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A b s t r a c t .  The  paper  s tudies  the  performance of deconvolut ing kernel densi ty  
es t imators  for es t imat ing  the marginal  densi ty  of a linear process. The  d a t a  
s tem from the l inear process and are part ial ly,  respect ively fully con tamina ted  
by lid errors wi th  a known dis t r ibut ion .  If 1 - p  denotes  the propor t ion  of 
con tamina ted  observat ions (and it is , of course, unknown which observat ions 
are con tamina ted  and which are not)  then for 1 - p  E (0, 1) and under  mild 
condi t ions a lmost  sure deconvolut ion rates  of order  O(n-2/S(log n) 9/1~ can be 
achieved for convergence in s  This  ra te  compares  well with the  exist ing rates 
for lid uncontaminated observations.  For p = 0 and exponent ia l ly  decreasing 
error  character is t ic  function the corresponding rates  are of merely logar i thmic 
order. As a by-p roduc t  the  paper  also gives a ra te  of convergence result  for the 
empir ical  character is t ic  function in the l inear process context  and util izes this  
to demons t r a t e  tha t  deconvolut ing kernel densi ty  es t imators  a t t a in  the  op t imal  
ra te  in the dependence  case with exponent ia l ly  decreasing error  character is t ic  
function. 

Key words and phrases: Deconvolution,  densi ty  es t imat ion,  contaminat ion ,  
identifiabili ty,  dependence.  

1. Introduction 

S u p p o s e  t h a t  (X j ,  ej),  j = 1, 2 , . . . ,  n are  i id b i v a r i a t e  r a n d o m  ve c to r s  whe re  

X1 has  an  u n k n o w n  d e n s i t y  g, c l  has  a k n o w n  d e n s i t y  a n d  is i n d e p e n d e n t  of  X1. 

I t  is d e s i r e d  to  e s t i m a t e  t h e  d e n s i t y  g b a s e d  on  o b s e r v a t i o n s  t h a t  a re  c o r r u p t e d  by  

a d d i t i v e  noise ,  i.e. b a s e d  on  o b s e r v a t i o n s  

(1.1) ] j  ---- Xj + cj. 

Problems in which these mixture models are relevant do occur in many branches of 
statistics. One area is the empirical Bayes approach to compound decision prob- 
lems, as discussed in Robbins (1964). To connect this with our notation assume 
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that  {X1 , . . . ,  X,~} is a set of parameters, G(x)  is an unknown prior distribution 
and conditionally on X j  = x the observed Yj are realizations of independent ran- 
dom variables with known parametric density f ( y / x ) .  Then unconditionally the 
Yj are realizations from the density f f ( y / x ) d G ( x ) .  Robbins (1964) recommends 
the use of Y1, . . . ,  Y,-1 to estimate G(x) and then to use this estimate to compute 
the posterior distribution of Xn given Y~. 

Deconvolution problems also appear in errors-in-variables models for non- 
linear regression, see e.g. Carroll et aI. (1984). Further applications are men- 
tioned in Carroll and Hall (1988) and Zhang (1990), Crmnp and Seinfeld (1982), 
Mendelsohn and Rice (1982), Snyder et al. (1988) and some of the references 
therein. 

In the convolution context the question of identifiability arises. We shall call 
a density q identifiable in a general convolution with a density p if the following 
implication holds a.e. 

p(x  - y)q(y)dy = J p ( x  - y)O(y)dy=#q(y)  = O(Y). 

This may be characterized in terms of the characteristic functions ~p, ~q, gJ0 as 

% ( 0 .  %(t )  = % ( 0 .  % ( 0  % ( 0  = 

The last implication holds if ~p(t)  r 0 for all t and this is what we will require of 
our error characteristic function although there are weaker conditions that ensure 
identifiability in the present set-up. 

A variety of approaches for estimation of g have been considered in the liter- 
ature: a maximunl likelihood method is given in Snyder et al. (1988), B-Splines 
are used by Mendelsohn and Rice (1982), and in Masry and Rice (1992) Gaussian 
deconvolution is based on estimates of derivatives of g. Liu and Taylor (1989) 
seems to be the first published work that investigates the performance of kernel- 
type estimators in this context. Other work on deconvolving kernel estimators 
includes Zhang (1990), Stefanski (1990), Fan et al. (1990), Stefanski and Carroll 
(1990), Fan (1991a, 1991b, 1992), Fan and Truong (1993), Fan and Masry (1992), 
and Masry (1991a, 1991b, 1993a, 1993b). We give a brief discussion of this lit- 
erature devoted to regression with errors-in-variables and density estimation from 
contaminated observations as it relates to the present paper. 

In the iid case the nonparametric regression estimation problem with errors- 
in-variables was studied by Fan et al. (1990) and Fan and Truong (1993) where 
optimal rates of convergence and asymptotic normality are established for the 
estimator 

(1.2) 
E j = I  w ((x - 

of the regression function re(x) = E ( Y  I X = x). The estimator is based on 
observations (X j  + ej, Yj) ,  i.e. covariates perturbed by error. In (1.2) I,V~ denotes 
a deconvolution kernel and A(n) is the bandwidth parameter. 
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Fan and Masry (1992) obtain asymptotic normality for rh(x) in the more gen- 
eral setting where { X j  } and {Yj } are individually and jointly dependent. Finally, 
for this general setting Masry (1991b) gives sharp almost sure rates. 

