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A b s t r a c t .  Suppose that  X~ = (X1 , . . . ,  Xn) is a collection of m-dimensional 
random vectors Xi forming a stochastic process with a parameter 0. Let 
be the MLE of 0. We assume that  a transformation A(~) of 0 has the k-th- 
order Edgeworth expansion (k = 2, 3). If A extinguishes the terms in the 
Edgeworth expansion up to k-th-order (k > 2), then we say that  A is the k-th- 
order normalizing transformation. In this paper, we elucidate the k-th-order 
asymptotics of the normalizing transformations. Some conditions for A to be 
the k-th-order normalizing transformation will be given. Our results are very 
general, and can be applied to the i.i.d, case, multivariate analysis and time 
series analysis. Finally, we also study the k-th-order asymptotics of a modified 
signed log likelihood ratio in terms of the Edgeworth approximation. 

Key words and phrases: Normalizing transformation, higher-order asymptotic 
theory, variance stabilizing transformation, multivariate analysis, time series 
analysis, Edgeworth expansion, saddlepoint expansion, MLE, observed infor- 
mation, signed log likelihood ratio. 

1. Introduction 

In the area of multivariate analysis, there have been a lot of suggestions on 
how to transform statistics in order to get some desirable properties. An impor- 
tant example of transformations is Fisher's z-transformation Z(r) for the sample 
correlation coefficient r in a bivariate normal sample. Hotelling (1953) evaluated 
the higher order asymptotic moments of Z(r), and showed that Z(r) becomes 
the asymptotic variance stabilizing transformation. Furthermore, he gave a trans- 
formation of r which extinguishes the second-order bias. In terms of the Edge- 
worth approximation, Konishi (1978) showed that Z(r) extinguishes a part of the 
second-order terms of the asymptotic expansion. Also, Konishi (1981) discussed 
the transformations of a statistic based upon the elements of the sample covariance 
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matrix which extinguish the second-order terms of the Edgeworth expansions. Fur- 
thermore, Fang and Krishnaiah (1982) gave the Edgeworth expansions of certain 
functions of the elements of the noncentral Wishart matrix. They obtained anal- 
ogous results for functions of the elements of the sample covariance matrix when 
the underlying distribution is a mixture of multivariate normal distributions. 

In the area of time series analysis the first study of higher order asymptotic 
properties of a transformed statistic is Phillips (1979). He gave the Edgeworth 
expansion of a transformation of the least squares estimator for the coefficient 
of an AR(1) process, and showed that Fisher's z-transformation extinguishes a 
part of the second-order terms of the Edgeworth expansion. Taniguchi et al. 
(1989) investigated Edgeworth type expansions of certain transformations of some 
statistics of Gaussian ARMA processes. They also gave transformations which 
make the second-order part of the Edgeworth expansions vanish. 

Most of the discussions in the above depend on the individual models. There 
are few literatures which develop the higher order asymptotic theory for transfor- 
mations of statistics (c.f. Konishi (1987, 1991)). In this paper, we shall develop the 
higher order asymptotic theory for transformations of the MLE in general statis- 
tical models. Our results are applicable to the i.i.d, case, time series analysis and 
the non-identically distributed case. Let 0 be the MLE of 0 in a general statistical 
model, and let A(O) be a transformation of 0. Suppose that a standardized version 
.4 of A(0) has the following Edgeworth expansion with respect to the sample size 
n; 

(1.1) ~(A < x) : ~(x) Q- ?%-I/2C(A2) (x ) ~- ?%-IC(A3)(x ) ~- o(7%-i), 

where q~(z) is the distribution function of the standard normal distribution, and 

C(A2)(x) and C(Aa)(x) are the second and third order terms of the Edgeworth ex- 
pansion. Throughout this paper we say that A is the second-order normalizing 
transformation if C(A 2) (x) _= 0, and that A is the third-order normalizing transfor- 

mation if C~Z)(x)'- -= C(A3)(x)= 0. 
In Section 2, we shall elucidate the second-order asymptotics of the second- 

order normalizing transformations in our general setting. A relation between the 
variance stabilizing transformation and the second-order normalizing transforma- 
tion will be discussed. In Section 3, we will show that the second-order normalizing 
transformation does not become the third-order one generally. Then some condi- 
tions for A to be the third-order normalizing transformation are given. However, 
they are found to be very restrictive. Thus, in Section 4, without these restrictive 
conditions we propose another type of third-order normalizing transformation in 
terms of the observed information, which supplies some additional informations 
which the MLE 0 can not recover. 

Barndorff-Nielsen (1991) and Jensen (1992) discussed a modified signed log 
likelihood ratio, which becomes a kind of normalizing transformation in the sense of 
the saddlepoint approximation. In Section 5, we elucidate the third-order asymp- 
totics of their modified signed log likelihood ratio by using the Edgeworth approx- 
imation. 
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2. Second-order asymptotic theory for normalizing transformations 

In this section, we view the normalizing transformation of the MLE from the 
second-order asymptotic theory. 

