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A b s t r a c t .  The local asymptotic normality (LAN) property is established for 
multivariate ARMA models with a linear trend or, equivalently, for multivariate 
general linear models with ARMA error term. In contrast with earlier univari- 
ate results, the central sequence here is eorrelogram-based, i.e. expressed in 
terms of a generalized concept of residual cross-covariance function. 
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1. Introduction 

Multivariate time series models with a linear trend or, equivalently, general 
linear models with ARMA error term constitute one of the most fundamental sta- 
tistical models whenever observations are made sequentially through time. Models 
of this type actually dominate in such fields of applications as econometrics. 

Due to this considerable importance for applications, problems of statistical 
inference connected with such models have been intensively discussed: see e.g. 
Judge et al. (1985) for a review in the econometric context. Attention however 
has been concentrated almost exclusively on least squares and Gaussian likelihood 
methods (least square estimation; Gaussian likehood ratio, Wald or Lagrange mul- 
tiplier tests; classical correlogram analysis, .. .; see e.g. Dufour and King (1991)), 
not so much because of the plausibility of Gaussian assumptions as because of the 
commonly accepted opinion that Gaussian methods yield good asymptotic results, 
in a sense which by the way is not always that clear. 

Now, if asymptotic performances are to be assessed, and if asymptotically op- 
timal inference procedures are to be derived, the key result is the local asymptotic 
normality property (LAN; see LeCam (1960, 1986); Strasser (1985); LeCam and 
Yang (1990)), the usefulness of which has been clearly established in univariate 
time series problems: see Swensen (1985) for the AR case (with a linear trend 
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component) and application to Durbin-Watson tests; Kreiss (1987), where the 
mixed ARMA case (without trend) is considered, with applications to adaptive 
estimation; Kreiss (1990a, 1990b) for applications to hypothesis testing in AR 
processes (without trend); Hallin and Puff (1994), where a rank-based LAN result 
(i.e., with a central sequence measurable with respect to the vector of residual 
ranks) allows for a general theory of rank tests for time-series analysis• Another 
approach to the asymptotic theory of (univariate and multivariate) ARMA pro- 
cesses has been developed, quite successfully and thoroughly (higher-order results 
also are derived), by Taniguchi; see e.g. Taniguchi (1983), and the many references 
in Taniguchi (1991)• This approach, based on asymptotic expansion techniques, 
mainly concentrates on point estimation problems in Gaussian ARMA processes• 

A multivariate version of Swensen (1985) and Kreiss (1987)'s univariate LAN 
results is established here, in the most general situation of a multivariate ARMA 
process with linear trend component• Contrary to these two references, however, 
our LAN property is stated under correlogram-based form, i.e. with a central se- 
quence which is measurable with respect to (a generalized version of) residual 
cross-covariance matrices• Such a form is much closer to time-series analysis prac- 
tice, where correlograms are the main and most familiar tool; it should therefore be 
intuitively more appealing to practitioners than an equivalent but more abstractly 
formulated result. 

Section 2 is devoted to the notation and technical assumptions• Our main 
LAN result is stated in Section 3 under three distinct forms• The technical tool 
is a slightly generalized version of a lemma (Lemma 2.3) due to Swensen (1985), 
itself relying on a martingale central-limit theorem of LeCam (preliminary version 
of his 1986 book, Chapter 10). The proofs are concentrated in Section 4. 

Boldface denote vectors and matrices; primes indicate transposes; tr A, vec A, 
and A ® B as usual stand for the trace of A, the vector resulting from stacking A's 
columns on top of each other, and the Kronecker product of A and B, respectively• 

2. The problem 

2.1 N o t a t i o n  and m a i n  a s s u m p t i o n s  

The model to be considered throughout the paper is the multivariate linear 
model 

(2.1) y ( N )  = x ( N ) ~  + u(N), 

where 

(2.2) X (N) = 

/ x (N) -p-~1,1 

x(N) 
0,1 

x (N) 
1,1 

x (~v) 
N,1 

x (N) 
--p+l,2 

x (N) 0,2 
x (N) 

1,2 

x (~v) N,2 

. . . .  (N) \ 
"~--p+ l ,n  

. . . .  (N) 
~ N , n  

( x'( l ) 
I(N) 

\ X N 
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,(N) 
denotes an (N + p) x n matrix of constants (regressors), with rows x t , t = 
- p  + 1 , . . . ,  N , /3  = (/~ij) is an n x m matrix of regression parameters, 

(2.3) U (N) = 

U N) IT( N ) . . .  U (N) \ 
- p ÷ 1 , 1  ~ - p + 1 , 2  -p+l ,rn  

• . o 

TT (N) rT(N) . . .  TT(N) 
t~ N, 1 ~N,2 ~ N,~n 

= Ut (x) 

rr,(N) ~N 

is a nonobservable (N + p) x rn matrix of random errors, and 

(2.4) y(N)  = 

/ .  ,(N) , / y (N)  y (N)  . . .  y (N)  ~ ~-p+l  
- p+1 ,1  --p--1,2 --p--1,m . 

J • . . = y t (N)  

\ y ( N )  y ( N )  . . .  v ( N )  T ,iN) 
N,1 N,2 ~ N,m y ~ 

is the (N +p)  × m matrix of observations. Yt (N) is thus the m-variate observation 
made at time t, and satisfies 

(2.5) y;(N) = U:(N) t =  - p +  l, , N  

rr(N) U (N))  is (Caussian) white Instead of the classical assumption that ( ~ - p + l , . . ' ,  
noise, we assume that it constitutes a finite realization of some solution of the 
multivariate stochastic difference equation (ARMA model) 

p q 

(2.6) Ut - E Ai  Ut- i  = st + E Bier- i ,  t E 7/ 
i=1 i=1 

where Ai, i = 1, . . .  ,p and Bi, i = 1 , . . .  ,q are m x m real matrices and et denotes 
an m-variate white noise, i.e. a process of independently, identically distributed 
random variables with density f ,  mean 0 and covariance matrix E. 

We do not require however (2.6) to be an ARMA model of orders p and q: p 
and q here are upper bounds for the orders of ARMA dependence, in the sense 
that 

lAp11 ~L O, Apl+l  . . . . .  Ap = 0; ]Bq~ I ¢ 0, Bq~+l . . . . .  Bq = 0 

for some specified values of Pl and ql, 0 < Pl _< p, 0 _< ql _< q. 
Further assumptions of course are needed in order to obtain asymptotic results. 

They can be divided into three groups: Assumptions (A1) and (A2) deal with the 
ARMA model (2.6); Assumptions (B1) and (B2) are related with the asymptotic 
behavior of the regression constants; Assumptions (Cl / - (C4)  with the regularity 
conditions to be satisfied by the noise density f .  
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Assumptions (A1) and (A2) are the usual assumptions on identifiable, causal 
and invertible ARMA models. 

(A1) 
with 

The roots of the determinantal  equations IA(z)l = 0 and IB(z)l = 0, z c C, 

P l  q l  

A(z) : i -  ~ A~; and B(z) : i + ~ B~z ~ 
i=1 i=1 

lie outside the unit disk, so that (2.6) is causal and invertible. 
(A2) The greater common left divisor of A(z) and B(z)  is the m x m identity 
matrix. 

