  c o r r e s p o n d i n g  p e n a l t y  (cf. t h e  d i s c u s s i o n  fol- 

l o w i n g  ( 5 . 4 ) )  c a n  b e  l i f t e d ,  w h i c h  m e a n s  t h a t  (7 - 8 f ( 0 ) / W )  in  (5 .4 )  is r e p l a c e d  
~ m  " " ~ N  N - m  . _ by half  this amount .  In addit ion,  as 2_~j=1~j/V + 1)) 2 + >-i-j=1 (3/( N + 1)) 2 - 

(N - 1)/3 + O(m -1) is replaced by E ~ - I ( J / ( N  + 1)) 2 = N / 3  - 1/6 + O ( m - ~ ) ,  

the corresponding replacement  of (N - 1)/3 by ( N / 3  - 1/6) should be made in 
the critical value used above. Using the same simulation runs as in Table 1, we 
obtain realized powers #F and realized levels &F as collected in Table 2. 

In comparing the contents  of Table 2 to those of Table 1, the following points 
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Table 2. Results  as in Table 1, bu t  now for the  full s ta t is t ic  TF, r a the r  t han  for the  combined 
s ta t is t ic  T = T1 + T9 from (2.2). 

177 0 T p Ot ~ ' F  71-1 ~ F  J~ra. F N r r , F  

10 .5 1.0 1 .05 .0491 .750 .759 25.8 33.0 

10 .4 .8 2 .05 .0472 .600 .621 24.6 29.5 

10 ..1 .6 3 .025 .0258 .700 .716 38.1 48.2 

10 .6 .9 2 .025 .0229 .900 .897 35.2 54.3 

10 .6 1.0 1 .01 .0083 .800 .816 33.3 48.0 

10 .4 .8 3 .01 .0095 .700 .727 45.8 58.4 

20 .5 1.0 3 .05 .0367 .900 .876 28.1 39.6 

20 .4 .8 2 .05 .0433 .750 .744 32.6 39.5 

20 .5 1.0 1 .025 .0227 .800 .804 34.4 43.7 

20 .3 .6 3 .025 .0246 .700 .709 54.9 63.3 

20 .6 1.0 1 .01 .0096 .900 .898 38.5 55.0 

20 .4 .8 2 .01 .0100 .750 .767 54.4 66.4 

30 .3 .5 3 .05 .0455 .800 .791 52.7 60.8 

30 .4 .8 2 .05 .0449 .900 .892 51.1 61.8 

30 .4 .6 1 .025 .0231 .800 .795 52.0 61.3 

30 .3 .6 3 .025 .0222 .700 .712 52.3 60.5 

30 .5 .8 1 .01 .0096 .900 .892 54.0 70.0 

30 .4 .6 2 .01 .0095 .750 .751 51.2 62.9 

40 .25 .5 1 .05 .0504 .700 .697 80.1 85.5 

40 .3 .5 3 .05 .0476 .900 .886 72.3 83.7 

40 .3 .6 2 .025 .0230 .750 .746 71.2 79.7 

40 .35 .6 3 .025 .0226 .900 .896 64.8 78.8 

40 .4 .6 2 .01 .0106 .900 .898 73.6 91.0 

40 .3 .6 1 .01 .0088 .700 .702 95.9 104.7 

c a n  b e  n o t e d ,  a v e ( d F  - - a )  e q u a l s  - - . 12 ,  - - . 39 .  - - . 2 5  a n d  - . 1 2 %  for  m = 10, 20,  

30  a n d  40  r e s p e c t i v e l y .  H e n c e  &F s e e m s  t o  b e  less  c l o s e  t o  a. t h a n  &. O i l  t h e  

o t h e r  h a n d .  t h e  e r r o r  t y p i c a l l y  o c c u r s  o n  t h e  s a f e  s ide ,  i.e. t h e  r e s u l t i n g  p r o c e d u r e  

is c o n s e r v a t i v e .  A s  c o n c e r n s  t h e  p o w e r  r e q u i r e m e n t ,  we  o b t a i n  t h a t  a v e ( # F  - 71-1) 

e q u a l s  1.4, .0, - . 3  a n d  - . 5 ~ ,  for  'm = 10, 20,  30  a n d  40 ,  r e s p e c t i v e l y .  H e n c e  # in  

i t s  t u r n  is c l o s e r  t o  rrl t h a n  # .  F u r t h e r m o r e ,  a v e ( N =  - N = , F )  = 0.7 ,  w h i c h  a g r e e s  

we l l  w i t h  e.g.  t h e  v a l u e  7 / 2 -  2v/2_ = 0 . 6 7 2  o f  1 ( 7 - 8 f ( O ) / E W )  in t h e  n o r m a l  c a s e  

(p = 1). All in all, the full s tat ist ic procedure  provides an interest ing compet i to r  
to the original spl i t ted proposal. In addit ion,  it is more simple conceptually,  as 
spli t t ing is avoided. 

At the end, let us re turn  to the s tar t ing point: Stein 's  two-stage procedure.  
This  procedure  is of course applicable for p = 1. Moreover,  it is known to be 
robust  to certain forms of non-normali ty,  see e.g. Ramkaran  (1983). Hence it also 
makes sense to investigate its behaviour  for p = 2 and p = 3. From Albers (1992), 
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p. 350, we obtain tha t  c - t  in (2.2) satisfies to o(1) 

(5.8) c-l  - ""(u~ - u~)2 ( ( l + ~ t 2 + u ~ z L ~ + u ~ ) )  
-h; ~ 1 + 2m ' 

Using once more the same simulation runs as in Table 1, we collect realized powers 
frst and realized levels &s~ for Stein's two-stage procedure  in Table 3. 