The other papers cited above are concerned with versions of the deconvolution 
problem when observations Ya are of type (1.1) and estimation of the density of Xj  
is desired. The main focus of Liu and Taylor (1989), Stefanski (1990), Stefanski 
and Carroll (1990), Zhang (1990), and Fan (1991a, 1992) is on the lid case and 
on bounds for the rate of quadratic-mean convergence for deconvoluting kernel 
density estimators: Liu and Taylor (1989) study the mean square error at a fixed 
point, Stefanski and Carroll (1990) provide bounds for the integrated mean square 
error, Zhang (1990) contains both upper and lower bounds for s and Fan 
(1991a, 1992) obtains optimal local rates for the mean-square error at a point 
and optimal global rates under s and weighted s uniformly over a class of 
densities. 

The more general context of processes {Xo} satisfying a variety of mixing 
conditions, with dependence among {Xj} and {IQ} and the estimation problem 
being extended to the joint density function f ( x l , . .  �9 xp) of the random variables 
X 1 , . . . ,  Xp (p _> 1) has been considered by Masry (1991a). There bounds as well 
as precise asymptotic expressions for the mean square estimation error at a point 
are provided. 

In Masry (1993b) for essentially the same fl'amework almost sure uniform con- 
vergence rates over compact subsets of ~P are given for estimators of f ( x l ,  . . .  , :rp). 
Both ordinary smooth and super smooth noise distributions are considered and 
are found to significantly influence the convergence. 

Finally, we also mention that Fan (1991b) has proved the asymptotic normality 
of deconvoluting kernel estimates for the iid case and that Masry (1993a) recently 
extended this to the multivariate set-up. 

In general, deconvolution rates of kernel estimators are intimately connected 
to the decay of the characteristic function of the error density. For example, in 
the practically important case of normally distributed errors and lid Xj Carroll 
and Hall (1988) show that the rate of convergence of any estimator cannot be 
faster than O ((logn) -s/2) over densities in C~(M) = {g : sup.~.g(x) <_ M and 

sup.,. I9(S)(x)[ _< _~I}. 

The contents of the present paper generalizes existing results in several direc- 
tions. As in Masry (1993b) we also allow for dependence among the {Xj} but 
focus on a different dependence structure, namely linear process dependence. Sec- 
ondly, we aim for sharp uniform rates over the entire domain and not merely over 
compact subsets thereof, and thirdly and most importantly, we allow for partially 
contaminated observations. In this context the somewhat surprising fact is found 
that in terms of uniform rates of the deconvolution kernel estimators any fixed 
non-zero proportion of uncontaminated obserw~tions within a set of contaminated 
observations is essentially as good as a full set of uncontaminated observations. In 
addition, the methods employed which are related to the notion of metric entropy 
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seem to be new in the deconvolution context.  Our basic set-up is 

oo 

(1.3) Y(J) = E P k C ( J  -- k) + T(j)e(j) j = 1, . . . ,n,  
k = 0  

where c(j) ,  e(j)  are (mutually) iid random variables with unknown (in the case of 
e(j)) ,  respectively known (in the case of e(j)) density; T(j) are independent  (of 
each other and of the e(j)  and the e(j)) Bernoulli random variables with parameter  
1 - p E (0, 1). For practical examples of partially contaminated  distr ibutions in 
the lid context see e.g. Huber (1981), in part icular  the discussion of the gross error 
model, and also Tukey (1960). 

As an est imator of the density g we propose 

(1.4) 1 /_~1 qYw(t) dt 
t )n(2")-  27rA(dn) 1 e-it~"\-~(d")~Y(tA-l(dn)) q2T~(tA-l(d~)) 

where ~ y ( t )  denotes the empirical characteristic function of the observations 
Y ( 1 ) , . . . , Y ( n ) ;  ~T~, ~W are the characteristic functions of T(1)e(1) and the 
random variable W, respectively, whose density is used as a kernel and will be in- 
t roduced below. Furthermore,  A(n) = cn -~ with fi C (0, 1) to be determined later 
is a bandwidth  function and d ,  = c77/logT~. Here and below c always denotes a 
generic finite constant  which may change from one occurrence to another.  

Apart  form a sharp uniform rate of convergence result for )~(z)  the paper also 
gives a rate of convergence for the empirical characteristic function in the linear 
process context and utilizes this to demonst ra te  tha t  deconvoluting kernel den- 
sity est imators a t ta in  the optimal rate in the dependence case with exponential ly 
decreasing error characteristic function. 

2. Convergence 

In this section we will show tha t  with an optimal choice of the bandwidth  ,~(n) 
the est imator  t)~ (z) converges to g(x) at a rate of O(n-2/S(log n) 9/1~ a.s. This rate 
compares well with the one for uncontaminated  iid observations, see Karunamuni  
and Mehra (1990), and is significantly faster than  the deconvolution rates (even in 
the iid case) for normally dis tr ibuted contaminat ing errors, see Carroll and Hall 
(1988). Hence the result is insofar surprising as the "best" available observations 
essentially detemfine the ahnost  sure rate of the deconvoluting kernel est imator  
rather  than  those observations of lesser quali ty and this is so irrespective of what  
their relative proportions are. 

The conditions we require are fairly mild and will now be introduced. 
A: The random variables e(j)  are lid with absolutely continuous distr ibution 

and a finite absolute moment  of order o~ > 0. T(j) are lid Bernoulli random 
variables with parameter  (1 - p) E (0, 1); Ipkl _< cp k for some p C (0, 1). 