Assumptions (B1) and (B2) are essentially equivalent to Grenander's classical 
conditions (Hannah (1970), p. 77). Consider the n x n cross-product matrices 

N (N)~J(N) i = 0, 1, , N  - 1: C~ N) constitutes a c~ (~ )  = ( N  - i ) - l E ~ = ~ + l  ~ ~ - ~  , . . .  

lagged version of CO(N) ---- N -1  ENL_I X(N) X l ( N ) ~  t , the diagonal elements of which 
can be assumed to be strictly positive; let D (N) denote the diagonal matrix with 

elements (C0 (x))jj ,  j = 1 , . . . ,  n. 

(B1) Defining R}lV) = (D(N))-I/2C~N)(D(N)) -U2, l i m N ~  R} N ) =  Ri, where 

R0 is positive definite and thus factorizes into R0 = (KKr)  -1, with K a full rank 
symmetric n x n matrix. Put  K (N) = (D(N)) - I /2K.  

(B2) The classical Noether conditions hold for all j:  letting 2~ N) = 
N_~ x 

E t = l  Xt,J~ 

{ , (x) ~(N)~2/X--~, (N) N) 2 
(2.7) lim max [xt, j - xj j / 2_.~[xt,j - ~ ) = O, j = 1 , . . . , n .  

N-+oo l < t < N  t = l  

Note that (B1) and (B2) jointly imply that sup,/IIR~II < ~ (hi  II denotes the 
spectral norm). 

The regularity Assumptions (C1)-(C5) on innovation densities are as follows. 

(C1) f is a nowhere vanishing continuous density (with respect to the Lebesgue 
measure p on N'~), with f x f ( x ) d p  = 0 and f x x ' f ( x ) d p  = E, where Y, is positive 
definite, with diagonal elements Eii = or? i = 1, m. " t '  " ' ' '  

(C2) There exists a square integrable random vector D f  1/2 such that for all 
0 ¢  h - -~0  

(2.8) (h 'h)  -1 f [fl/2(x + h) - f l /2(x)  - htDfl /2(x)]2d# ~ O, 

i.e., f1/2 is mean-square differentiable, with mean square gradient D f  1/2. 
(C3) Letting ~o(x) = (~ l (X) , . . . , ~ ,~ (x ) ) '  = - 2 D f X / 2 ( x ) / f l / 2 ( x ) ,  
f [ ~ ( x ) ] 4 f ( x ) d #  < oo, i = 1 , . . .  ,m. 
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Assumptions (C1) and (C3) guarantee the finiteness of second order moments and 
the (generalized) Fisher information matrix Z( f ) = f ~o( x )~o' ( x ) f ( x )dp, which re- 
duces to the covariance matrix of %0 = grad(log f)  whenever f is derivable in the 
usual sense (except perhaps at a finite number of points). As can easily be checked, 
f~o(x ) f ( x )dp  = 0 and f x~o'(x)f(x)d# = I.  As in the one-dimensional case, 
can be specified up to a positive factor only. Assumption (C2) is a multivari- 
ate version of the more familiar, one-dimensional, quadratic mean differentiability 
condition. It may seem difficult to be checked for: let us show that  it is strictly 
equivalent to the existence of "partial" quadratic mean derivatives, the existence 
of which is easier to verify. 

LEMMA 2.1. A square-integrable function g : R m ~ ~ is mean-square differ- 
entiable (i.e. there exists a square-integrable vector Dg such that (h'h) -~ f[g(x  + 
h) - g(x) - h 'Dg(x)]ed# ~ 0 for all h ~ O, h ¢ O) iff it admits partial 
quadratic mean derivatives (i.e. iff there exist m square-integrable functions Dig, 
i = 1 , . . . ,  m, such that 

(2.9) h 2 / [ 9 ( x l , . . . , x i  + h , . . . ,Xm)  - 9(x) - hDig(x)]2d# ~ 0 

for all h--* O, h 7 £ 0). Moreover, Dg can be chosen as (Dlg , . . . ,Dmg) ' .  

Note that such a property does not hold for the classical differentiability con- 
cept; for a proof, see Subsection 4.1. Another set of sufficient, simpler but slightly 
tighter, assumptions results from replacing (C2) with 

(C2') The gradient g r a d ( f )  exists at all but a finite number of points, 

and defining ~o in (C3) as ~o = - g r a d ( f ) / f .  (C1) and (C2') indeed jointly imply 
that f l /2 admits partial derivatives at all but a finite number of points; these 
partial derivatives in view of (C3) are square integrable. It follows (Malliavin 
(1982), pp. 123-124) that f l /~ admits partial quadratic mean derivatives, hence 
(Lemma 2.1) that it is mean-square differentiable. Associated with mean-square 
differentiability, we also need the following result (cf. Subsection 4.1 for a proof). 

LEMMA 2.2. Assume that (C1) (C3) hold. Then 
(i) for all h E ~'~, f~ , ,  [f l /2(x + h) - f l /2 (x )  - MDfl/2(x)]2dtt  <_ h':r(f)h. 

(ii) for all C > 0 and all sequence (h}n), h~ n)) such thatsupn ]lh}n)H < oe and 

o, + o, 

lira sup f ]]n-1/2h + h(n)H-2[ff/2(x + n-1/2h + h (n)) 
~-~oo llhll<C J 

- - + = O .  

Finally, we need an assumption on the joint distribution of "initial" (unob- 
served) values of the noise and the observations at time - p  + 1 , . . . ,  -1 ,  0, and 
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another one guaranteeing that their asymptotic influence is asymptotically negli- 
gible. 

(C4) The joint distribution of (e-q+l , . . . , e0 ,  Y(N+)I,..., Yo (N)) admits a 

nowhere vanishing density fo(.;j3, A ,B) .  If A(N)(L) = I - ~i=lPl A!N)Li, 
B(N)(L) = I + EiP~I B~N)L i and/3 (N) are such that A~ N) --+ Ai, B~ N) --+ Bi, 
/3 (N) --+/3 for N --+ oc, then 

fo(e-q+l,.. . ,eo, Y(~)+I,'",  yO(N);/3(N),A(N), B(N)) 

-- f0(~-q+l , . . . ,60,  y(pN)I, . . . ,  yo(N);~,A,B) 

is oR(l), as N --+ ec, for y(N) satisfying (2.1) and (2.6). 
(C5) The score function ~ is piecewise Lipschitz, i.e. there exists a finite, mea- 
surable partition of R ~ into J nonoverlapping subsets Ij,  j = 1 , . . . ,  J such that 
I1~(~) - ~(y)ll _< KII  - yll for all x, y in Zj, j = 1, . . .  , J .  

This latter assumption is weaker than Kreiss ((1987), p. 118)'s global Lipschitz 
assumption; its univariate version would be satisfied, e.g. by double exponential 
densities, which are excluded under Kreiss' setting. 

The error process U (N) is not required to be a realization of the station- 
ary solution of (2.6) which, under (A1), exists and is unique. However, (C4) 

implies that the set of initial values determining U (N) is bounded in probabil- 

ity, which, jointly with (A1), entails that Ut (N) is a.s. asymptotically stationary, 

with a cross-covariance function E( U (N) U~ (N)) converging, as (t, N) --+ oc, to the 
cross-covariance function F~  of (2.6)'s stationary solution. This possible, transient 

nonstationarity of U (N) however has no influence upon asymptotic results and, 

for simplicity, U (N) in the sequel is treated as if it were the stationary solution of 
(2.6). 

