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A b s t r a c t .  A simple random sample is drawn over a finite population which 
is composed of several subpopulations. Each subpopulation consists several 
domains. The minimax estimator under squared error loss function for the 
domain totals over a subpopulation is derived, in which the number of sample 
units falling into the subpopulation is random. 
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1. Introduction 

The  purpose  of this pape r  is to derive a m in imax  es t imator  of domain  totals  
over a subpopu la t ion  (or s t r a tum) .  Assume tha t  a finite popula t ion  ,x has k 
subpopu la t ions  (or s t ra ta )  7ri with Ti units, i = 1 , . . . ,  k. In each subpopu la t ion  ~-i, 
there  are li domains  wfth ( U i l , . . . ,  Uil,) as the domain  totals.  A simple r andom 
sample  is drawn over the whole popula t ion  re, and tile purpose  is to es t imate  
( U i l , . . . ,  Uit,), i = 1 , . . . ,  k by using sample  units  falling into the subpopu la t ion  
7ri, i = 1 , . . . ,  k. Note tha t  sample  sizes 'hi, i = 1 . . . . .  k in each subpopu la t ion  are 
r a n d o m  in such s i tuat ion.  

The  above p rob lem arises frequently in practice.  For example ,  if two subpop-  
ulat ions are formed by males  and females, es t imates  of to ta ls  of unemploynlent  for 
males  and females separa te ly  may  be wanted.  The  subpopu la t ions  may  be formed 
by different age groups,  and es t imates  of to ta ls  of vot ing for Republ ican,  Democra t  
and Independen t  separa te ly  in each group may  be wanted.  If s t r a t a  are formed 
by geographic  locations,  separa te  es t imates  of to ta ls  of unemploymen t  for males  
and females over each location may  be wanted.  Tile basic formulas  were given by 
Yates  and G r u n d y  (1953), and some fur ther  cont r ibut ions  were made  by Durbin  
(1958) and Har t l ey  (1959). The re  is one section in dealing with such p rob lem in 
Cochran  ((1977), p. 142). 

Notice tha t  the smnple sizes hi, i = 1 . . . . .  k in each subpopu la t ion  are r a n d o m  
which is c o m m o n  in finite sampling.  For example ,  Haldane  (1945) discusses the 
p rob lem of inverse sampl ing  with replacement ,  and Guen the r  (1969) discusses the 
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inverse sampling wi thout  replacement .  Hill (1968, 1979) gives Bayes es t imator  
bo th  with replacement  and wi thout  replacement .  He (1993, 1995) discusses the 
es t imat ion of the popula t ion  mean and the s t r a t u m  means vector  with r andom 
sample sizes over a super-populat ion.  

The  totals  Ti, i = 1 , . . . ,  k of the subpopula t ions  are assumed to be known, 
and consequent ly  the dis tr ibut ions of the r~. i is assumed to be known. Thus  ni is 
an ancillary statistic.  

The  minimax es t imator  of domain  totals  (Uil,. �9 Uil,), i = 1 . . . .  , a: will be 
derived in the next  section by using similar techniques as those in Trybu la  (1958), 
Hill (1968, 1979) and He (1990). A brief discussion will be given in the end. 

2. The minimax estimator 

For nota t ional  simplicity subscripts will be onfi t ted and tile results will be 
presented only for one subpopulat ion.  

Assume tha t  the subpopula t ion  consisting of T units has been classified into 
l domains with the i-th domain containing Ui units (i = 1 , . . . , I ) .  The  number  
of sample units falling into the subpopula t ion  is n, in which xi units belonging to 
the i- th domain,  i = 1 , . . . , 1 ,  are observed respectively. We are interested in the 
es t imat ion of the domain  totals  U = ( U 1 , . . . ,  Ul), which is the paramete rs  of a 
nmlt ivariate  hypergeometr ic  distr ibution.  

Let  X = (X1 . . . . .  X~) have the dis tr ibut ion 

(2.1) . P ( X 1  = X l . . . . .  X l  = .1?1) - -  (U~)  . . .  ',r 

where ~/1 Xi = 77 and 

(2.2) { • } U E @ =  (01 , . . . ,Ot ) :Oi>_O( in teger ) , i= l  . . . .  l; 0 , = T  . 
1 

Suppose tha t  we want to find a minimax es t imator  of U under  the squared error  
loss function 

(2.3) 

I 

L(a ,  U) = - Ui)",  
1 

where 

(2.4) a C ,,A = { ( a l , . . . , a l )  " a i  ~_ O, ' i  : 1 , . . . , l } .  

Let ( : g l  __~ A be any nonrandomized  es t imator  and, as usual, denote  its risk by 

R(6, U) = EL(6, U). 
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When n is fixed, the minimax estimator of U is found by Trybula (1958), 

(2.5) 5o(X, n) = 

1 /-T-n 1 T ~ n - -  n \ 

+ V - + 7 V | T ,T  
T -  n 'n+  

n +  ~ 1 

Now suppose that n is the value of a random variable N, having a (known) 
distribution. Let 

(2.6) Pr(N = n) = f (n) ,  n = 1 , . . . , T .  