Let X~ = (X1, X 2 , . . . ,  X~) be a collection of m-dimensional random vectors 
Xi which are not necessarily i.i.d. (i.e., our results can be applied to regression 
analysis, multivariate analysis and time series analysis). Let p ~ ( ~ ; 0 )  denote 
the probability density function of X ,  with respect to a carrier measure, where 
x~ E R r ~  and 0 = ( 0 1 , . . .  ,ÜP)' E 0 C R p, is an unknown parameter vector. 
Henceforth it is assumed that p~(.;0) is differentiable with respect to 0 up to 
necessary order. Define 

Zi = ~t-1/iOign(O), 

Zij  = ?% -1/2 [OiOj~.n(O) - Eo{O~O/~(O) }], 

z~j~ = ~-1/2 [O~%0~gn(O) - Eo{O~%O~e~(O)}], 

where i , j ,  k = 1,. . .  ,p, g~(O) = logpn(X~; O) and 0/c90 ~ is abbreviated to 0i. We 
make the following assumption, which is very reasonable even in the non-i.i.d, case 
because it is satisfied by many regular statistical models (see Taniguchi (1991) for 
the dependent or non-identical case). 

ASSUMPTION 1. The asymptotic moments (cumulants) of Zi, Zij and Zijk 
are evaluated as follows: 

1 
E ( Z i Z j )  = gij -~ ~ A i j  -r o(n-1) ,  

E(Z{Zjk)  = J{~k + O(n-1),  

E(Z~ZjZ~): i ~l&jk + 0(n-3/2), 

E(ZiZ~k.) = L{jk~ + O(~-b, 

E(ZijZkm) = Mijkrn + O(rt-1),  

E( Z{Zj Z k . J  = ~- l/2 X{jk.~ + 0 (~ -  3/2), 
cum(Zi,  Zj ,  Zk, Zm) : ?%-l Hijkm ~- O(r~-2), 

and J-th-order ( J  _> 3) cumulants of Zi, Zij and Zijk are all O(n-d/2+l). If 
0 is scalar we use 9, J,  K , . . . ,  Z1, Z2, Za for the quantities 9ij, Jijk, K i jk , . . . ,  
Zi, Zij, Zijk, respectively. 

Now we are interested in the estimation of a parameter S = S(O) : R p ~ R 1, 
which is continuously twice differentiable with respect to 0 C O. We estimate S(O) 
by S(O) where 0 is the MLE of 0. 

Example 1. 

(2.1) 

Suppose that Xi; i = 1 , . . . ,  n, are i.i.d, as 

O 1 O 3 



584 MASANOBU TANIGUCHI AND MADAN L. PURI 

If we set S(O) = 03/{0102} U2 then S(O) and S(0) are the correlation coefficient 
and the sample correlation coefficient, respectively. 

Next, we consider a transformation of S(0). Let A : R 1 ~ R 1 be a continu- 
ously three times differentiable function. Define Si = OiS(O), Sjk = Ojc%S(O) and 
S = S~g~JSj, where g ~j is the (i, j )  component of the inverse matrix of {g~j}- Here, 
we adopt the Einstein summation convention. We denote the i-th order derivative 
of A by A (~). To seek the second-order normalizing transformation A of S(0) we 
make the standardization 

(2.2) g = v~{A(1)v/S} -1 A{S(O)} - A{S(O)} - n ' 

where c is a correction constant, and A (t) and S are taken at 0 = 0. To avoid 
many sophisticated regularity conditions which depend on the model concerned, 
throughout this paper we assume the validity of the Edgeworth expansions (see 
Bhattacharya and Ghosh (1978) for the i.i.d, case and Taniguchi (1987) for the 
dependent case). The following theorem describes the second-order normalizing 
transformation. We put the proofs of theorems and propositions in the Appendix, 
if they are not straightforward. 

THEOREM 2.1. I f  A and c satisfy the differential equations 

(2.3) 

A (~) 1 
~4(1 ) - 82 SiSjSk,~gikg jm 

• . t  - . !  ! 

+ y S SjSkg   gkk (2K ,j,k, + 33 ,5,k,) 

c ~ i j ~ k . ~ j ,  1 i k.~ } 1 / A  (2) 
A(1) - S i n g  y mjk - } -~gJg  Rjkm + ~  ~ f ~ S i S j  

then A is the second-order normalizing transformation, i.e., 

I .. + Sij g,3, 

< x )  = + 

where Rjk,~ ---- - K j k , ~  - Jj~,~ - Jk,~j - J,~jk. 

If the asymptotic variance ~ of A{S(0)} is independent of 0 we say that A is 
an asymptotic variance stabilizing transformation. 

PROPOSITION 2.1. If  A satisfies the differential equations 

(2.4) 
A(2) . . . . . .  
A(1) = (SmS) -~{S iS jg~  g33 (Ki,j,.~ + Ji'j'.~ + Jj,i,.~)/2 - S.~iSjgij},  

m :  1 , . . .~p ,  

then A is the asymptotic variance stabilizing transformation. 
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Also we obtain the following proposition. 

PROPOSITION 2.2. If 

(2.5) SiSjSkgii'gJJ'gkk'Ki,j,k, = 0 

is satisfied, then the variance stabilizing transformation of S(O) given by (2.4) is 
equivalent to the second-order normalizing transformation of S(O). 