2.2 Swensen's lemma 
In order to prove LAN, we shall use a slight modification of a lemma of Swensen 

(1985), itself relying on LeCam (preliminary draR of his 1986 book, Chapter 10.5) 
and McLeish (1974). The definition of LAN considered in Swensen (1985) indeed 
is too weak for several statistical applications, where the stronger form given, e.g. 
in LeCam ((1986), pp. 272-274), LeCam and Yang ((1990), Section 5) or Fabian 
and Hannan (1982) is required. This latter form is the one considered below. 

Denote by p~N) and p(N) two sequences of probability measures on measur- 
A(N) be a filtration such that able spaces (x(N),.A(N)). For all N, let A~ N) C ~ t+l  

.A(ff ) A (N), and denote by p(N) and p(N) the restrictions to .A~ N) of p~N) and ~" 1 , t  0 , t  

p(N), respectively. Assuming that p(N) is absolutely continuous (on .A~ N)) with 1, t  

respect to p(N) let a(0 N) 1, a~ N) = dp(N)/dP, (N) and ~(N) (,~(N)/~(N)~1/2_1 
0 , t  , ~--- 1 , t  I O , t  ~ t  = \ ~ t  I ~ t - - 1 /  ±"  

LEMMA 2.3. (Swensen (1985)) Assume that the random variables ~(N) sat- 
isfy the following conditions (all convergences are in p(N)_probability, as N ~ oc; 
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expectations also are taken with respect to P0(N)): (i) E ~ 1  (C~ N) (N) 2 ) 
N (N) 2 z(N) ~ O; (iv) v 'N  ~z(N)~2-- (ii) suPNE}-~t=l(~t  ) < oo; (iii) maxl<t<N st z_~t=lkSt ] 

( r (N))2 /4  --+ 0 for  some nonrandom sequence (r  (N), N E N) such that 
SUPN(T(N)) 2 < OC; (V) }-~N (N) 2 (N) 1/2] A(N)1 ~ 0; (vi) t = l  E{(¢t ) [[lCt I > I , ,~t- lJ  
Ev(N) a(N)] N ,,~ I o; (vii) E[({}N)) 2 9V (N) A (N)] ~st ~ O. Then, under 

P(o N) as N --+ oc, 

(2.10) 
N 

A (N) = ]og(dP (N)/dP(o N)) = 2 E ~N) _ (T(N))2/2 + 0p(1), 
t = l  

and the distribution of [A (N) -F (7(N))2/2]/T (N) is asymptotically standard normal. 

The only difference with Swensen's original result is that  the sequence r (N) 
there is a constant sequence. It is easy to see, however, that  Swensen's proof still 
holds, with very minor modifications, in the case of a bounded sequence; and so 
does also LeCam's aforementioned result. In the sequel, ( x ( N ) , A  (N)) is NN,~, 

along with the corresponding Borel G-field B N'~, and the filtration A~ N) = B t'~ 
associated with RN'~'s components one through tin, t = 1 , . . . ,  N .  

3. Local asymptotic normality 

3.1 Further preparation 

Denote by A(N ) (L )  = I -  P A~N)L i E i = I  and B ( N ) ( L )  = I + y~iq=l B } N ) L  i, 
N = 1, 2 , . . . ,  two sequences of difference operators satisfying (A1) (with orders P2 

and q2 instead of pz and ql, p l _ < P 2 _ < p a n d q l < q 2 _ < q ) .  L e t H  (N)~ , u = 0 , 1 , . . .  
be the Green's matrices associated with B ( N ) ( L ) ,  so that  B ( N ) ( L ) ¢ t  = tit , t > 1 
iff 

(3.1) 
t--1 

Ct = E ui(N)~t-i -F (U (N)' '"  H(N)t+q2-1) 
i = 0  

1 

B i  N) . ' 
0 I \¢-q2+1 

t _ > l  

(see e.g. Hallin (1984 or 1986)). Finally, denote by ~(N) a sequence of regression 
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coefficient matrices. Define 

e o 

~Hi(N>[A(N)(L)(yCN) _/3,(x) Xt(N))] 

i=0  

(a.2) e} ~)  = + ( H ~  (~) ' H(~)~+~2- ~ ~ 

q2--1 eo_l 

I e o 
--q2Tl 

t = 0 , - 1 , . . . , - q  + 1 

t > _ l ,  

where e '° = (e~ °, e '_°l , . . . ,  e'_°q+l) is a q-tuple, independent  of {et, t _> 1}, of i.i.d. 

vectors with density f .  0bviously~ if e ° = et, t = 0 , . . . , - q  + 1 and Yt (x) satisfies 
(2.5) and  (2.6), wi th  A(N)(L), B(X)(L) and/3(N) instead of A(L), B(L) and/3 ,  
then  e} N) = st for all t. Similarly, let 

(3.3) ~o) 

eo 

t--1 

i=0  

= +(l i t . . .  Ht+qi-1) 

0 [ e°_ql+l 

t = 0 , - - 1 , . . . , - - q  + 1 

t _ l ,  

where the Green's  matr ices associated with B(L) are denoted  by H~. Further ,  de- 

note by H (N) (0) the  hypothesis  under  which the  observat ion y(N) has been gener- 

a ted by (2.1) and (2.6) with  paramete r  0 = ( ( v e c f f ) ' ( v e c A 1 ) ' . - .  
(vec Am)'0~p_pl),~2 ×l(vec B 1 ) "  '.  (vec Bql)'0[q_ql),~2×l )' and innovat ion densi ty 

f .  Part icularizing the sequences /3 (N), A(N)(LI and B(N)(L), let /3 (N) = /3 + 
N - U 2 K  (N) b(N)  

(3.4) 

(3.5) 

-1/2 (N) 
A~N) ~_ Ai + N 7i 

N-1/2q~ N) 

B~N) = ~ Bi + N 1/251N) 

[ -1/2 (N) N 5~ 

i = 1 , . . .  ,Pl  

i = Pl + 1 , . . . , p ,  

i =  l , . . . , q l  

i = q l  + l , . . . , q  

and t (N) = ((vec b(N))'(vecT~N)) ' . . .  (vecT(pN))'(vecS~N)) ' . . .  (vecS~N))') ', SO tha t  

0 
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The sequences b (N), 7}N), 5}N) are assumed to be such that suPN(t'(N)t (N)) < co. 
Writing exact likelihood functions for the observed series y(N), as always in 

time-series analysis, involves unpleasant starting values problems. The likelihoods 
we are using here actually are the joint likelihoods of (e_q+l , . . .  ,e0, y(N)), from 
which exact likelihoods could be obtained on averaging the starting values out. As 
in Kreiss (1987), it follows from (C4) and (C5) below that these starting values have 
no influence on asymptotic results, so that their presence safely can be ignored; 
for a formal proof of this fact in the univariate case, see Hallin and Puri (1994), 
Lemma 4.2. Note that Swensen (1985), who deals with AR processes only, skips 
the problem by considering conditional likelihoods. The logarithm of the likelihood 

ratio for H~N)(O) against H~N)(o (N)) then takes the form (oe's are taken under 
d 

N 

(3.6) A(N)(Y(N))= Elog[f(e}N))/ f(e}°))]+op(1),  X -~oc, 

where e} N) and ¢}0) are computed from (3.2) and (3.3), respectively, with arbitrary 
starting values e ° (t = 0 , - 1 , .  .. , - q  + 1); in order to fix the ideas, put e.g. 
e ° . . . . .  ¢ ° q + l  = 0. 