Tab le  :3. R e s u l t s  a s i n  T ab l e  1, b u t  now for S t e i n ' s  t w o - s t a g e  p rocedure .  

m, 0 p ~ &St ~1 ~St  ]~fSt 

10 .5 1 .05 .0523 .750 .762 25.2 

10 .4 2 .05 .0528 .600 .613 27.3 

10 .4 3 .025 .0295 .700 .701 47.8 

i0 .6 2 .025 .0289 .900 .907 36.5 

10 .6 1 .01 .0116 .800 .797 35.7 

I0 .4 3 .01 .0166 .700 .686 65.4 

20 .5 3 .05 .0481 .900 .918 38.0 

20 .4 2 .05 .0507 .750 .763 37.5 

20 .5 1 .025 .0233 .800 .803 35.1 

20 .3 3 .025 .0286 .700 .708 77.8 

20 .6 1 .01 .0113 .900 .906 41.2 

20 .4 2 .01 .0118 .750 .749 65.8 

30 .3 3 .05 .0522 .800 .800 73.6 

30 .4 2 .05 .0503 .900 .903 58.1 

30 .4 1 .025 .0257 .800 .811 52.8 

30 .3 3 .025 .0255 .700 .699 74.6 

30 .5 1 .01 .0111 .900 .903 56.9 

30 .4 2 .01 .0086 .750 .755 63.7 

40 .25 1 .05 .0500 .700 .707 78.8 

40 .3 3 .05 .0546 .900 .905 100.9 

40 .3 2 .025 .0231 .750 .751 83.6 

40 .35 3 .025 .0237 .900 .901 91.8 

40 .4 2 .01 .0091 .900 .894 89.1 

40 .3 1 .01 .0098 .700 .705 97.1 

A smmnary  as before in this case produces tha t  ave(&st - ct) equals .35, .06, 
.06, .0% for m = 10, 20, 30 and 40, respectively. Hence, for smaller m, the 
procedure  can be markedly anti-conservative.  To investigate this phenomenon a 
bit fur ther  we introduce t~,F, the critical value of Student ' s  test for underlying 
dis tr ibut ion F.  From Albers e~, al. ((1976), p. 135, eq. (5.23)) it follows that ,  for 
sample size m, 

, 3 

( 5 . 9 )  tc~ F = tl 'a -{- I~a - -  'ltc~ (h ;4 'F  -~- 3)(. / / ,3 _ 3'gr Jr- O(77, ,-1) ,  
' 2'm. 1277l. 
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where  t~4, F : f2~oc x4df(,T.)/(J~_cccc x 2 d Y ( x ) )  2 - 3, t i le fou r th  c u n m l a n t  of F .  T h i s  

result in its tu rn  readily implies tha t  the error  & - ct in ct, due to using the normal  
critical value under  nonnormal  F ,  to first order equals 

(5.10) & - a = ~ ~u~ - 

For the normal  mixtures  under  considerat ion,  ~.4.F equals 3(p 2 -- 1)2/(4p2). To- 
gether  with (5.10) this e.g. produces for m = 10, a. = 0.01 and p = 3 a value 
0.67% for & - c~. This  indicates tha t  the value 0.0166 for &st is Table 3 for this 
configuration of m-, c~- and p-values, is not an outlier. In fact, for this par t icular  
triple we performed 8 addit ional  s imulat ion runs, using varying 7cl and 0, result ing 
in values of dst which varied from .0134 to .0193, with an average of .0154. 

As concerns the power requirement ,  we obtain tha t  ave(#st  - 7rl) equals .3, 
.8, .4 and .2% for m = 10, 20, 30 and 40, respectively. Hence in this respect ,  
Stein 's  procedure  performs very well. As far as power and level are concerned,  
the nonparamet r ic  procedures  above are preferable mainly in the sense tha t  they 
provide be t t e r  control  of the level, as should be the case. 

The  remaining aspect for comparison is the average sample size. As S,2,, is 
t rans la t ion invariant,  we deal with a single value Nst. Roughly  speaking, the 
picture is as follows: for p = 1, we have tha t  Nst  is comparable  to N~ and 
substant ia l ly  lower than  N~, while for p = 2 we find tha t  Ns t  is comparable  to fi]~ 
and substant ia l ly  larger than  .No. For p = 3, we even see tha t  f i s t  is substant ia l ly  
larger than  fi/~. An obvious explanat ion  for this behavior  is obta ined  by looking at 
the ARE of the Wilcoxon test  with respect  to the t- test  under  the normal mixtures  
from (5.6). For 7 = 1/(1 + p2), this ARE equals 

(5.11) 6-{(1 - 7) 5/2 + 75/2 + [27(1 - 7)]a/2} 2, 
7r 

which a t ta ins  the values .955 (=3/~-), 1.136 and 1.373 for p = 1, 2 and 3, respec- 
tively. 

Summarizing,  the simulation results confirm tha t  under  normal i ty  (i.e. for 
p = 1) Stein 's  two-stage procedure  is best,  but  also s trongly suggest tha t  tile 
picture changes as p increases. For p = 3, the nonparamet r ic  procedures  are to be 
preferred,  bo th  with respect  to control  of level as to sample sizes required. 
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