Konishi (1987) discussed the asymptot ic  theory for t ransformations of a class 
of est imators in the i.i.d, case. He gave a sufficient condition that  the second-order 
normalization and variance stabilization are simultaneously achieved. In the case 
where {X~} are i.i.d, and 0 is the MLE, the condition (2.5) is essentially equivalent 
to Konishi 's one. 

Remark 1. In general, we can not guarantee that  the differential equations 
(2.3) and (2.4) are always solvable with respect  to S. If p = 1 (i.e., 0 is scalar), 
making the t ransformation 0 --+ S, we can easily show that  (2.3) and (2.4) become 

(2.3)' 

(2.4)' 

A 2) 

A(1) 
c 

A(1) 

A(2) 
A(1) 

- {2K(S)+3J(S)}/3g(S), 

- -K(S)/6g(S) 2, 

K(S) +2J(S) 
2 g ( s )  ' 

respectively, where g(S), J(S) and K(S) are the corresponding quantities g, J ,  K 
obta ined by replacing the derivatives with respect  to 0 with 0 = O/OS. Of course 
(2.3)' and (2.4)' are solvable with respect  to S. Because most  of the discussions 
on this topic are on the wider family S = {p~(.; 0); d im0 > 1} not on the "curved 
family" M = {pn('; S ) ; d i m S  = 1}, we develop our theory on S with respect to 
0. We give some examples below. 

Example 2. In Example 1 the variance stabilizing t ransformation of the sam- 
ple correlation coefficient r = S(0) = 0a/{0102}1/2 is given by Fisher 's z-transfor- 
mat ion 

( 2 . 6 )  
1 

A(r) = ~ l o g { ( l + r ) / ( 1  - r)}. 

It is not difficult to show that  (2.5) is satisfied, whence A(r) is the second-order 
normalizing transformation.  

Remark 2. Suppose that  Xi; i = 1 , . . . ,  n, are i.i.d, as 
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Then the first-order asymptotics of the MLE ~ of p is different from that of r in 
Example 2. This is due to the fact that the family of distributions 

is a curved subfamily of 

: {N2 ( 01 03 

and p is not orthogonal to 01 and 0 2 with respect to the Fisher information. It 
should be noted that most of the discussions on the correlation coefficient are on 
the wider family S not on M .  Example 2 discussed A{S(0)} not A{¢3}. 

Eigenvalue is one of the most important indices in multivariate analysis. The 
following is an example of the second-order normalizing transformation of the 
eigenvalues of the sample covariance matrix. 

Example 3. Suppose that Xi; i = 1 , . . . ,  n, are i.i.d, as Np(#, E). Let "~1 > 
• .. > ),p be the eigenvalues of E, and let 61 _> . . .  _> gp be the eigenvalues of S, 
where 

S = n - 1 E ( X i  - X ) ( X i  - 2 ) ' ,  with 2 = n -1 Xi.  
i=1 i=1 

We can see that the second-order normalizing transformation of the a- th  eigenvalue 
ea is given by A(x)  c< x 1/3 (see also Krishnaiah and Lee (1979), Konishi (1981), 
Fang and Krishnaiah (1982)). 

Amari (1985) developed a differential geometry of statistical inference for a 
curved exponential family. His approach gave us a unified view of higher order 
asymptotic theory. Here we grasp the second-order normalizing transformation 
from his point of view. For 0 i = v~(0  i - 0i), i = 1, . . .  ,p, cum{0i,0J,(} k} are 
expressed as a linear combination of the third-order tensor Kijk and 1-connection 
Jijk (see (A.4) in Appendix). By transformation 0 --+ ~ = ( ~ ) ,  the third-order 
tensor Kijk changes to 

(2 .7)  - i  - j  - k  Bc~ B z By Kij k, 

where/)~ = OOi/O~. On the other hand, by this transformation the 1-connection 
Jijk changes to 

(2.8) B B,(0jB )g   + 

Therefore, even if the third-order cumulants of 0J do not vanish in the original 
model we can define a transformation which extinguishes the transformed third- 
order cumulants in terms of some differential equations. In Theorem 2.1, (2.3) 
elucidate a relation between the normalizing transformations and the differential 
geometrical structure of the wider family S. 
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3. Third-order asymptotic theory for normalizing transformation 

In this section we shall discuss the third-order asymptot ics  of normalizing 
transformations.  We restrict ourselves to the si tuation where 0 is scalar and S(O) = 
0. Tha t  is, the third-order asymptot ics  of the t ransformation A(0) of the MLE 
will be elucidated. First, we make the following standardizat ion 

(3.1) 

Define 

c 

: A(O)- 

C~1) _ _ _ - J  - K + A (2) 
293/2 2A(1)gl/2 

- L  - 4 N  - H 
C}~) _- __A + g2 + 

g 
A (3) (A(2)) 2 

+ ~ -]- 2(A(1))2g + 

C0)  - 3 J  - 2 t (  3A (2) 
111 - g3/2 + A(1)gi/~' 

C(1) 4L + 12N + 3 H  
iiii = g2 + 

4A (3) 12(A(2)) 2 

+ ~ + g(A(1))2 

c f / 2  
A(1) '  

7J 2 + 14JK + 5K 2 
2g 3 

_4JA(2)  _ 3KA(2) 
A(1)g2 

12(2J  + K)(J  + K) 
g3 

12A (2) (3J  ÷ 2K)  
A(1)g 2 

Then we have, 

PROPOSITION 3.1. (i) The transformation A is the second-order normalizing 
transformation if and only if C~ 1) : '~111f7(1) ---- 0. 