3.2 Main result 
A basic statistical tool in the traditional analysis of (explicity or implicity 

Gaussian) multiple time series is the observed (residual) cross-covariance function, 
i.e. the family of matrices 

N 
(3.7) r~ N) = ( N -  i) -1 ~ ~0)<(o)  i =  1 ,  , N -  1 

t = i + l  

This definition however has to be adapted to the present non Gaussian context: 
the matrices 

N 
(3.8) r(N)i;~ = ( x -  i) -1 ~ ~(~}0/)<(0~, i =  1,. . .  , x -  1 

t=i+ l 

will be shown to play the same role and to admit the same interpretation, under 
innovation densities f ,  as classical cross-covariance matrices under Gaussian den- 

(N) 
sities. Accordingly, we define Fi;f as the f-cross covariance rnatriz of lag i. Note 
that the past and future in (3.8) do not play symmetric roles, as they do in (3.7); 
this is in accordance with the fact that  Gaussian ARMA processes are the only 
time-reversible ones (see Weiss (1975); Hallin et al. (1988)). Of course, in case of 
a Caussian f ,  ~(e)  = e, so that (3.7) and (3.8) coincide. 

In the nonserial part of the problem, the main role will be played by statistics 
of the form 

N 
(3.9) T(;J ) ( N  i) 1 E I°(O)\x/(N)K(N) = - ~°(~t ) t - i  , i = 0 , 1 , . . . , N - 1 .  

t = i + l  
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T (N) Still because of the fact that  ~o(e) = e for Gaussian densities, the elements of *0;f 
can be interpreted as generalized version of the numerators of classical t-statistics, 
those of T (N), i > 0, as lagged versions thereof. 

Since cross-covariances are such a familiar tool to most time-series analysts, it 
is desirable that  the LAN result be expressed in terms of the matrices (3.8). Let 
Gu denote the Green's matrices associated with A(L). The following sequences 
will be used in relation with 7 (N) and 5(N): 

min(p,i) i--j min(ql,i--j--k) min(q,i) 
(3.10) d[ N) E E E HkT~ N) Gi-j-k-~B~ + E H" "5 (N) = * - 2  j , 

j=l k=O ~=0 j 1 

with the convention B0 = I .  Finally, define 

(3.11) ~t 2 / - ( N ) :  !N_1/2 t-lj__~0{ i= IHJ [  ~ ' ~ } N ) ( Y t ( N L j - ~ I x ( t N ) - j )  

q 
V~ 5 (N) e c0) 

+ Z_.a i t-i-j 
i=i 

~-~min(pl ,i) and, letting hi = Hi - z__.y=l Hi_jAy, 

(3.12) (~_(N))2 _-- tr { Z ( f )  + E hjbl(N)KIRli-J] Kb(N) 
j=o 

We now may state the LAN property which is the main result of this pa- 
per. This property is stated under three distinct forms. The first one (LAN 1) 
is reminiscent from Swensen's univariate result; it guarantees the existence of lo- 
cally asymptotically optimal statistical procedures (e.g., the existence of locally 
asymptotically maximin or most stringent tests: see LeCam ((1986), Chapter 11)) 
but provides little information on their implementation, and is mainly related to 
the method of proof, based on Lemma 2.3. The second form (LAN 2) gives more 
information on the particular structure of the log-likelihood ratio, and gives an 
explicit expression for the central sequence A (N) (9), from which locally asymptot- 
ically optimal procedures can be easily derived (LeCam (1986), Chapter 11). In 
the third form (LAN 3), the central sequence A(N)(9) is expressed, as desired, in 
terms of the generalized residual cross-covariance matrices (3.8). 

PROPOSITION 3.1. Assume that (AI), (A2), (BI), (B2), (CI) (C4) hold. 

U der HJN)(O), as N (LAW 1) 

N 
(3.13) A(N)(y(N)) = 2 E (~N) _ ~(T(N))2 + Op(1), 

t=l 



LAN FOR MULTIVARIATE ARMA WITH TREND 561 

and (A (N) + (r(N))2/2)/r (N) is asymptotically standard normal; (LAN 2) 

1 t,(N)FA(O)t(N) + OF(l), A(N)( y(N)) = t'(N) z~(N)(o ) -- (3.14) 

w i t h  

(3.15) 

and 

(3.16) 

wh~r~ 

(3.17) 

(3.1s) 

(3.19) 

N - 1  

i=0 
N--1 i--1 min(ql,i--j--1) 

~ ~ [(Gi-J-~-IBk)®H;] (N-i)l/2vecF(N),;s 
i = l  j=O k=O 

[(Gi-j-k-pBk) @ H;](N - z)'t's/vec li;f~(N) 
N - 1  i - p  min(ql , i - j - p )  

E 
i=p j = 0  k=0 

N - 1  

E (I ® H / _ I ) ( N -  i)1/2 vec F~;~ ) 
i~1  

N--1  

Z (I @ H / _ q ) ( N -  i) 1/2 vec F};~ ) 
i~-q 

[ r f  o o \ 

/ = (rH(~, i')) , ) (r±±(z, i ' ) ) ( r ~ ( i ,  i')) 

r? = ~ E ( K ' R l i _ j [ K )  @ (h~Z(f)hj), 
i=o j=o 

ri± (~,i') = ~ ~ (Gj_i_k_tBe)@H; 
j=max(i,i  I) £=0 

- j - - i '  min(ql , j - i ' - k )  ] 

x (E @Z(f))[~--o Ee=o (Gy-i,-k-eBe @H;j  , 

z, i' = 1,.. 
j--i  min(ql,j--i--k) 

75 rz , ( i , i ' )  = ~ (Gj-i-k-eBe)®H; 
g=O 

i' ---- 1 , . . . ,q ,  

55 • .P r±±(% ~ ) = 

c~ 

E 
j=max(i,i ')  

x (E @Z(f))[I @ Hi-i,], i = 1, . . . ,p ,  
oo 

[i e &_i](r~ ® z ( / ) ) [x  ® Hj-i,], 
j=max( i,i' ) 

,P, 

i ,  i I =  1 ,  . . . , q ;  
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moreover, A (N)(o) is asymptotically normal, with mean 0 and covariance matrix 
F~(O); (LAN 3) 

(3.20) 
N - 1  

A(N)(y(N)) = E ( N -  i)l/2tr[T~;~)b(N)h~] 
i=0 

N--1 

+ ~ ( N -  i)l/2tr[r~)d~ (N)] - ~(~_(N))2 + oF(l) ,  
i=1 

and (A (N) + (T(N))2/2)/T (N) is asymptotically standard normal. 

Assumption (C5) so far has not been used. Whenever it holds, the influence 
of starting values upon •Nt=l st F(N), A(N)(O) or (N - i)1/2 T/(;~ ) is asymptotically 
negligible (cf. the remark at the end of Section 3.1). 

