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Abstract. A simple random sample is drawn over a finite population which
is composed of several subpopulations. Each subpopulation consists several
domains. The minimax estimator under squared error loss function for the
domain totals over a subpopulation is derived, in which the number of sample
units falling into the subpopulation is random.
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1. Introduction

The purpose of this paper is to derive a minimax estimator of domain totals
over a subpopulation (or stratum). Assume that a finite population 7 has k
subpopulations (or strata) m; with T; units, ¢ = 1, ..., k. In each subpopulation ;,
there are [; domains with (U;y,...,U;;,) as the domain totals. A simple random
sample is drawn over the whole population 7, and the purpose is to estimate
(Uity...,Uy,), i = 1,...,k by using sample units falling into the subpopulation
mi, t = 1,..., k. Note that sample sizes n;, i = 1,...,k in each subpopulation are
random in such situation.

The above problem arises frequently in practice. For example, if two subpop-
ulations are formed by males and females, estimates of totals of unemployment for
males and females separately may be wanted. The subpopulations may be formed
by different age groups, and estimates of totals of voting for Republican, Democrat
and Independent separately in each group may be wanted. If strata are formed
by geographic locations, separate estimates of totals of unemployment for males
and females over each location may be wanted. The basic formulas were given by
Yates and Grundy (1953), and some further contributions were made by Durbin
(1958) and Hartley (1959). There is one section in dealing with such problem in
Cochran ((1977), p. 142).

Notice that the sample sizes n;, 1 = 1,..., k in each subpopulation are random
which is common in finite sampling. For example, Haldane (1945) discusses the
problem of inverse sampling with replacement, and Guenther (1969) discusses the
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inverse sampling without replacement. Hill (1968, 1979) gives Bayes estimator
both with replacement and without replacement. He (1993, 1995) discusses the
estimation of the population mean and the stratum means vector with random
sample sizes over a super-population.

The totals T;, i = 1,...,k of the subpopulations are assumed to be known,
and consequently the distributions of the n; is assumed to be known. Thus n, is
an ancillary statistic.

The minimax estimator of domain totals (U1,...,Uy,), ¢ = 1.... .k will be
derived in the next section by using similar techniques as those in Trybula (1958),
Hill (1968, 1979) and He (1990). A brief discussion will be given in the end.

2.  The minimax estimator

For notational simplicity subscripts will be omitted and the results will be
presented only for one subpopulation.

Assume that the subpopulation consisting of T" units has been classified into
| domains with the i-th domain containing U; units (¢ = 1,...,1). The number
of sample units falling into the subpopulation is n, in which z; units belonging to
the i-th domain, i = 1,...,[, are observed respectively. We are interested in the
estimation of the domain totals U = (Uy,...,U;), which is the parameters of a
multivariate hypergeometric distribution.

Let X = (X1,....X}) have the distribution

() ()
()

(2.1) PXi=x.....X;=a)) =
where ZII X; =n and

!
(2.2) Ue®= {(91,...,91):6'i > O(integer),i = 1,4...1;291- :T}.
1

Suppose that we want to find a minimax estimator of I/ under the squared error
loss function

(2.3) L(a,U) =) (a;i = U:)?,
1
where
(2.4) a€ A= {(a1,...,a;):a; >20,i=1,...,1}.

Let 6 : R! — A be any nonrandomized estimator and, as usual, denote its risk by

R(6,U) = EL(8,U).
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When n is fixed, the minimax estimator of U is found by Trybula (1958),

(2.5) So(z,n) = V i _—n
n+,/ _1 n+,/ _Tll

Now suppose that n is the value of a random variable N, having a (known)
distribution. Let

(2.6) Pr(N=n)= f(n), n=1,...,T.

Thus N is an ancillary statistic.
The minimax estimator of U is given in the following theorem.

THEOREM 2.1. If

(2.7) FT=1)+ f(T) < 1,

then the estimator

(2.8) 5, (z2m) = <(T + lag)xy + (T — n)ag (T + lag)x + (T — n)ao)

n + lag Y n + lag

15 minimaz and admissible and
(2.9) mng(él(X,N), U)
= R(6(X,N),U)

_ 1 (T+la0)2(T~N)N_ B
e (En )

where ag is the unique solution to

1 ~(T +1a)’N(T = N) ((T-N)a\*\) _
(2.10) EN<(N+M)2< T2(T — 1) +< T >>>_O.

If (2.7) is false, then the estimator 6o(x,n) defined in (2.5) is still minimaz
and admissible and

1
(2.11) mUaxR(éo(X, N),U)=R(bo(X,N),U) = <1 — 7) f(r-1).
Proor. The conjugate prior distribution of (Uy,...,U;) is proportional to

<U1+a1—1)“_<ut+az—1> o T(ay +u1) - -Tla+w)

U Uy ul-- -yl
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If n is fixed, the Bayes estimator of U; is

Ila; + u;y)
Zu H] 1( )_LUT]—
51'(1‘,77'):E(Ui|X1=TC17~-~,X1=-7?1;N=71)= ! )
Z Hl (u‘j) ((L] +uJ)
u Jj=1 T; u]|
where ) is over {u; > z1,...,u > Uy + -+ = T}. It is easily seen that

6;(x,n) is equivalent to

Cl]' + ’U,j) A ) { F(a'j +z; + ’UJA)

> ui T m B >oollai + @i+ vi) — @il [T, o
I(a; + v ) 1 Tla; +zj +vj)
£, et ) SRIECE A

Ila; + 25 +v;)

>, Tla; +x; +v; + 1) /! HJ;&; =
!