(ii) The transformation A is the third-order normalizing transformation if and 
only if C~ 1) = "JillY7(1) = C~ 3) ~- 'JllllYT(1) ~-- 0. 

Remark 3. We can see that  /7(1) ---- 0 is equivalent to '-/111 

(3.2) 
A (2) 3J + 2 K  

A(1) 3g 

The second-order normalizing t ransformation is given by solving the differential 
equation (3.2). Differentiation of (3.2) with respect to 0 yields 

A (3) 3 M  + 3L + 9 N  + 2 H  (3J  + 2 K ) ( - 3 J  - K )  
(3.3) A(1) - 3g + 942 

Subst i tu t ing (3.2) and (3.3) into/~(1) ~-~1111 we obtain 

(3.4) (~(1) 12(Mg - j2 )  + 4 K  2 _ 3Hg 
~ n l l  = 3g3 993 , 
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for the second-order normalizing transformation A. 

We evaluate (3.4) for the following time series models. The fundamental quan- 
tities g, J, K, M and H are given in Taniguchi ((1991), p. 39). 

Ezample 4. (i) Let {Xt}  be a Gaussian AR(1) process with the spectral 
~r 2 1 

density f0(A) = 2u Ii-0e~l 2, 10l < 1. Then, for the second-order normalizing 

transformation A of 0, 

(3.5) rv(1) _ 2 -  602 
'-'1111 1 - 0 2 ' 

1 which is not equal to 0 if 0 2 # 5" 
(ii) Let {Xt}  be a Gaussian MA(1) process with the spectral density f0(A) = 

~ l  1 - 0eiXl2, ]0[ < 1. Then, for the second-order normalizing transformation A 

of O, 

( 3 . 6 )  • (1)  6 ( 3  - 0 2) 
~ 1 1 1 1  = 1 - -  0 2 ' 

which is not equal to 0 for all [0[ < 1. 
(iii) Let {Xt}  be a Gaussian A R M A ( p ,  q) process with the spectral density 

0 1  q ~ j = o  c~j e~JX 12 
f0(A) = ~7~ i p Ej=o 9/j  12, 

(so =/30 = 1). 

Then, for the second-order normalizing transformation A of 0, 

C(1) 4 
1111  z - - ~ .  

Summarizing the discussion above, we have 

THEOREM 3.1. The second-order normalizing transformation does not be- 
come the third-order normalizing transformation in general. 

The next interest is the following question: for what statistical models does 
the second-order normalizing transformation imply the third-order normalizing 
transformation? The following theorem answers this. 

THEOREM 3.2. (i) I rA  is the variance stabilizing transformation, and if K = 
0, then A is the second-order normalizing transformation. 

(ii) In addition to the condition (i) if H = O, M g  - j2 = 0 and A = 0 hold, 
then A is the third-order normalizing transformation. 

Here it may be noted that M1/2/g, with kT/= M 9  - j2,  is a counterpart of 
Efron's statistical curvature in our situation (e.g., Efron(1975)). 
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4. Third-order normalizing transformation in terms of the observed information 

As we saw in the previous section, the condition for A to be the third-order 
normalizing transformation is fairly restrictive. In this section, without restrictive 
assumptions, we will make a third-order normalizing transformation. It is well 
known that the observed information 

i = -lo%(0), 
n 

can supply some additional information which the MLE 0 can not recover. From 
this motivation, we consider the standardized transformation 

(4.1) ~ = V/~{A(1)(0)} -1 A(0) - A(O) - n 

where c and d are correction constants, and h(.) is a continuously three times 
differentiable function satisfying h(g) = 1. We also denote the i-th order derivative 
of h(.) by h(~)(.). The following theorem describes the third-order normalizing 
transformation in the form (4.1). 

(4.2) 

THEOREM 4.1. 

awA(3) + 3M + fA(2)  { 2(3J + K)M 
2 \ ~ /  (2J+K)~ \ ~ /  g(2J+K)~ 

2L + 6M + 6N + H (3J  + 2K) (9J  + 4 K ) ~ I  

Suppose that A and h satisfy the differential equations 

+ 

h(1) (g) - 

g 3g2(2J + K)  2 

18J 2 + 9 J K  + 2 K  2 
--~ 0, 

3g 2 

3 J  + 2K A (2) 
( 4 . 3 )  

and that c and d are chosen so that C~ 1) 

6g(2J + K) 2A( 1)(2J + K ) '  

= 0 and = 0 of (A.31) and (A.32) 
in the Appendix,  respectively. Then ~ becomes the third-order normalizing trans- 
formation,  i.e., 

(4.4) P{g < X} : (I~(X) + o ( n - 1 ) .  

Here it should be noted that if the curvature ~ /  vanishes, the differential 
equation (4.2) is reduced to a very simple form. We next give some examples for 
Theorem 4.1. 