B: The density g(x) of X(j) is bounded and has uniformly absolutely 
bounded and continuous derivatives up to order two, i.e. sup~c~g(x ) _< M,  
sup~e~ Ig'(x)l _< M, sup,cR Ig"(x)l _< M. 
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C: inftl'I'r~_(t)l > p and x2.f+_~e-~t~rWw(t)/~r~.(t/A(n))dt , * ~ o  for 

X(n,) = O('n. -6) and any 5 E (0, 1). 
D: W is a zero mean and finite variance random variable with a symmetric  

density W(z)  and a characteristic function ~ w ( t )  that  vanishes off [-1,  +1]. 
E: P ( I Y ( / ) I  > c,,) < a - ~  for all a > 0 and some r > 2(1 + ~)/(1 - 3b). 

It is clear by the Riemann-Lebesgue lemma tha t  the second part of Condition C 
is satisfied for example if g2W(t)/q2T,, (tk-l(?,.)) has two continuous integrable 
derivatives. An example of a density satisfying Condition D is 

3 ( s i n ( z / 4 ) )  4 
W<.) = U~ .:/4 

with characteristic function 

S 6t3 - 6t2 + 1 for 0 < t < 1/2 
~ w ( t )  / -21 a + 6 t  2 - 6 1 + 2  for 1 / 2 < t _ <  1, 

and for t E [-1, 0) given 1>y symmetry.  
integrable derivatives. 

We are n o w  ready to state the main 

qJw(t) also possesses two continuous 

THEOREM 9.1. Under Conditions A-E the following ?'ate i.s obtained for" co'n- 
~,ergence of.O,, (x) to g(x): 

( l i m s u p  ng/S(log n) -9 /m sup ].q,,(:r) - g(:c)] < ,~c ,x) = P 1. 
/ 

Th.is rate is achieved 'for the Mndwidfl~, choice k('n) = cr~ -1/'5 

PROOF. Define the process 

m ( n ) 1 

? ( j )  = ~ p~,c(j - t,.) + T ( j ) < ) )  
k = 0  

=: .'~'(j) + T( j l e ( j ) ,  j = 1 . . . . .  ,, 

where m(,~.) = [/:log?,] with some appropriate constant  e to be chosen later. [x] 
denotes the largest integer smaller than or equal to x. The density of 2~'(d) is the 
convolution of {(pa-)-t./ '((pk)-*x) : k = 0, 1 . . . . .  re(n) - 1} where f denotes the 
density of g(j).  

Consider first 

(_9.1) 1 j~+l ~w( t )  
9 " ' J ( X ) -  2teA(c/,,) 1 e- i '*a- ' (d")~{- t t ' \ - l (d ' ) ) -~ze( t~ \ - t (d , , ) )d t  

where ~f.(t)^ 2 = 1,t, Z-~k=OX-'"J- 1 exp(iP~'(j. + k'm(n)) is the empirical characteristic func- 

tion of ~" based oll I>(j), }~(j + 're(n)) . . . .  , }~'(j + (.n.j - 1)?n(n)) and (?zj - 1) is tile 
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largest integer so that (nj  - 1)[(7 log n] < n. Observe that  nj  is of order O(n / log  n). 
Clearly, ~,,j(x) are not statistics since they are not functions of the observations 
Y1,. �9 -, Y,. It is crucial for the proof to link them to O. (x). This will be done later, 
first we will evaluate the properties of O,,j (x) as an "estimator" of the density of 
X~(1) which we denote by ~. 

In particular we will show that 

( 2 . 2 )  P li,nsup'n(l-aVP-(logT~)~/2-1 sup lO,~.j(x) - EO, , j ( x ) l  < B = 1, 
n--* oc xE~ 

and for the bias 

(2.3) P \(lira sup'~2s (l~ n ) - 2 ~ , , -  ~ sup IZ0"'J ( : r ) x  ~ g -�9 < B )  = 1 

for all j = 1, 2 , . . . ,  m(7)), B sufficiently large and the bandwidth function A('~I) = 
cn -e, 6 C (0, 1). To delnonstrate (2.2) it suffices to show that 

/ 
(2.4) P { l i m s u p  sup 

nj - 1  
1 _ v ' / .  ~. 7x,, ( ~ ( j  + .i.,(,~))) 

?)j 
i=0 

- e ( w ; ~ ( 9 ( j  + i,,,.(,,~.)))) < B)-_I 
where 

and 

~ C ' ( V )  = ,,.(~+6)/2(log ,,.)-~/2-'~'~;,( (v -:~)/a(6,)), 

I'1';, (z) c n - a ( l ~  / +~'?(l~ _ eit.a(< ,) Vgw (tA(d, ,))  dr, 
2rr J -~,v,(logn)-~ ~T,~(t) 

= .,.~. . R } .  