= - - 4,
. Dla; +2z; +vy)
Zv Hj:l _H#
;!
where 3 isover {v; >0,...,1, > 0;v; +---+ v, =T —n}. Note that
(T - n)'F(bl +vy) - Dby + v,)
- (T —n+ Zl
Tt
p120,...,p20;p1 +--+py=1
—n ) v
: Z —,——),Pil -pytdpy - dpy
" Uy -
2// py e p T hdpy - dpy
p120...., pi120ip1+--+pr=1
L(b1)---T(l)
= [ i
INON))
Applying this fact to the numerator of é; with b; = a; + z; for j # ¢ and b; =
a; +x;+1,¢=1,...,l; and to the denominator of 6; with b; = a; + =, one gets
! !
bi(z,n) = (a;i +z:)(T+ 3", ay) g = (T + 21 a;)z; + (T —n)a;
Ly L) = i .
n+ 3 a n+ Y

This estimator is still Bayes if NV is random.
The prior with a; = --- = a; = a will be used, and the Bayes estimator §(z,n)
then reduces to

§(z,n) = <(T +la)z; + (T —n)a (T +la)z; + (T — n)a) .

n+la Y n+la
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By the strict convexity of the loss function, this is the unique Bayes estimator for
the given prior. Hence it is admissible (Lehmann (1983), p. 263). Furthermore, if
one can find ag > 0 such that R{(6(X, N),U) is constant as a function of U, then
6(z,n) = 61(z,n) is a minimax estimator (Lehmann (1983), p. 250).

Note that

R(8(X,N),U) = ENXL(6(X,N),U)

_ N Exi <(T+1a)X,-+(T—N)a _Ui>2 | N]

- N +la

=EN

!

- 1

EX—— N (AX;+ B-CU;)® | N|,
(N + la)? ;( B -CU) }

where A =T +1la, B= (T — N)a, C = (N +la). Since (Xy,...,X;) follows a

hypergeometric, one knows

U;
|N)=N=Z
E(X;|N)=N—,

and
2

B(XE| M) = g AT = )+ (N )

By using these facts and 21 U, =T, after some manipulations, one gets

£ | e (o

A2N?
F o+ O
APN(T - N) 24BN
T - 1) T
!
:EN(gl(Nya))ZUL?+EN(92(N,CL)),

1

R(6(X,N),U) =

2ACN)U12

- 230) U, + BQ>

where

1 —~(T+1a)2N(T = N) ((T - N)la\*
gl(N,a):EN<(N+la)2< T +< 7 >>>

and

gZ(N’ a’) =

] <(T+la) (T — N)N

27 2
(N + la)? T-1 —(T=N) l“)'

If (2.7) holds, one gets

. (T - N)
tim E”gy(V, )] = ~EV (m> <,
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and
lim EV[gi(N,a)] = BV <%+{;—j+l— %)
B (T - N)(T-N-1)
- () 2o

Thus, by the intermediate-value theorem, there exists an ag > 0 which satisfies
equation (2.10). Therefore, §; is minimax and admissible. The value ag must
be unique. If there exist two distinct admissible estimators having the same con-
stant risk, by the strict convexity of the loss function and Jensen inequality, the
average of the two estimators dominates the two admissible estimators; this is a
contradiction. Consequently, &g is not a minimax estimator since ¢; has constant
risk
R(8:(X,N),U) = EV(g2(N, ao))
and is admissible.
If (2.7) is not valid, then

ey = (BHE, | s @)

is the unique Bayes estimator for the prior distribution of U defined by

ull---ul!

By the same arguments as above, this estimator is minimax and admissible, and

R(6;(X,N),U) = EV (%2 (lQ(TT__NI)—N —(T - N)21>> .

Note that in this case, f(T — 1) + f(T) = 1, then

R(65(X,N),U) = (1 - %) AT —1).

Notice that the risk of ég(z, n) in this case is

!

R(6o(X,N),U) = ENX (Z((So,z‘ - Ui)2>

1
= EX (80,71 — Ur—1)*f(T — 1) + EX (60,7 — Ur)*f(T).

It is easily seen that EX (8 ;(X,T) — U;)? | N =T) = 0, and consequently

R(60(X, N),U) = R(62(X, N),U) = (1 - %) AT =1).
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The proof is completed.

Remark 2.1. Note that the estimator 6;(z,n) is identical with that of equa-
tion (11) of Hill ((1968), p. 683) in the case @ = 1 and M = m. The estimator
61(x,n) is more general in that it applies for other a, but is less general in so far as
the formula of Hill is appropriate when the number of subpopulations M is either
known or unknown. The prior distribution used in the Theorem 2.1 and Hill when
a = 1 is the direct multivariate generalization, for sampling without replacement,
of the classical Bayes-Laplace uniform prior distribution for a Bernoulli parameter.

Remark 2.2. Fisher (1935) first defines an ancillary statistic partly as a basis
for conditioning. A widely held notion about ancillary statistics is that the distri-
bution of the ancillary statistics should be irrelevant to the statistical inference.
Brown (1990) shows that in multiple linear regression the admissibility of the or-
dinary estimator of the intercept depends on the distribution of the design matrix.
Some other examples, including confidence interval estimation, the estimation of
loss function, etc. are given in the discussions of Brown (1990).

In design-based sampling the probability sampling distribution is usually re-
lated to an ancillary statistic. But it may not be surprising to some readers that
the minimax estimator for fixed sample size is not minimax estimator anymore
for random sample size. The reason is that for an estimation problem which is a
randomization among component problems, the minimax estimator is not a com-
posite of the minimax estimators for each of the component problems. The above
theorem shows that an estimator for a composite problem, which has constant risk
and is separately minimax for each component problem, need not be minimax for
the overall problem.
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