4. Proofs 

4.1 Lemmas 2.1 and 2.2 

PROOF OF LEMMA 2.1. Denote by L2(R "~) the set of square-integrable func- 
tions from ~'~ to R. Assume that  g E L2(~ ~) admits partial derivatives in the 
mean square sense (2.9). For all h c N'~, x E ~'~, 

i=1 

= g X + h i  ei  - g x ~- E h i  e i  , 

j = l  i=o  i=o 

where ho = O, eo = 0 and ei denotes the i-th unit vector. Letting Dg = 
(Dig, . . . ,  D,~g)', 

(h'h) - 1 / [ g ( x  + h) - g(x) - h'Dg(x)]2d# 

-hjDj9 x + E hiei 
i=o  

2 

j = l  i=0 / 

2 /  g x+ -g  
j : l  i=0 i=0 
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( )1 -hjDjg x + E hiei 
i=0 

2 t - 1 /  E h i  -Djg(x)  d#, + C ~ h j ( h  h) Dig .,+ ~ 
j = l  i=0  / 

2 

d, 

with C > 0. Now, the existence of mean square partial derivatives entails, for all 
j ~ { 1 , . . . , - G  

[ ( j ) ( j l )  
i=0 i=0 (jl )]2 

-hi Dj9 x + ~ hi ei d# = O. 
i=0 

Due to the quadratic mean continuity of Djg E L2(~m), 

E(Jl)  ~G f Dig x + Z hiei - Dig(.) 
i=0  

2 

d# = O. 

The mean square differentiability of g then follows from the fact that h~/hth <_ 1, 
j E {1 , . . . ,  m}. The converse is straightforward. 

PROOF OF LEMMA 2.2. (i) Since f[fl/2(x + h) - fl/2(x) - h'DfU2(x)]2d# 
is bounded by 

2 lcsl/2(x + h) - s,2(~)l~+ + 2 Jfh'DSl"(x)Tdv 
2 

~ 2 /  [~lhlnfl/2(x ÷/~h)d/~] d#÷ ~hl~(f)h, 

the result follows from the fact that 

f If01 h'Vf'(x + ah)dal 
2 //01 d# < [h'Dfl/2(x + )~h)]2dAd# 

= f lh 'v f /2 (x )Td ,  = ~h'Z(S)h; 

(ii) is an immediate consequence of (C2) and the definition of mean square differ- 
entiability. 
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4.2 Some preliminary results 
The following technical lemmas will be needed in the proof of Proposition 3.1. 

L E M M A  4.1 .  

(4.1) 

For all t = 1, . . . , N ,  

t - - 1  

e}N) -- e}°) = E Hi(N){(A(N)(L)  - A (L) ) (  Yt(Nii ) - ~'x(t N)) 
i=0 

- (B(N)(L)  - B (L) )e}°{ }  
t - 1  

+ E H ( N ) A ( N ) ( L ) ( ~ ' -  fl'(N))x} ~)" 
i=0 

LEMMA 4.2. Let B ° ( L )  satisfy Assumption (A1). There exists ~? > 0 such 
that maxl<i<q2 IlB  - B ° l l  < ~ implies that B ( L )  also satisfies (A1). 

(N) II }N)II < oo. LEMMA 4.3. Let B} N) = Bi  + N 6 i , where suPN Then 

Ei~0 II H(~)  - Hill is O(N-1 /2 ) ,  as N --* oo. 

PROOFS OF LEMMAS 4.1, 4.2 AND 4.3. Except for the presence of addi- 
tional terms due to the trend component, the proofs essentially consist in adapting 
the corresponding univariate proofs of Kreiss (1987), where we refer to for details. 

LEMMA 4.4. Let ( Mi ,  i E N) denote a sequence of m x m real matrices such 

that ~-~-i~o IIMi[I < oc and ( Vi (N), i = 1 , . . . ,  N; N C N) a triangular array of m × 1 

real vectors such that limN_.~ N -1EN=I Vi(_~ ) v'(N)" i-e = R( Ik  - 61), k,g e N, with 
sup  N IIR(i)ll < Then 

N i - 1  

lim N - 1 E  E Mkb'(N) viLN)1z'(N)b(N)M[" i-e 
N ---~ oo 

i=1 k , g : O  

oQ 

- E Mkb ' (N)R( Ik  - e l)b(N)M[ = O, 
k,t~=0 

for all sequence ( b ( N) , N E N) of real m x m matrices such that suPN II b ( N) II < oc. 

PROOF. The proof is elementary, and is left to the reader. 

4.3 Proof of Proposition 3.1 ( L A N  1) 
The proof of the (LAN 1) part of Proposition 3.1 consists in showing that 

conditions (i)-(vii) in Swensen's Lemma (Lemma 2.3) are satisfied. 

LEMMA 4.5. (Swensen's condition (i)) Under H~N)(o), 

(4.2) lira "-" [ ~ - ~ E , ~ t  t - )'~o(e}°)) - : 0  
N--~cc t = l  
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and 

lira E [~,(N) ~(e(O) (N),, , (o) (4.3) - - e  t )pke~ ) = 0 ;  
N---+ oc t : l  

here c(N) e(N) f e(O) 1 / 2  F(N) ~t = [ f (  t ) /  ( t )] - 1 ,  and~t is defined in (3.11). 

PROOF. Letting ?(N)(L) p2 6 (N) x-~q2 6(N)L i define ----- E i : l ~  N)Li and (L) : z.~i:l i , 
Z (N) = O, t < 0 and 

(4.4) z(N> : 7(N)(L)( y t  (N) _ fl 'x(N)) + 6(N)(L)e (°). 

Under  H(N)(0), Zt (N) for all t : 1 , . . .  , N  coincides with ~(N)(L)Ut  (N> +6(N)(L)6t, 

itself an asymptotical ly (as t -~ co) s tat ionary ARMA process. Z (N) thus is 
also asymptot ical ly stationary, uniformly in N,  in the sense tha t  there exist 
strictly s ta t ionary processes ,~t (N), N -- 1 , . . .  such tha t  for all s > 0 there is 

a T :  E[HZ (N) -- z(tN)]]] < S, N > t > T (this follows from the boundedness of 

the sequences 7~ N) and 6~N)). The corresponding (asymptotic) cross-covariance 

ErZ (N)7'(N)I = E r Z  (N) P.'(N)I + o(1) for t --+ oc, uniformly in N,  so matrices are L t "-'t-k J t t " t - k  J 
tha t  

O~ OC 

(4.5) E HiE[zt(N)z[(~)-il]H] : E d~N)zd~(N) +o(1) .  
i,j=O i=1 

Here again, the possible transient  nonstat ionari ty  of Zt (N) has no influence 

upon asymptot ic  results, and Z (N) in the sequel is t rea ted  as if it were stationary. 
With  this notation, 

(4.6) 1 (e(0) 

t--1 ]! 
--'t--/'(N) +2!N-1/2 [i~=l(ui(N)-Ui)z~N-i)- ~°(e~°)) 

t--1 ]z 

+ !N-1/22 [i~=1 (Hi(N)- Hi)A(L)b!(N)KZ(N)xt(N-i) ~°(e}°)) 

t--i ]! 
Li=0 

_1 o(N) lo(N) + 1--b(N) + 2•t , ¢~N) + 2"~t 2 t 

N E(a~N))2, say. In order to prove (4.2), it is sufficient to show that  }-~=1 

•Nt:l E(b~N)) 2 and EtN=l E(c~N)) 2 converge to 0, under  H(N)(o), as N --+ ec. 
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For a (N) , we have 