~i,., is a sequence of sets of functions whose elenmnts depend on n. We prove (2.4) 
by introducing 

( 2 . 5 )  *I4~ xj (y)  = ( 2 7 1 - ) - l ~ ( 1 - 6 ) / 2 ( l o g ~ ) b / 2 - 1  

[ + c n  ~ (log u) -'~ 
�9 e-it(:rj-v) ~ w  (ctn-~ (log n) ~ ) 
a-c,~0og,,)-~ ~y , . ( t )  dt 

for x j  : j A  and j E {0, + I , . . . , + [ 2 K D - 1 ] }  : :  I with 

K = ca- 1/2n(1-36)/4 (log n ) -  1/2+36/4, 

D = ccn-a~/2-1/2  (log n) 1 +a~/2. 
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In addition, for j = [2KD -1] + 1 set 

, ,~ ~ (27rp)-ln(1+~)/'2(logn)-6/2-1 for [y[ > K 
(2.6) % (y)= 

[ a/2 for M -< K. 

Similarly, 

(2.7) , ":"J = l,I. ,~ (9) (27r)-ln(1-~)/2(logn) 6/'~-1 
+ c n  '~ ( log n ) - 6  s ~ w ( ctn-~ (log ,n ) ~ ) 

�9 I e - i t ( : ' : ~ - u )  d t  - s 

J/-cn ~ (log n ) -~  I I /Te  ( t )  

for Xy = j A ,  j E I, and finally 

(2.8) . w ; p  (y) - 0 

for j = [2KD -1] + 1. There are L(n) = O(n:V4+3~/4(logn) -s/~l-:3'V4) pairs of 
functions *W,~I j (y) ,  ,W;[J(y). They  exhibit the propert ies s ta ted in Lemnm 2.3 
below. 

Now, with J = I U {[2K/D] + 1} 

(2.9) P u . .  (~ (j + , toO,)))  

1":7~/ l o g  , Q -  ] 

sup c logn / ' n  E '~: -" " 
\ u ",( �9 ~ ",, i = 0 

, r 2: ~~ �9 / 

\ 

E(I,t ' .  (]/(3 + ira(n)))) > cl + 20) + 4s 
/ 

cn/ log n--1 

_< P 'minx c log 'n /n  E I4~;xk(f'(j,, + im(,~))) 
\ ~'~'1 ,=o 

\ 

E(ll ' ;[~(f ' ( j  + i ra(n))))  > e l )  
/ 

( m a x  c,,/~og,,-Lil ( 9 ( j  ira(,))) 
-F P h'�9 c logrl/'n Ei=0 i..,-k,~ 

+ 

- E(I'I.:2 ~ ( f ' ( j  + im('n)))) 

C o n / l o g  n - 1 

- ~.~, ,, ( Y ( j  + im,O~))) sup log,./. ~ """ - " 
w,~- c :,P,, i=o 

\ 
"-~" 1> " 2o, / E ( H , , , ( ( j + i m ( r , ) ) ) )  > _ + 4 c  / 

where l,~'~ k is a fixed but  arbi t rary  element of the set W,k which we define as 

W,~ {I4',, ( Y ) :  II'I',, (Y) , ,xk �9 -xk ..... k ~} 
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and clearly I7V,, = U{IV,, k : k E J}.  The introduct ion of I'I/,, and the construct ion 
(2.5)-(2.9) is related to the lnetric entropy techniques introduced in Dudley (1978). 

We now bolmd the variance of 171.',~ '~ (f~(j + ira(n))) .  We. have 

va, r(II ' ; i  ,k ( Y ( j  + im,(T/)))) 

_< max max sup E((I~(, i*( f ' ( j+ i ,n(n))))  2) 
1 < j  < ,,, (,~) a-E J l~'~[* E U'~ 

< lnaxmax  nmx (s t lp  Ill';:~ (y)]~ /~lll"~:k ()>(j + hn,(,,)))l 
j k I;';[ k \~;ea 

_< cn(log'n) -2 
( / _ : 1  ) 

�9 n l a x n l a x l n a x  sup  e ict('tl-ak)'''(l~ q ' w ( / )  
j k li:,(~\ ,v qdr~(ct'ne(log'n)-~) dt 

( f+c""('~176 ) 
�9 E \1 J -c ' '#( l~  ~Te(t) 

and since as a consequence of Condit ion D, ~ w  (t) is integrable and we can obtain 
the bound 

var(l~..,.~ > .  ,, (~ (.J + i.,,(~)))) 
< c7~ (log 'n) -2 max s  I.q, j (:r) I) 

J 

_< c,,(;og.) -2 max, ~:~,~(s"P0(:r) + sup 1.0(:~:).,~ - s 

< c n (log , , ) -2  ln~tx ( s u p  g(x) + sup Ig(x) - .~(x)[ 
\ . tEN :cE~ 

+ ,~-p~.~ Ioa(.~,) - s 
_< c'n(log 'n) -2 

by Lenuna 2.2 below and by an argument  sinfilar to the one that  establishes (2.3) 
which is proved below. In addition, 

~ r : s  Iv ~ " l n a x  lllaX Sll I) Jl'I n ( }  (.1 -]- i'F,l.(',,))) -- jE~'(l~.'s ( ~ ' ( j  _{_ i ' " ( " ' ) ) ) ) l  l<_j<,,(,~) I,.e.l -.-~,. li ,, 

< 2 max lnax sup sup Ili';i'* (Y)l 
j k --~'k II,, gffg~ 

< cr~(l+a)/2(logr~) - i -e/2 

so that  

cn/log n -  1 
~,rd" k ~l,, (fqj + i.~(.))) 
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- E ( w : ~ ( ? ( ;  + ~.~(~)))) >cl) 
w x . ( ? ( j  + i.~(n))) 

cn/log n--  1 

<_ L(~)P c log~ /~  Z 
i = 0  

- E(14~k(Y(j + ira(n)))) > cl)  

__< 2L(n) exp ( - c n ( l o g  n )-1c21/(2 var (~I/,~ ~ (])(j + irn(n)))) 

_ < cL(n)n-Cr 

by Bernstein's inequality. We therefore have established a bound for the first 
summand on the right-hand side of (2.9). 