Example 4. Let { X t }  be a Gaussian AR(1) process with the spectral density 

~2 l1 _ 0ei~[_2. Then (4.2) becomes the following Riccati type differential fo(A) = 
equation 

(4.5) dy 70 ~ - 3 30 
d--O + y2 405 1 - 02 y = O, 
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where y = A(2)(O)/A(1)(O). Prom (4.5) and (4.3) we can get 

0/~-+ 3 
(4.6) AO)(O) = V i----0 ~' 

1 - 0 4 
(4 .7)  h (~) (9)  - 2(0~ + 3) 

Also, from (A.31) and (A.32) we obtain 

c =  0 0 / ~ + 3  
- V i 2-0~, 

d = 202(17 + 1002 + 04) 
( 1 - 0 2 ) ( 0 2 + 3 )  2 

Since we can approximate  g up to third-order by the Taylor expansion in terms 
of the derivatives of A(O) and h(g), it is enough for us to give the explicit form of 
A(*) (0) and h (1) (g) (in fact we can not give their integrals explicitly). 

Ezarnple 5. 
density 

Let {Xt} be a Gaussian ARMA(1, 1) process with the spectral  

0 l1 - aeiXl2 
f0(A) -- 27c I1 -/3ei;~l 2 

It follows from (4.2) and (4.3) tha t  

A(O) = 0 (6+2v/~)/3, 

- 3--~ 5 + + (g-3/2 _ 
X-it-I~2). 

Here we give a comment concerning confidence intervals of 0. If v~/A(1)(O) 
and c in (3.1) are independent  of 0, or if v/~/A(1)(O), c and d in (4.1) are inde- 
pendent  of 0, then we can easily make confidence intervals of A(O) based on the 
results in Sections 3 and 4. However, if not so it seems to be difficult to construct  
them because we can not guarantee that  A(-) is monotone.  

5. A modified signed log likelihood ratio and another normalizing method 

Barndorff-Nielsen (1991) discussed a modified signed log likelihood ratio, 
which becomes a kind of normalizing transformation.  For a family of exponential  
distr ibutions Jensen (1992) investigated some asymptot ic  propert ies of 

(5.1) r * = r -  l o g - ,  
r u 

where 
= sgn(O - o ) { 2 e n ( O )  - 2 e n ( o ) }  1/2, 

u = v ~ ( O  - O ) U  2. 
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Here r is called the signed log likelihood ratio. Using a saddlepoint approximation, 
he showed 

(5.2) P(r* _> x) = 1 - ~ (x )  + o (n-1) .  

In this section, we will give the third-order Edgeworth expansion for r*. Then 
we check whether r* is the third-order normalizing transformation or not in the 
sense of the Edgeworth approximation. First, we give the stochastic expansion of 
r*. 

PROPOSITION 5.1. Under our general assumptions in Section 2 (i.e., we are 
not restricted to the family of exponential distributions), r* has the stochastic 
expansion. 

(5.3) r* : g 1 {g-~-A__Tt }-1/2 -[-gt -1/2 [[Zlg 22g 3/2 @ (3J@K)(g_g2) } 6 g  5/2 

3 2 Z~Z2 + +n_1[g~7~&Z2, 5(3J+ K) 1 2 
12gr /2 6~g-~ Z1 Za 

(3J  + K) 2 ~a 4L + a M  + 6N + Hzaf 
+ ~ 5 / ~  L 1 -  24gr/2 

{ 4L + 3M + 6N + H 7(3J + K)2 } Z 1 
+ 895/2 3697/2 

3J + KZ2 Z3 J q- OR(n_l)" 
+ 4gS/~---g- - 6g3/----- ~ 

If p~(xn; O) belongs to the family 5c~ of exponential distributions, we get the 
following proposition. 

PROPOSITION 5.2. If pn( X~; O) E S~ and if 0 is the natural parameter, then 
r* becomes the third-order normalizing transformation in the sense of the Edge- 
worth approximation, i.e., 

P(r* _< x) = ~(x) + o(n-1). 

However, if we are not restricted to the family of exponential distributions we 
obtain the following. 

PROPOSITION 5.3. Under our general assumptions in Section 2 (i.e., 
pn(x~; O) f~ ~ ) ,  r* does not generally become the third-order normalizing trans- 
formation in the sense of the Edgeworth approximation. 

Pgzman(1990) discussed another normalizing method in the case of a nonlinear 
regression: 

{ xn = re(O) + e, 
(5.4) ~ ~ N(O, X), 

O ~ O c R p, 
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where the systematic part m(O) : (9 --~ R ~ is three times continuously differen- 
tiable and E is a known nonsingular variance matrix (n × n matrix). Then it is 
proved that, if the Fisher information g(O) is constant, 

(5.5) q* = [.~(0) - . ~ ( 0 ) ] ' z - ~ 0  m(0), 

is "almost exactly" normal N(0, gn(O)/n), where ~) is the MLE of 8, and 9n(O) = 
{ ° m ( O ) } ' E - l { ° m ( O ) }  (for detail, see P&zman (1990)). In view of the Edge- 
worth approximation we have, 

PROPOSITION 5.4. Assume that g~(O) is independent of 0 and that Assump- 
tion 1 holds. Then q* becomes the third-order normalizing transformation in the 
sense of the Edgeworth expansion. 
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Appendix 

In this section, we give the proofs of some of the theorems and propositions. 