N 
(4.7) E E(a~N)) 2 

t=l 

---- N - 1 E t r  iT(f) E (Hi(N)-  H'~EIz(N)z'(N>)(HJ N) , t-i t-j  Hi)' . 
t=l Li,J=l 

, E (N) /(N) Due to (4.5) there exists a constant  C1 such that  U [Z~-i Zt_j ]H <~ C1, uniformly 
in N,  t and li - J l .  Accordingly, for some other constant  C2, 

t - 1  Hj)' 
E (Hi(N) (N) ,(N) (N) -- Hi)E[Zi_ i Zi_ j ] (H;  - 
i,j=l 

2 2 
~-- C2 (~HHi(N) < C2 ( ~ u s i ( N )  

This latter quantity, according to Lemma 4.3, converges to 0 as N ~ o% which, 
along with (4.7), yields the desired result. Next, let us consider 

N (4.s) 
t=l 

---- N -1 Err iT(f) (Hi (N) -  Hi)A(L)b'(N)K'(N)x(~) 
t=l 

Here, 

]IK'(N)x(~ N) II : Lrx'(N)t-i ~ID(N)~-U2KK'ID(N)J ~ J~-l/2x(N)11/2t-i J 

I ~ /t_~l ]1 1/2 
(N)~2 (N) 2 

<_ C3N1/211Rolll j ) , 

i=i 

a quantity which, from Assumption (B2), is o(N1/2), as N -~ oc, uniformly in 

t. This, along with the fact tha t  ( a e m m a  4.3) ~rl/2 v ,~  IIH(N) _ Hill remains ' Z--~i= 1 
--~ V~t-I(T4(N) - Hi)A(L)b'(N)K'(N)x(tN)I] is bounded  as N c~, implies tha t  U z-~i=l ~ ' i  

o(1) as N -+ oc, uniformly in t, which in turn  implies tha t  (4.8) converges to zero, 
as was to be shown. The convergence to zero of 

N 
(4.9) ~ E(c~N)) 2 

t=i 

= N - 2 ~ E  Hi(N),I(N)(L)b'(N)K'(N)x (N) 
~=1 L i=O 

, } 2  (°)) 
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follows along the same lines. 
(ii) We now turn to the proof of (4.3). The constants C1,  C 2 , . .  • used here are not 
related to those appearing in other parts of the paper; I[A] stands for the indicator 
of A. For any positive C1, 

(4.10) 
N 2 

- 2 '  ~ - )' ~(e} 
t = l  

= Z E  I Hi Z(N)t-i _< C1 
t = l  Ill i=0 

?, } 2] 
-[-E~-~ I ZHiZ(N_ i) > C1 

t = l  i=0 

• [~}N) 1, (o)_ 2 
- ~ i e t  e}X))'~o(e}°))l } 

= A1 + A2, say. 

Still from Lemma 4.1, 

t - 1  t - 1  

(4.11) (e} °) - e} N)) = N -1/2 Z HiZ(N-i) + N-l~2 Z (Hi(N)- Hi)z(N-i) 
i=0  i=1 

t--1 

+ N-U2 Z H'(N)A(L)b'(N)K'(N)x(t~) 
i=0 

t--1 

- X - 1 Z  H'(N)"I(N)(L)b'(N)K'(N)x(tN)" 
i=0  

From arguments similar to those used in the proof of (4.2), it follows that, under 
H(f N) (0), uniformly in t, as N ~ o% 

(e}°)-e}N))I[~ H'Zt(~)e-L ' ' ':° < C 1 ] 

: N-1/2 E HiZ(N)I Hiz(N_i ) <_ C, + o(1), 
i=o LII i=o 

a quantity a.s. of the form N-1/2h~ N) A- ~N) appearing in Lemma 2.2 (ii). Ac- 
cordingly, 

AI=EEt=I [[ i~=oHi ) ~C1 
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= EEI  Hi Z(N)t-i _< C1 
t = l  k LII i = o  

" f l fll2(e - e(O)fll2(e )+ e}N)) -- fll2(e) 

12 ) 1, (o) e}N))'~o(e) f(e)de 5 t e ~  - 

N 

-< Z E[ll~} ° ) -  e}N)ll2]C(N)(Cl)' 
t = l  

for all C 1 ) 0, where, according to Lemma 2.2 (ii), 

c (N) ( c1 )  = 
N-1/2h t-1 11-2 

[(  ) 
i = 0  

-- fl/2(e) - (N-1/2h~ N) + e} 0 ) -  e} N) 

_ N-I~ 2 K-" r-r 7,(N)| rl r~/2 
i = 0  / 

converges to zero as N --* co, for fixed C1. In order to establish that A1 converges 
N _ e}N) to zero, it is thus sufficient to show that ~-]~t=l Ell e} °) N 2 remains bounded as 

N --* oo. Using the triangular and Cauchy-Schwarz inequalities, we readily obtain 
that 

N 

Elle} ° ) -  e}N)ll~ 
t = l  

{ < 5  N -1 E Hi _)  
t = l  i : o  

N t - 1  2 

+ N-1 Z E E HiA(L)b'(N)K'(N)x(tN) 
t = l  i = 0  

N t - -1  2 

+ N -1 ~ E Z ( ~  (~) - ~ .~z  ( ~ > .  ,_~ 
t = l  i = 1  
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N t-1 2 
+ N-1 Et=l E i~=I(Hz(N)- Hi)A(L)b'(N)K'(N)x (N) 

N t--1 2} 
+ N - ~ z  ~ui(~)~(~)(L)b'(~)K'(~)~(~ ) . 

t=l i=0 

Each of these five sums can be shown to converge. Considering for instance the first 
of them, N -1 N t-1 Hiz(N) oc I~.z(N) E t = l  Ell II 2 -- Elf E~=0 II 2 is o(1) as N co, Ei=0 t--i ~ t--i ---+ 

H,. Z (N) is second-order stationary. The remaining terms due to the fact that ~ i=0  ~ t - i  
are handled similarly. 

Finally, consider the second term A2 in (4.10); applying Lemma 2.2 (i), we 
obtain 

] A 2 = E E  I ~ t-i >C1 
t=l k kll i=0 

•/[f1/2(~ _ ~}o) + ~ (N) )_  fl/2(e ) 

_ (e} °) _ e}N))'Dfl/2(e)]2f(e)de} 

~-- E j~ S I-~iz(_Ni ) > C1 (e ( 0 ) -  e}N))t~'(/)(e} 0 ) -  e} N)) • 

t=l Liii=0 

Because °f the Lz-c°nvergence, f°r all t, °f I[ ~-~-k=0 j Hk~t_~<N>2 -II Ek=O~ H~z~N-2112- 
to  zero, the triangular array 1[ }-~-i=0t-1 Hiz~N)[[ 2 , _  N C 77, is uniformly integrable. 

Since E~I Elle}°>-e}N)N2 is bounded as N --* oo, it follows that A2 can be made 
arbitrarily small for large values of C1. 