For the remaining term in (2.9) note that for sufficiently large n 

max c log n/n ~/log n -  1 

k6J E 
i = 0  

wxk ( ? ( j  + i.~(~))) - E(Vv;p (? ( j  + i.~(~)))) 

C cn/log n -  1 

--  s l i p  l o g  r t / r t ,  E Ir ( ] )  ( J  + iTn ( ' r / ) ) )  
i x  " 14 ,, E W,, i=0  

- m w , f ( ? ( j  + i~(~,,)))) 

s o p  C c n /  log n--1 
<_ max log,~l~ ~ (~ '2"( f ( j  + i.~(,,~))) 

k E J W;f E I'V,, k i=0  

- W,~(f~(j + ira(n)))) 

F. (~2~(? ( j  + i.~,(,~))) " ? �9 i~,(,,,)))) - - ~ , , ,  ( O +  

cn/log n -  1 

_< max sup clogn/n E (17V~Xk(f'(J + ira(n))) 
k E d w , f  E w ~  i = o  

_ .w2~  0>(j + ,~.~(~)))) 

- E(~'2 ~ ( ? ( j  + i ,~(~))) - .~,<? (? ( j  + im(,~)))) 

cn/log n -  1 

+ clogn/n E (*W'7" ( 9 ( / +  ira(n))) - W~'(9(j + ira(n)))) 
i = 0  
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~.~ -~ .  .,,. > .  ))) E(,n. . , ,  (~ (j + .,:,,,.(.,~))) + - - H,,, (~ (j i.,,,(,,.) 

cn / log n - 1 

_< m a x s u p  clogn/,, ~ (17V,~:~(]>(j + im('n.))) 
k w; f  i=o  

- . W ;  rk ( f ' ( j  + i ra (n) ) ) )  

- E ( f i ; ? - ( f ( j  + i,,,O,.))) ":"~ 

C cn/ log  n -  1 

+ log ,~/n  Z I*l'I:,~'k(}>(J § i'm.(,,))) 
i=0  

.:,k > - i m ( ~ )  - . n . ,  (s (a + ))1 
* ":,'k :~ �9 i ,n (n)  - z ( I  ~.~ ,, (~ (3 + )) 

r : l" k 77 " ) 

% 

- . u  ,, (~ (2 + im( , , ) ) ) l )  + 4e 
I 

. -x,. i.,,(',,))) - , " "  " " i . , ,~(., ,))) e since E(] 11,, (Y(j -[- . I I , ,  (} (J -t- ]) _< by  cons t ruc t ion  and  
l~'(k) converges  to Y(k)  a.s. at. an a rb i t r a ry  ra te  if ~ is increased so t ha t  for /~. large 
enough  

z (  i. n ;-~-~. (f~(1- + i ,~  ( , , ) ) )  , ;.,.~ > .  �9 - .~ ' , ,  (:~ 0 + i - , ( , ~ ) ) ) l )  _< 2s .  

There fo re  the  second t e r m  on the right side of (2.9) is u p p e r - b o u n d e d  by 

(2.10) 
/ 

P [,,~;ff c log,,,/,, ,=0 

- E ( f i , ? ( f ~ ( j  + i , , 4 . , , ) ) )  - . ~ v ; ?  (~>(j  + i , , , ( , , ) ) ) )  > ~..,) 
/ 

c n / l o g n - 1  

+ P m a x  clogT~/'~l ~ J II,, (} (3 + i ra (n) ) )  
\ ~~" I ~=0 

- .11;[" (~>(j + im(,~)))] 

cn / log n - 1 

( f i ; ?  ( ? ( j  + i.,,~(.,,))) - . ~ ; ?  ( f ( j  + i . , , , . ( , , . ))))  

" X  k 7/ -  " - E(I*II ; ,~(I~ ' ( j  + i ra( , , ) ) )  - .1,1 ,, (} (2 + i'm('n.)))]) 

and  again b o t h  t e rms  can be  b o u n d e d  by  Berns te in ' s  inequal i ty:  

E( IIl~i .:,k,, (5r~ (a + i.,-,,.(.n) )) - .  U.",k ( f ' ( j  + i.,,, (,,,))) 12 ) 

< ( s u p l  >*k "~~- ) N,,  ( v ) -  . ~ , ,  (y)l 

�9 s  ~ ( g ( j  + i , , , ( , z ) ) )  - .  ~',~~ ( f ' ( j  + i , , , ( ' 0 ) ) 1 )  

_< ce77(l+~)/2(log n ) - 1 - ~ / 2  

( ' 2 )  
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"Xk by construction of .W n , *I4/;~ ~ and l&~ "k. Similarly, 

E(I*W,~ :k (]Y(j + ira(n))) - .W;~ k (~'(j + im(.n)))l 2) <_ ecn(l+6)/2(log n)-1-6/2 

so that both probabilities in (2.10) may be handled in the same fashion. By 
Bernstein's inequMity (2.10) is bounded by 

4L(n) exp( -  ce22'n (log n)- 1/cen(1 +6 )/2 (log .n) -1-6/~_). 