P a o o F  OF THEOREM 2.1. The stochastic expansion of a = v/~[A{S(t?)} - 
A{S(O)}] is given by 

(A.~) a : A(1)S{v/~(0 i - 0 i) 

+ 2-~(A(2)SiS .~ + A(1)Si.~)v/-£(O i - Oi)vZ£(O "~ _ 0 .~) 

+ Op(n-1/2). 

It is not difficult to show that 

(A.2) 

(A.3) 
(A.4) 

and 

(A.5) 

1 I.ij .k-~j, ,, 1 i k.~ ] 
z{~(O ~ - 0~)} = ~ [~ ~ ~ + ~g ~g R~.~] + o(~-~/~), 

cum{v~(O ~ - O~), v~(~ j - O0} : g{J + o(~-~/2) 

cum{~;~(O { - O¢), v~(~ j - X), V~(O ~ - O~)} 
i - .t • .t ! 

_ ~ . ¢ ~  g~ gkk {2t({,j,~, + %,{,~, + J~,j'k, + A,{'y} 

+ o(n-1/2). 

cum{v~(O il - O i l  ) , . . . ,  ~f~(O iJ - B i J ) }  ---- 0(~'~-J/2~1), (J > 3) 
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(c.f. Amari (1985) for the i.i.d, curved exponential family, Takeuchi and Morimune 
(1985 / for the curved linear model, Taniguchi (1991) for the time series model/. 
From (A.1)-(A.5) it follows that 

1 _ij ~k.~ R (A.6) E{5} = l~s-1/2[Si{gijgkmo~rnjk +~g jkm} 

1 / A  ( 2 ) _  ) .. A( 1)C ] +o(n_l/~) 

1 = v/-~C1 ~- o(Tt-l/2), (say), 

(A.7) cum{5, a} = 1 +  O(n--1/2) ,  

[3A(2) 3 _  
82 

1 . . . .  ] 
82 SiSjSkf~'g33'g kk' (2Ki,j,k, 4- 3Ji'j'k,) 

+ o(n-1/2), 
1 

= v C3 + (say), 

and the J-th-order (J  _> 3) cumulants satisfy 

(A.9) cure (J) {g , . . . ,  ~} = O(n-J/2+l). 

Applying a general formula (e.g., Taniguchi ((1991), p. 15)) to 5 we obtain 

- ~  [ C3" 2 1)] @0(n-1/2) ,  (A.10) P (5  < x) z (1D(x) -- ¢(x) C 1 @ y i x  - 

where ¢(x) = ~5'(x). If we set C 1 = C 3 : 0, we ge t  (2.3). 

PaOOF OF PROPOSITION 2.1. Since 5 = A(1)SigiJSjA (~), we can see that 
the relation 0m~ = 0, (m = 1, . . .  ,p) yields, 

0 = 2AO)A(e)SmSigiJSj + 2A(1)2{S,~ifJsj} + A(1)2Si(Omgij)sj, 
j = 1, . . . ,p,  

which lead to (2.4) by noting the relation 

PROOF OF PROPOSITION 2.2. From (2.4) we have 

(A.11) (S~$)A(2)/A (1) = SiSjg~i'gJJ'(Ki,f.~ + Ji,j,.~ + Jj,~,.~)/2 
-- SmiSjg ij, m -- 1,... ,p. 
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Multiplying (A.11) by g'~kSk, we obtain 

(A.11)' 82A(2)/A (1) = SiSjSkgii'gJJ'g'~k(Ki,j,,~ + J{,j,,~ + Jj,i,~)/2 

- SjSkS,~igiJg "~k. 

If (2.5) is satisfied we can see that  (A.11)' and the above differential equation of 
(2.3) are identical. 

PROOF OF PROPOSITION 3.1. Since the statement of (i) was proved in Sec- 
tion 2, we will prove (ii). The stochastic expansion of V~ is given by 

A(2) v~ 
~/~r~ --~ V/-~( 0 -- O) @ 2%f~A(1) {V/n(O -- 0)} 2 

~ c  
+ A(a)----~{v/-~(0 _ 0)} a + o,(n-1) .  

v/~AO) 6hA(1) 

Put t ing Un = V~(O - O) we can show that  

J+K 
- -  + o ( n - b ,  (1.12) g { u ~ } -  2v~g 2 

A 7J 2 + 14JK + 5K 2 L + 4N + H 
(1.13) V a r { U n } = 9  - 1 - - +  - -  

92rt 294n gan 

+ o(n-1),  

(1.14) cum{Un, Un, U,~} - 3J + 2K g 3 ~  -~ O(7%--1)' 

(A.15) cum{U,~, Vn, U~, Un} = 12(2J + K ) ( J  + K) _ 4L + 12X + 3H 
gSn g4n 

@ 0()%--1), 

(A.16) cum( '0{Un, . . . ,  Un} = O(n-r/2+l), for r >_ 5 

(c.f. Amari (1985) for the i.i.d, curved exponential family, Taniguchi ((1991), p. 41) 
for the time series model). From (1.12) (1.16) we can evaluate the cumulants of 
V~ as follows: 