LEMMA 4.6. (Swensen's condition(ii)) Still under H~N)(o), with T (N) given 

in (3.12), limN-~z[~tN=l E[dN)] 2 -- (re(N)/2) 2] = 0. 

PROOF. From (3.11), (£}N))2 decomposes into three terms: 

(4.12) 1 HiZ(~) ~o(e}O))~p,(e}O)) HiZ(~) 

] 
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! ~ F~.~<~)~,~,~)~)] ~(~0))~,~:o)) 
+ 4-N L~=o 

" [ ~  HiA(L)b'(N)K'(N)x(t~)] 

Term number one has expectation 

1 
(4.13) 4N 

4N tr 17(f) ~ Hy[2(tN)~. '(N) lu ,  +o(1) .  
i,j=O 

The expectation of the second term is zero, while, for the third one, we obtain 

(4.14) ] I [~HiA(L)b ' (N)K'(N)x}N)]I( f )[~HiA(L)b ' (N)K'(N)x}N)  
4-N Li:o L i = O  

] 

Summing (4.13) and (4.14) from 1 to N, letting N --+ oc and applying Lemma 4.4 
yields the desired result. 

LEMMA 4.7. (Swensen's condition (iii)) Under H~N)(o), as N --+ oo, 
max1 <t<N I#}~)l = op(1). 

PROOF. From (4.4) and the definition of F(N) 

(4.15) max I¢{N)I 
l < t < N  

m N - l ~ 2  ~ t - i  < -  max max H.Z (N) qok(e~ °)) 
- 2 l<t<N l<k<m \i=0 / k 

+ 2 l<t<Nmax l<a<,~max N -1/2 A(L)b'(N)K'(N)x pk(e ) 
k 

= A~ N) + A~ N), say. 
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For any 5 > 0, any k = 1 , . . . , m ,  

(4.16) P { N  -i/2 max 
l < t < N  } k 

i=0 

= ,~2~(o)~ 

t = l  \ i = 0  k 

"[ [ N-1/2 ( ~  H''~(N)~ t--i ] ~?k(e} 0)) 

\ i = 0  / k 

_< N-Is-2~-~E ) ~kie Co),) 
t = l  \ i = 0  k 

I [ _N-l/2 \i=oHiZ(N)/k 

t-IHizt(.N_ i) in t oc Since ~ i = 0  converges, L 2, as --+ and uniformly in N,  to a s ta t ionary  
t-1 ,T~,(N),2 2~ (0), process, the sequences ( ~ i = 0  ~ i ~ t - i  )k~iet  ) are uniformly integrable, i.e., for 

any e > 0 there exists N(e) such tha t  

/t-1 \ 2 

\ i = o  / k 

• F uiz,(2 °)) 
\ i = 0  / k 

< E, 

for all N > N(c),  which implies tha t  (4.16) and A~ N) are op(1) as N -~ oc. As 
for A~ N) , 

P 
l < t < N  \ i = 0  k 

N t - 1  ) 2  

t = l  \ i : 0  k 

E ~pktet )I HiA(L)b'(N)K'(N)x(N i) ~k(e} °)) 

k 
> N1/25 ; 

due to the Noether condition, hence the convergence of N -1 N E t = l  " 
t - 1  ~ i = o  HiA(L) b'(N)K'(N)x(x)t-i , the s tat ionari ty of ~o(e} °)) and the existence of a 

finite information matr ix  Z( f ) ,  A~ N) also is op(1), which completes the proof of 
this lemma. 
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LEMMA 4.8. (Swensen's condition (iv)) Still under Hyv)(O), as N ---+ oo, 

(4.is) 
N 

Z ( ( } N ) )  2 - ( # ~ ) / 2 )  2 = o p ( 1 ) .  
t=l 

PROOF. From (3.11) and (4.4), 

N 
(4.19) E ( ( } N ) )  2 

t=l 

= 1 N - 1 Z  Hig~N_i ) (p(e~°))~t(e~ 0) ) Uiz(tNi ) 
4=1 Li=O Li=O J 

+ 4N_~Z  ,~A(L)b,(~)~,(~)~( 2 ~(~(o))~,,(~}o)) 
4=1 Li=0 

t-1 1 • [ E  HiA(L)b'(N)K'(N)x(~N) 
ki=O J 

1 Li=0 
t-1 ] 

• [ E  H~z~2_ . 
Li=o J 

t-1 H.z(N) converge in L 2, uniformly in N, as As already mentioned, the sums ~ i = 0  * t - i  
oo H.z(N) say, so that t --+ oo, to ~-}i=0 ~ t-i , 

] 
E , (o) (N) = N -~ ~ (~  H~ZI_~ + o~(1). 
t=l L i=o j 

Now, applying, e.g., t tannan ((1970), Theorem 2, p. 203), and due to the fact that  

the sequences Ib}N)ll and II~IN)II are eventually bounded for all i as N--* ec, 

converges a.s. to zero• Since 
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we obtain 

(4.20) N -~ ~=, ~,(~}o)) i=o ~ ~_~j - t r  Z(f)~=~ 4~)r~< (~) =o,(1) .  

Next consider the second term in the right-hand side of (4.19); let 

(4.21) 

t--1 
a~ N) = N - i l 2  ~ HiA(L)  b'(N) K ' ( n ) x ( ~  ), 

i =0  

B(~)=  t r ~ Z ( f ) < ~ ) < ( N )  . 
t = l  

Obviously, ~-~N ,~,(N),~fe(O)3ln(N ) has mean zero and variance one, and z--~t=l ~ t  ' l ' t  t ]1 -~ 

N 

)I[1~ ~(~ )1 >B(N)c]] 
t = l  

N 

-<(B(N)) -~ Z Z (~) (~) I(a, )k(a, )ellZ(/)~,el 
l_<k,£<m t = l  

=o(1) .  

It follows from the Noether condition (2.7) that  maxl<t<NNa~N)ll is o(1), as 
V ~N a'(N),~@(°)~/B(~) thus satisfies the Lindeberg condition N ~ oc. The sum z._,t=l t "Yk t ]/ 

(see e.g. Shiryayev ((1984), p. 326)), and accordingly is asymptotically standard 
normal. It then follows from relative stability (Gnedenko and Kolmogorov (1968), 
p. 143) that  

1 (4.22) N -1 } 2  H'A(L)b'(N)IC(N)x(~ ) ~(e}°)>'(e} °/) 
t = l  k i = 0  

pl  

- t rZ ( f )  ~ ~ HiAkb'(N)K'Rli_j+~_elKb'(N)A'eHj 
i , j = 0  k , g = l  

= o~(1) 

as N --* oo. Finally, in order for the third term in the right-hand side of (4.19) to be 
OR(l) it is sufficient that  l imm--~ N - 1 E  sV'N OZ (N) "4e (0)~ "4(e (0)~ 

2g~__o HiZ(_~)} 2 = 0. This latter quantity decomposes into two parts: 
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which, due to (C3) and the fact that maxl<t<N [[a~ N)[[ ~ 0 as N + o% is o(1), 
and 

2 ~ f  ,(N) , (o), ~, (o), 
(4.23) ~ E ~tal~l ~t~l )(~ ~1 ) 

l<_tl<t2<n 

~-~o~ (N) Since Zt (m) is ARMA, }-~-Zo HiZt (.N) is a linear process of the form 2_,i=0 ui et-i ,  

where supN [[u~ N) II < Ke~ ~ for some K 1 ) 0 and 0 < 7 < 1. Therefore, (4.23) is 
bounded by 

N - 1  
2K 

) I1~11 IIZ(f)II sup I1~ N)ii ~ ~ (N - i)~ + < Kz s~p I1~ ~) II ~ N( 1 _ .)/2 t i = 1  t 
= o(1). 