Thus N is an ancillary statistic. 
The minimax estimator of U is given in the following theorem. 

THEOREM 2.1. ff 

(2.7) f ( T -  1) + f (T )  < 1, 

then the estimator 

(2.s) ( ( T  + lao)r + (T - n)ao (T + lao)xt + (T - n)ao 
61 (x, N,) < n + lao " ' "  n + lao ) 

is minimax and admissible and 

(2.9) max f~(61 (X, N),  U) u 

= R(61 (X, N), U) 

= E N (  1 ( (  T + lao)2 (T-  N ) N  
(N + lao) 2 T - 1 

,where ao is the unique solution to 

(2.10) 
EN ( 1 ( - ( T + I a ) 2 N ( T - N )  ( ( T % N ) l a ) 2 ) )  

(N + la)2 ~ ( ~ -  V) + = O. 

If  (2.7) is false, then the estimator 5o(x,n) defined in (2.5)is  still minimax 
and admissible and 

(2.11) m a x R ( 6 o ( X , N ) , U )  = R(6o(X ,N) ,U)  = ( 1 -  ~ )  

PROOF. The conjugate prior distribution of (U1, . . . ,  Ul) is proportional to 

r (a l  + U l ) - . . r ( a l  + ul) 
(3( u l ! . . ,  ul! 
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If  n is fixed, t he  Bayes  e s t i m a t o r  of Ui is 

5 i ( x , n )  -- E (Ui  [ X1 = x l , . . . , X l  = x l ; N  = n) = 

t r ( a j  + u j )  
E,~,,~ r l j : ,  (;j) ~j! 

where  }-~, is over  {u I ~ Xl , .  �9 , ~/.I _~ Xl; Ul -t- �9 - �9 -~ Ul = T} .  It is easi ly seen t h a t  
6i (x, n) is equiva len t  to  

, r(__2j + 2j_) 

, r(__~z_+ 2j_) 
E u  ~Ij=l ('U,j -- Zj)! 

E, , [ (a~+z~+v~)  a~] ~ r ( a j + x j + , , ~ )  
- -  l - I j  = 1 y j  ! 

E~,I-I~=I r '(aj  + x j  + v j )  
vj ! 

~ ,  r'(a~ + xi  + v~ + 1)/v~! 1-]ljr F (a j  + x j  + v j )  
v j! 

~ , ,  l r ( a j  + xj  + v j )  ai, 
1-I j = 1 vy ! 

w h e r e  }--~, is o v e r  {v I ~ 0 , . . . ,  Vl _~ 0; Vl ~- - . -  -t- Vl : T - n} .  N o t e  t h a t  

(T - ,)!r(b~ + Vl)..- r(b~ + v~) 

,, + E~ b )  

---- / ' ' ' ~ p l > O  ..... pl>O;pl+...+pl=l p~ I -1  

( T  - n)! 
�9 E Vii [:. Vl'--~I.P~I" "''P;" dpl "'" dpl 

V 

: / ' ' '~pl__>O ..... pl>O;plj-...j-pl=l p~I-1 

= r ( b l ) . - .  C(bt) 

r ( E ' l  bj) 

~ b t - 1  "-P/ 

�9 p~ - 1 dpl �9 �9 �9 dpt 

A p p l y i n g  this  fact  to the  n u m e r a t o r  of  (~i w i t h  bj = aj  -t- x j  for j r i and  bi = 
ai q- x i  + 1, i = 1 , . . . ,  l; and  to  the  d e n o m i n a t o r  of  5i wi th  bj = aj + x j  one  ge ts  

(a~ + x,)(T + E ~, aj) (T + E' l  aj)x~ + (V - ,~)a~ 
6i(X,  n )  = -- ai = 

n + E t l  aj 'n + E ~1 aj 

This  e s t i m a t o r  is still Bayes  if N is r a n d o m .  
T h e  pr ior  wi th  a l  . . . . .  at = a will be used,  and  the  Bayes  e s t i m a t o r  5(x,  n) 

t h en  reduces  to  

5 ( x , n )  t, n + la ' ' " '  n + la ) " 
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By the strict convexity of the loss function, this is the unique Bayes est imator  for 
the given prior. Hence it is admissible (Lehmann (1983), p. 263). Furthermore,  if 
one can find a0 > 0 such that  R(~(X, N), U) is constant  as a function of U, then 
6(x,n) = 51(x,n) is a minimax est imator  (Lehmann (1983), p. 250). 