(A.17) 

(A.lS) 

(1.19) 

(A.20) 

(1.21) 

E{v~} : -~c~1)+ o(~-1), 

Var{V~} = i + 10~3) +o(n-1), 
n 

cum{Vn, Vn, Vn} = I {7(i ) ~11 + o(~-b, 

I r~(1) c~m{V~, v~, v~, w~} = ~m~ + °(~-~), 

cure (~) {g~, • .,, Vn} = 0(7%--r/2+i), for r>5. 
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Applying a general formula (e.g., Taniguchi ((1991), p. 15)) to l/;~ we obtain 

(1.22) P(Vn < x) = (~(x) - ¢(x) -F - -  -~- "J1 ~ 1  x 

Clil i) 
(x 2 - 1) 

+ 6 v ~ '  

/n(i) n(i)n(~) \ 
+ \ + (P - 3x) 

/yT(1) ~2 ] 
-~ k'~lll~] (X5 -- IOx 3 -~- 15x) + o(Tz-1), 

72n 

which implies (ii). 

2.2. 
PROOF OF THEOREM 3.2. The proof  of (i) follows directly from Proposi t ion 

(ii) Subst i tu t ing (3.2), (3.3), K = 0, A = 0 and H = 0, we have 

(A.23) 
N 

Differentiation of K = 0 with respect  to 0 yields 3 N  + H = 0, which implies 

N = 0. Therefore, we can see that  C ~  ) = 0 and ' - "1111 {U(1) = 0 under the assumption.  

Regarding C~ 1), we can set C~ 1) = 0 if we choose the constant  c appropriately, 
whence the assertion is proved. 

PROOF OF THEOREM 4.1. It can be shown that  v ~ ( 0 - 0 )  has the stochastic 
expansion 

(A.24) V/~(0--0) = Zl @g7 ~ 1  {ZlZ2 3J~g KZ2  } 

+ ~ ZlZ2 + z 2g z~z2 

+ (3J+K)2z31_4L+3M+6N+Hz  3 } 2 9  2 6 9 + o.(n-1), 

where g~ = g + g (c.f. Taniguchi ((1991), p. 41)). Expanding g around 0 = 0 and 

/~ = g, and subst i tut ing (1.24) for ~/~(0 - 0), we obtain 

( A . 2 5 )  ~ : ~-~g + ~ [ a l Z 1 Z 2  + a2Z 2 + a3] 

1 
+ - [ b l Z ~  + b2Z~Z2 + b3Z~Z3 + b4ZlZ~ + b5Zl + b6Z2] 

n 
+ Op(rt-1), 
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where 

al = g -3/2 - -  h(1)(g)g -1/2, 

a2 = 2AO)g3/2 + 93/2 h(Z)(g)- , 

cgl/2 
a 3 -  AO) ' { 1} bl = 4L + 3M + 6N + H h(1)(g) - 39 

295/2 

(3J + K)2 z[~h(2)(g) 2h0)(g) + 1 ~] 
+ 295/2 g ~5 

A (2)(3J+K) h(1)(g)_ + 
+ 2A(1)ga/2 6AO)g5/2' 

A (2) { ~ .  h(l)(g)} + (3J+K){_2h(2)(9) + 
b 2 -  2A0)93/2 293/2 

b4 : { h(2)(g) 2h(1)(g~) q- ~2} / (291/2)' 
g 

h(1)(g) { ( 3 J + K ) c } d  
b5 - gl/2 A + - -  A(1) 91/2' 

cgl/2h (1) (g) 
b6 - A(1) 

5h(1) (g)g 923 } 

It follows from Assumption 1 and (A.25) that 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

E{~} : ~c °) + o(~-b, 

,~m{< ~} = 1 + !C~) + o(~-i), 

cum{~,~,~} = 1 r:(1) G - l , 1  + °(n-~), 
1 ~(1) cure{< ~, < ~} : ~1111 + o(n-X), 

cure (r) {~,..., e} ---- O(n-r/2+l), for r > 5 ,  

where 

( A . a )  ~1) _ - J  - K A(~) h (~(9)(2J + ~:) ~9 ~/~ 
29~/2 + 2A(l)gl/2 ÷ 91/2 AO) ' 

A (3) {A(2)} 2 A(2) { 10J + 5K 3K + 4J } 
(A.32) C ~  ) : A-~9 + + h(1)(g) 9 ~ 2{A(1) p 9  ~ 7  g 
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( , .aa)  

(A.34) 

h(1)(g)c ( a_r 
+ ~ ( ~  , - _ ~ -  2~:) 

+ h(2)(g) { M +  l l j 2  + I2JK + 

+ h(1)(g)2 ( M + 7J2 + SJK + 

h(1)~g~ ~ f 2A + 5M + 6L + 16N + 3 H  + 
/ g 

15J  ~ + 21JK + 6K ~ ~ 
] g2 

A - 4 N  - L - H 5 K  2 + 14JK + 7J 2 
- - -  + 2 d +  + g g2 2g 3 , 

C(1) 3A (~) 6 (2 J  + K ) h  (1) (g) 3 J  + 2 K  
1 1 1 -  A(~)gl/~ + g~/Z g~/U , 