Combining the bounds for the terms in (2.9) we finally arrive at 

c n / l o g  n -  1 

(2.11) P sup c l o g n / n  E VI';~'(f'(J + i ra(n)))  
\w;~ �9 v~-,, I z=0 

\ 

> ~1 + 2c2 + 4c) E(I&~ ()>(j + ira(n)))) 
/ 

< cL(7ib-~q 
+ 4L(n) exp(-ce~n(log n ) - ' / c a n  (~+e)/!(log n) -~-~/9). 

The right side of (2.11) is obviously summable and by the Borel-Cantelli lemma 
(2.2) is found to hold. For (2.3) we first evah.mte the expectation 

-itx ^ j 
(2.12) E ~ J-,\- '(d,,) ~T~(t) a~) 

1 f+.\-'(d,,l ~w(t~(d.)) - -  (5'  - -  i t x  

271" j_~-  1 (d,,) T~Te(t ) 
�9 (pE(e itX'(t~)) + (1 -p)E(eit(X'(k)+et~O)))cH 

1 [+~-'(d,,) _it:rCw(tA(d,,)) 
- -  e 

- ~ j _ ~ - , ( ~ , , )  %~(t) 

" (P faeit:g(z)dz + (1-  P) ]~ eitU (fa{t(z)k(Y- z)dz) dy) d t 

where k(y) is the density of e(1). Further, 

_ 1 [+;~-'(d")~t,.~2,i.(tA(d,,))(femj(./:{l(z)k(yz)dz)dy)d t "  (1 P)'2~ e- - J-~-'cd,,) %>_(t) 

/ ~ 1  f+x-'(d")eit(:_:,. ) ~w(tA(d,~))~(t){l(z)dzdt 
= (1 - p )  ~ J-~-'td,,)  ~7~_(t) 

and so, in stlnllllary~ 

1 ~ [+x-'(d")eit(=_~:)~w(tA(d,~))~,,(z)dtdz Egn,d(x) = ~ J-),-'(d,,) 

= f A- l (d , )W((x  - z)A-l(d.))9(z)dz 
J~ 
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since the characteristic function of T( j )e( j )  is p + (1 - p)O~(t) with 9~(t) being 
the characteristic function of e(j). Then 

E~,~,j(x) - g(x) = ~ W(y)[g(x - A(dn)y) - 9(x)ldy, 

Due to Condition B the density g is twice differentiable with uniformly absolutely 
bounded derivatives so that (remembering that  c is a positive constant, not always 
the same one) 

sup IE~.,j(x) - g(x)l _< cA(d.)sup Ig'(x)l A yW(y)dy 
,TE~ xE~ 

+ cA2(dn) =~sup Ig"(=)[ s y2W(y)dy 

_< cn-2~(log n) +26 

and (2.3) follows with the help of part (b) of Lemma 2.2. Now, to link 9, , j(x) 
defined in (2.1) to the sample statistic gn(x) defined in (1.4) we first observe that 

rain g,~,j(x) <_ g*(x) <_ max ~,~,j(x) 
l_<j<m(n) l<j_<rn(n) 

where 

1 /+1 
g ~ ( x ) -  27rA(d,~) 1 e- i t~-~(d")9?( tA- l (d~) )  CT~ (tA -l~2w(t)(dn)) dt 

with 

By Lemma 2.2 

7 l  

~f-(t) = _i E exp(itl>(k))" 
n 

k=0 

sup I ~ ) n ( x )  - g,Z(x)l = O(n-l12) 
zEN 

a.s .  

for e sufficiently large. Therefore 

sup It)~(x) - Eg,(x) l  _< max sup ]~n,j(x) - EO~,j(x)I + O(n -1/2 
x 6 "  l_<j_<m(n) xEN 

and 

-< P <1_<;_<~(o) ( ma~ ~.sup~<'-~)/~(l~ E0,.;(~)I > c).  
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Summation over n gives 

P ( max sup~.(1-6)/2(logTt)6/2-1 " " Ig,,,jOz,) - Egn,j(a:)[ > C1 q- 2c2 + 4e 
\l_<j_<m(n) .rr 

7 1 : Z ~  0 

-< E E 4L(n)exp( -cc~n( logn) - l / cen ( l+6) /2 ( logn) -~ /2 - ' )  
n=no j = l  

+ cL(~)n -~4 < oo 

for any 6 E (0, 1) and g, C1, C 2 sufficiently large. Comparing the rates of bias and 
variance, namely O(n 2~ (log n)-2~) and 0 (T/, ( 1 -5 ) / 2  (log n)6/2-1), the rate stated in 
the theorem results from 6 = 1/.5. 

The proof of Theorem 2.1 refers t.o Lemmas 2.1, 2.2, 2.3 which we establish 
I low. 

~--~nl(n)--I LEMMA 2.1. Let ~'( j)  = z-~k=o p ~ . c ( j -  k) with m(n.) = [51ogn] and 

~'( j)  = .f~(j) + T ( j ) e ( j ) .  Under Conditions A-D 'we have 

max IY(j) - l>(j)l <_ c Z n  - q  
l_<j<n 

where rl may be made arbitrarily large by increasing ~ and Z is a random variable 
that is a.s. finite with P ( Z  > z) <_ cz -~  for  all z E ~+, a being defined 'in 
Condition A. In addition 

sup I F ( a , )  - F(a')I = 0(,~. -~I/(~+~)) 
:r6R 

a.s. 

where F(,r), F(,r) denote the distrib'ution funct ions of X (j)  and X (j),  respectively. 