Note that  

R(6(x, N), U) = EN,XL(~(X, N), U) 

= EN Ex ~ (T + la)X~N + la + ( T -  N)a - Ui 21N 
1 

=EN Ex 1 E ( A X i + B - C U i )  2 I N  , 
(N + la) 2 1 

where A = T + la, B -- ( T -  N)a, C = (N + la). Since ( X 1 , . . . , X t )  follows a 
hypergeometric ,  one knows 

E(X~ I N )  = N U~ 
T '  

and 

E(x31 N / -  ~ - - - U  u, IT -  u, /+ \ T / " 

By using these facts and Y~/1 Ui = T, after some manipulations,  one gets 

R(6(X 'N) 'U)=EN[(N+l la)  2 ~ l  ((-A2N(T-N)T___~_li 

A2N 2 C 2 2 A ~ N )  2 
+ T ~ + -- U i 

(A2N(T - _N) 2ABN 2BC) 
+ \ T ( T -  1) + 

Ui 

l 

= E N ( ~ I ( N , a ) ) E U f f  -{-- EN(oq2(N,a)) ,  
1 

where 

9 1 ( N ' a ) = E N I 1 ( N  + la) 2 ( -(T+Ia)2N(T-N)T-2-(--T~ 

and 
1 ((T + l~)2(r- N)N 

g2(N, a) - (N + la) 2 T 21- 

If (2.7) holds, one gets 

lira EN[gl(N,a)] = - E  g ~ - -  ~) 

- (T - N)2la 2) . 

< 0 ,  

2)) 
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lim E N [gl (N, a)l = E N 
t ' / ~  OO 

= E N 

- N ( T -  N) N 2 2NT ) 
T 2 ( T _  1 ) + ~ - + I -  

( T -  N ) ( T -  N - 1) )  
fi >o .  

Thus, by the intermediate-value theorem, there exists an a0 > 0 which satisfies 
equation (2.10). Therefore, 61 is minimax and admissible. The value ao must 
be unique. If there exist two distinct admissible estimators having the same con- 
stant risk, by the strict convexity of the loss function and Jensen inequality, the 
average of the two estimators dominates the two admissible estimators; this is a 
contradiction. Consequently, 50 is not a minimax estimator since 61 has constant 
risk 

R(51(x ,  N) ,  U) = E~(g~(N,  ~o)) 

and is admissible. 
If (2.7) is not valid, then 

62(x'n)= ( x l + ( T - n ) l  , . . . , x l + ( T - n ) ) l  

is the unique Bayes estimator for the prior distribution of U defined by 

T! 
u~fs~l "~ 0 < s i  < 1 i = l ,  l, E u i = T .  

1 1 . 1 ! . . .  " ' ' S t  , _ _  _ _  , . . . ,  
1 

By the same arguments as above, this estimator is nfinimax and admissible, and 

y ~--~ 

Note that in this case, f (T  - 1) + f(T) = 1, then 

R ( 6 2 ( X , N ) , U ) =  1 -  ~ I ( T - 1 ) .  

Notice that  the risk of 50(x, n) in this case is 

R(6o(X, N), U) = E N'X (~o,i - Ui) 2 

= EX(60,T_I -- g r _ l ) 2 f ( Z -  1) -}- EX(60,T -- gr)2f(T).  

It is easily seen that EX(60d(X, T) - Ul) 2 I N = T) = 0, and consequently 

(1) R(6o(X, N),  U) = n(52(X,  N) ,  U) = 1 - y I(T - 1). 
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The proof is completed. 

Remark 2.1. Note that  the estimator 51(X, Tt) is identical with that of equa- 
tion (11) of Hill ((1968), p. 683) in the case a = 1 and M = m. The estimator 
51 (x, n) is more general in that it applies for other a, but is less general in so far as 
the formula of Hill is appropriate when the number of subpopulations M is either 
known or unknown. The prior distribution used in the Theorem 2.1 and Hill when 
a = 1 is the direct multivariate generalization, for sampling without replacement, 
of the classical Bayes-Laplace uniform prior distribution for a Bernoulli parameter. 

Remark 2.2. Fisher (1935) first defines an ancillary statistic partly as a basis 
for conditioning. A widely held notion about ancillary statistics is that the distri- 
bution of the ancillary statistics should be irrelevant to the statistical inference. 
Brown (1990) shows that  in multiple linear regression the admissibility of the or- 
dinary estimator of the intercept depends on the distribution of the design matrix. 
Some other examples, including confidence interval estimation, the estimation of 
loss function, etc. are given in the discussions of Brown (1990). 

In design-based sampling the probability sampling distribution is usually re- 
lated to an ancillary statistic. But it may not be surprising to some readers that  
the minimax estimator for fixed sample size is not minimax estimator anymore 
for random sample size. The reason is that  for an estimation problem which is a 
randomization among component problems, the minimax estimator is not a com- 
posite of the minimax estimators for each of the component problems. The above 
theorem shows that  an estimator for a composite problem, which has constant risk 
and is separately minimax for each component problem, need not be minimax for 
the overall problem. 
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