C0)  4A(a) 12{A(2)} 2 
1111 - -  AO)9 + (A(~)~2q 

% ~ ~ 

A(~) 
+ ~ { - a 6 g  - ~a~ + h(~)(~)(~0~J + 6 0 ~ ) }  

+ h(~)(~ ) ~ ( 4 J  ~ + 4 J ~  + ~ )  
g 

{ 12(15J2+16JK+4K2)}  
+ {h(~)(g)} 2 1 2 M +  

g 

• ~ ,~(~@ [ ~e(~L + M + aX + ~ )  
+ 

[ g 

% 1 2 ( - 1 1 J  ~ - g~14JK - 4 K  2) } 

~ 4 L  - 12N - 3 H  12(2J  u + 3JK + K 2) 
+ + 

g2 ga 

If we set ~(i) _-- O, then "~iIi 

3 , / +  2 K  A (~) 
(A.35) h(1)(g) -- 69(2J  + K)  2A(1)(2J + K)"  

Subst i tu t ion of (A.35) into t ' ~ ( 1 )  yields the differential equat ion (4.2) For A and ~ 1 1 1 1  " 

h satisfying (4.2) and (4.3) we can solve the equations C~ 1) = 0 and C ~  ) = 0 with 
respect to c and d. From Proposi t ion 3.1(ii), the proof is completed.  

PROOF OF PROPOSITION 5.1. Expanding gn(O) - gn(O) at 0 = 0 in a Taylor 
series we obtain 

(A.36) r = sgn(~ - 0){2g~(0) - 2gn(O)} 1/2 
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: , / ; ( ~  - o) f ~ 
k 

+ o p ( n - 1 ) .  

+ ~(0--O)03gn(O)/n - ~--~(0--O)204(n(O)/n} 
1/2 

Since the stochastic expansion of v/~(0 - 0) is given by (A.24), expansion of/~ at 
0 = 0 and substitution of (A.24) into _/yield 

(A.37) X/~= { g +  

1 + -  
?% 

~ } 1 / 2  1 [ 3 J + K  Z2] 
'-t- ~ [ ~ Z l  291/2 

1 Z~ 
3(3J4g 5/2+ K) Z1Z2 - 293/2 Z1Za 89a/2 

+ { 4L + 3M + 6N + s/2 3(3J + K)2 } 7/2 

+op(~-% 

Substituting (A.37) and (A.24) into (A.36) we can show the stochastic expansion 
(5.a). 

PROOF OF PROPOSITION 5.2. If p~(x~; 0) E 5c¢ and if 0 is the natural pa- 
rameter, we can see that  Z2 = 0, a.s. Therefore J = L = M = N = 0, which 
implies that  r* in (5.3) is reduced to 

* = Z I { g + A }  - 1 / 2 _  
(A.38) r~ n 

+ -  Z1 a n 
+ o.(n-b. 

1 u 
~ ( g  - z~) } 

H Z3 @ (SF/2 7K2 ) me] 
2497/2 3697/2 

We can evaluate the asymptotic cumulants of r~ as follows: 

(A.39) 
(A.40) 
(A.41) 
(A.42) 
(A.43) 

E{r;} = o(~-~), 
cum{r*, r*} = 1 + o(n-1), 
cum{r~, r~, r*} : o(n-L), 
c,m{r~, ~,  ~,  ~} = o(~-b, 
cum(~){<,...,<} : O(~-~/2+~), for k > 5 .  

The assertion follows from (A.39)-(A.43). 

PROOF OF PROPOSITION 5.3. From the stochastic expansion (5.3) it is 
shown that  

J + o(n-b. (A.44) E{~*} - v ~  2g~/~ 



NORMALIZING TRANSFORMATIONS OF MLE 599 

Since pn(Xn; O) ¢ Se, J ¢ 0 in general. In view of Proposition 3.1, r* does not 
become the third-order normalizing transformation. 

PROOF OF PROPOSITION 5.4. Since we assumed that gn = gn(O) is constant, 
and that e ~ N(0 ,  E), we can show 

J = K = N = O ,  
02 ' 02 

M = -L = m ( O ) z - l = - = m ( O ) .  

The stochastic expansion of q* is given by 

(A.45) 
M 

q* = - - 0 ) }  3 + u p ( l ) .  

For U = ~ ( 0  - 0), it is shown (c.f., Taniguchi (1991)) that 

E ( U )  ~-~ O(n-1) ,  cunl{U, U} = {gn/~t} -1  @ M / g 3 ~  ~- O(~t-1), 

COrn{U, U, U} = o ( n - 1 ) ,  cure{U, U, U, U}  ~- M/g4Tt  -r o(r t -1) ,  

which, together with (A.45), lead to 

~(q*)  ---- 0(7~--1), CLlnl{q*, q*} ~- 1 -~ O('g~,--1), 

cum{q*,q*,q*} = o(n-1), cum{q*,q*,q*,q*} = o(n-1), 
cum(k){q*,...,q*} = O(n-k/2+l), for k _> 5. 

The assertion follows from the above. 
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