PROOF. The proof is similar to the one in Hesse (1987), Lemma 2 and is 
therefore omit ted here. 

LEMMA 2.2. Let fi[(j) = E~(=o )-1 pa:c(j - k) with rn(n) = [~logn] 
}~(j) = X ( j )  + T ( j ) e ( j ) .  Also, define 

j _  qGw(t) )) dt 1 "+le_ita. , \- l(d, ,)~f.(tA_l(dn))~Te(tA_l(d n 
g, i ( :~ ' ) -  2~-,X(d,,) 

and 

as an "estimator" of the density.q of .~'(j) where (9? is the empirical characteristic 

funct ion of f~(1) , . . . ,  ! /(n).  

Then under Conditions A-E 

(a )  ,~up Ig,i(.~:) - . 0 . (~ )1  = 0(" .-~'-) 
xER 

(b) sup I~(z) - g(:~)l = O ( n - " ~ )  
xEN 
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where r i (> 0) may be made arbitrari ly large by increasing e (see definition of ! / ( j ) )  
and O~(x) is as in (1.4). 

PROOF. (a) By Lemma 2.1 for e sufficiently large 

max  l e x p ( i t ( ( Y ( j )  - x)A- l (d~) ) )  - exp ( i t ( ( f z ( j )  - x ) k - l ( d , ) ) ) l  
1 <_j<n 

_< max ( c t lY ( j )  - I ) ( j ) [A- l (d , , ) )  
l_<j_<n 

< c tZn  -c 

and hence 

sup(' //1 
xEIR \ 271"/~(dn) 1 ]exp(it((Y(J)-x)A-~(d'*))) 

I~w(t)l 
- e x p ( i t ( ( Y ( j )  - x)a-'(d.)))l i~r~.( tk_l(d, , ) ) l  

/5 < c l - t ( d . , , ) Z n  -~ Itqaw(t)idt = O(n -r2) a.s. 
1 

d,) 

(b) We know that  

F(x + h) - F ( x )  k(x + h )  - k ( x )  

h h 
~-9 Ig(x) - ~(~) 

and also 

sup 
xER 

F ( x  + h )  - F ( x )  k(~ + h) - k ( z )  

h h 

- < s u p (  ]F(x + h) - ~ ( x  + h + [~-'(x) - F(x) I  

With  h = 7~ -~ for some 7 > 0 this is, by Lelnma 2.1, of the order 

n'~O(Tz-~T,/( ' : '+l))  = 0 (7~ -~" , / (~+~> '~ )  = :  O ( n - ' 2 ) .  

LEMMA 2.3. The funct ions  *Iu ~ and ,144~ j defined in (2.5) (2.8) have the 
following properties: 

(a) For all W,~(y) -- n( l+5) /2( logn)-~/2-114&((y  - x ) A - l ( c n / l o g n ) )  E I4~,~ 
there exists an index j E J such that for  all y E 

W, x (v) - *w~ xj (y)l -< *w,? (y) - , ~ x J  (y)l. 

(b) For all j E J and c > 1, 

* X j  E ( 1 %  ( Y ( 1 ) ) - , w , ? ( Y ( 1 ) ) I ) <  ~. 



DENSITY DECONVOLUTION 659 

PROOF. The proof of these results is straightforward and is therefore omitted.  

Remark 1. The result of Theorem 2.1 can be extended beyond the context 
of partial  contamination.  Subject to E it holds more generally for any error 
distr ibution whose characteristic function is twice continuously differentiable and 
uniformly bounded away from zero in absolute value. The class thus specified is 
rich and includes elementary examples such as the distributions with characteris- 
tic functions p + (1 - p)e -t /2, p + (1 - p)(1 + t2) -1 (i.e. partially contaminated 
normal, Laplace, respectively, for any amount  of contaminat ion (1 - p )  �9 (0, 1)), 
and in general any partially contaminated distribution if tha t  distr ibution's  char- 
acteristic function is real and non-negative. Also included are the Be rnou l l i (1 -p )  
distr ibution with p r 1/2 and the Poisson(A) distribution. For the latter this is so 
since clearly 

[ exp(A(exp(it) - 1)) I = exp(Re[A(exp(it) - 1)]) = e x p ( A ( c o s t -  1)) _> e -2"x 

where Re[x] denotes the real part  of x. Additional and less elementary examples 
are provided by the distr ibution of a compound Poisson random variable Z -- 
}-~i~=l Zi for appropriate choices of the distr ibution of the iid Zi random variables 
(m is a Poisson(A) random variable) as well as by the distributions corresponding 
to the characteristic functions 

@i(t) = exp[exp(-c~t 2) - 1] 

~2 (t) = exp[exp[A exp(it)] - exp k]. 

Remark 2. The result of Theorem 2.1 is valid if the amount  of contaminat ion 
is known. I fp  �9 [0, 1] is also unknown then the question of identifiability re-emerges 
with respect to p. Since the density g to be est imated is unknown the parameter  
p is identifiable for a given error density f if for the characteristic functions ~g~, 
~g2 and tI/f of densities gi, 92 and f ,  respectively, 

@g, (t)[pi + (1 - pi)q2f(t)] = v>g, (t)[p2 + (1 - p2)@l(t)]gt 

ilnplies Pi = P2 for all smooth 91 and 92 sa t i s~ ing  the conditions of Theorem 2.1. 
However, with 

% ( t )  = e x p ( - t 2 / 2 ) ,  pl �9 (0,1), p2 = 1 

% ,  (t) = e x p ( - t V 2 )  

g2(x) = pi99(x) + (i - pi)2-i/2%D(2-i/2x) 

the above implication does not hold, where %o(x) is the s tandard  normal density. 

Remark 3. The rate given in Theorem 2.1 for the contaminat ion and de- 
pendence case compares well with existing results for ordinary density est imation 
from iid uncontaminated  observations. For a second order kernel with bounded 
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support the relevant rates are o((n-  1 log n)2/5 M ,  ) a.s. where Ar < log log n and 
M,---, oo (Karunamuni and Mehra (1990)). 

It is interesting to compare deconvolution of partially contaminated linear 
processes with deconvolution of fully contaminated linear processes, i.e. with the 
situation arising for p = 0 in the above model. Towards this end we first present 
a theorem for the empirical characteristic function of 

C O  

Y(j)  = ~ pk~(j - k) + ~(j), 
k=0  

j = l , . . . , n .  

THEOREM 2.2. Under Conditions A, B and E but with p = 0 in Condition, 
A .we have 

/ \ 
P (limsupnl/2(logn)-i sup I ~ r ( t ) -  %'( t ) l  < oo/  = 1 

\ 7~--ec Itl<_,~o / 

where 0 is an arbitrary positive constant. 

PROOF. Because of Hesse (1990) Propositions 2 and 3 with g(i) = cp', 
p C (0,1) and h(n) = [~logn] = re(n) it suffices to obtain the stated rate 
O(n -1/2 logn) for convergence of the characteristic function ~ ?  of 

[~ log n] 

?(j )  = ~ p k ~ ( j -  k) + e(j), j = 1 , . . . , , . .  
k=0  

With 

we have 

^j 
%.(t) 

1 T~j --1 

= n-] ~ exp ( i t (Y ( j  + kin(n)))  
k=0  

sup I~f.(t) - %-.(t)l _< max sup I~=.(t) - ~f-(t)l 
Itl<_ (m(n)  )O l ~_j<m(n ) i t l_<(m(n))0 

and by the methods of Cs6rg6 (1985) 

P @ 1/~(log~)-1 sup 14}~ ( t ) - eg ( t ) l  > c)  
It l<_(.~( ,~))  ~ 

_< c exp(-c l  log n) + Knn  ~ (log n ) -  1-0 exp(-c~ log n) 

where Cl, c2 may be made arbitrarily large, 0 > 0 is arbitrary, and 

Kn = inf{x > O: P(I~(1)I > x) < n-1/2 logn}. 
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Therefore by appropriate choices of Cl and c2 

p m a x  s u p  I" J ~l<j_<m(n)  ~ 9 ( t )  - ~ 9 ( t ) l  > c 
n=~o Itl_<(m(,~))~ 

_< c Z l o g n ( n - ~  + K~nO+l/2-~=(logn) -1-0)  < oo 

since Kn is of polynomial order. Wi th  this theorem we may now obtain deconvo- 
lution rates for the model (1.3) with p = 0. 

THEOREM 2.3. I f  Conditions A (with p = 0), B (with "two" replaced by s), 
E hold, ~ w ( t )  is even, real-valued and noninereasing on [0, oo) with max(r,  s) + 1 

O'-l) ~) 
bounded derivatives such that ~w(1)  . . . . .  t9 w (1) = 0, (1) r 0 and 

kO{~)(O) 0 ~ w  (0) . . . . .  kO w (0), 7 ~ 0 and addition ~ ( t )  is 
real-valued, non-vanishing with (~2e(t) ) -1 ~ c~t ~ exp(Tt{ ) as t -~ oc for Constants 
a , ~ , 7  > 0, [/31 < oo then 

P(linm-sup(l~176176 z~" : 1  

where ~n(X) is as in (1.4) with A = A(dn) = (27 / logn)  a/~. 

PROOF. We have 

sup 19n(x) - g(x)l <_ sup I0n(x) - EOn(a:)l + sup IE0~(x) - g(x)l 
xC[R xER xE~ 

I -< z6Rsup a-A- ,  e - i t X ( ~ r ( t )  - ~ y ( t ) )  ~e( t -~  d t +  cA s 

< e  s u p  ~  w(ta)dt+ca  a.s. 
--itl_<X-~ @e(t) 
<_ cn-~/2( logn)k  (~+~1~-~-1 exp(TA -~) + cA ~ a.s. 

a.s.  

by Lemmas 3.1-3.3 of Stefanski (1990) and by our Theorem 2.2. Now the optimal 
choice k = (27 / logn)  1/~ produces the result. 

In the normal case with ~ = 2 this theorem reproduces the optimal rate 
of order (logn) -s/2 obtained by Carroll and Hall (1988) for iid observations with 
normal contaminat ion errors. We have shown tha t  this rate of order O((tog n ) -  s/~) 
is still valid if observations have the dependence s tructure of a linear process. 
If observations are merely partially contaminated then the results of the paper 
show tha t  deconvolution rates improve in a significant fashion from logarithmic to 
polynomial order and get close to the best rates available for lid uncontaminated  
observations. 
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