The desired result follows on piecing together (4.20) and (4.22). 

N (m) 2 LEMMA 4.9. (Swensen's condition (v)) The sequence ~t=-l((~ ) is uni- 
formly intcgrable, and condition (v) in Lemma 2.3 is satisfied. 

PROOF. Since 

2 V/t-1 \ '  
(~) 2 N-1  i/x--', ,TZ(JV)/ ,e(0), 

L \ i -o  / 

+ N-1  \ i=o HiA(L)b'(N)K'(N)x(~) 

the uniform integrability of K-~N {~ (N)~2 follows from that of X-~t=l \ t ] 

2 

(4.24) N-1 E HiZt(N) ~°(e}°)) 
t = l  \ i = 0  

and (see (4.21)) 

N 
F ,(x) , (o)d 2 (4.25) ~ [~ ~e~ j] . 

t = l  

, ))]2 
~,(4 ° , 

The L 1 convergence to zero of 

N ["/~-i \' ] 2 
N 

'~(e}°))] 2 



L A N  F O R  M U L T I V A R I A T E  A R M A  W I T H  T R E N D  575 

and the ergodic theorem entail the convergence to zero of 

x - 1  Z Hi  ) °) - tr Z(f)  )Xe; 
t = l  L \ i = 0  i=1  

and hence, since tr{Z(f) E i ~ l  d~N)Ed~ (N)} is a bounded sequence, the uniform 
integrability of (4.24). As for (4.25), it has been shown in the proof of Lemma 4.8 
that 

~ - ~ r  , (N)  / (0)~]2 2..flat ~oLe t jj - t r  Z(f) E hjb'(N)K'Rli-jlKb(N)h; 
t = l  i=1  j = 0  

: op(1);  

hence, still as N ~ oc, 

E [ai(N)~o(e(°))] 2 - t r  Z ( f ) E  hjb'(N)K'RIi_jlKb(N)h~ =o(1) .  
-- i=1  j = 0  

The uniform integrability of (4.25) then follows from (an obvious modification of) 
Shiryayev ((1984), Theorem 3, p. 255). Finally condition (v) of Lemma 2.3 results 
from the same argument as in Swensen ((1985), p. 67)'s proof of (1.6). 

LEMMA 4.10. (Swensen's conditions (vi) and (vii)) For any N and t, under 
Hyv)(O), E[~}N) [ Y1 (n), . . . ,  Yt(~ )] = 0, and, as X ---+ oo, Y~-Y=I E[(~ t(N) + 
2~:(N) y(N) ~.t ] , . . . ,  Yt (N)] = Op(1). 

PROOF. The lemma is a straightforward consequence of the fact that 
E(~o(et)) = 0, and the mutual absolute continuity of all measures considered here. 

The (LAN 1) part of Proposition 3.1 follows from Lemmas 4.5 through 4.10 
and Swensen's Lemma 2.3. 

4.4 Proof of Proposition 3.1 (LAN 2 and LAN 3) 
The proof of the (LAN 2) and (LAN 3) parts of Proposition 3.1 consists in 

rewriting the quadratic approximation (3.13) under the more appropriate forms 
(3.14) and (3.20). 

LEMMA 4.11. Under H(fN)(O), as N -+ oc, 2 E N I ¢ } N )  = t'(N)A(N)(o) + 
0p(1). 

PROOF. From the definition (3.11), 

N N t--1 

t = l  t = l  j = 0 k  
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pl }' 
- ~ u~A~b'(~)K'(N)~:~]~ ~(d °)) 

~ : 1  

N t - 1  p t - j - ~ - i  q~ 
(o) w , (o), 

t : l  j : 0  ~ : 1  u : 0  k : 0  

N t--1 q 

+ N-1/2 ~ E E {Hj6~N) e(°)t-j-~j1'~ °[e(°)), t + op(1) 
t : l  j : O  ~ : 1  

---- N - l ~ 2  E tr E ~'<"~{°(N)]'~'(N)~((N)b(N)h~~t ~-t-i ~ 

i : 0  t : i + l  

P 

+ N-~/2 E 
t : l  

N - 1  i--~ min(q~,i--j--~) 

• ? 2  
i : ~  j=O k : 0  

+ N - ~ / ~  ~ tr ~ (d° ) )~_~  ~_~ + o~(1); 
£:i i : t  k t:i+l 

~ . (o). , (o) . , . . ,  ^,(N)~,]  
tr ]kt:i__lL ~°<et )e¢; i~k~i_j_k_eye ~j  f 

using the fact that tr(ABC) = tr(BCA), tr(AB) = (vecA')'(vecB) and 
vec(ABC) = (C'® A)(vec B),  this latter quantity takes the form 

N - 1  

E tr{b(N)h~[( N - "~):'l/U~r(N)l~i;f 'J 
i=O 

p N--1 i--£ min(ql,i--j--g) 

-k E E E E tr{g/(N)H; [(N- ~'l/2r(N)l"' ~' ' ~] - - i ; f  ]--k  ~ i - - j - k - - ~ l  
~=1 i=~ j = 0  k=0  

q N--1  

+ E E tr{6'e(~)H:-~[(N-~'l/2w(N)l~ ~] ~ i ; f  JJ +OP.I-( ) 
~ : 1  i : ~  

p N--1 i=£ min(ql,i--j--£) 

+ ~(vee~N)) ' Z ~ Z veelU;(N-i~l/2r(N/B ' ] i ; f  k G~-j-k-gJ~; ] 
~----1 i=£  j = 0  k = 0  

p N - 1  

+ E (vec 5~N))' E vec[H:_.~(N- i)l/2F~;~ )] + o.(1) 
~i i:£ 

P 

+ ~ ( v ~ c ~ ) )  ' 

N--1 i -~  min(ql,i--j--£) 

• E E E [(Gi-j-k-~Bk) ® H;](N - i)l/U(vecF};~)) 
i=1  j = o  k=O 
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LEMMA 4.12. For all integers g', g", the m(g' + g")-tuple 

is asymptotically rnultinorrnal, under H)  ~) (0), as N -~ oc, with mean 0 and 
covariance matrix  

PROOF. The proof follows from a standard application, to arbitrary lin- 
ear combinations, of the classical Hoeffding-Robbins central-limit result for g"- 
dependent sequences: see Hallin and Purl ((1994), Section 3.1) for a univariate 
example. The details are left to the reader. 

LEMMA 4.13. The central sequence A (x)(0) under H} ~v) (0) is asymptotically 

multinorrnal, as N -~ ec, with mean 0 and covariance matrix  Fzx(0) given in 
(3.16). 

COROLLARY 4.1. t ,(N)rZ~(O)t(~ ) = ~,-1 (~(N)52~ + O(1), as N -~ oc. 

PROOF. Up to a remainder term the components of which a r e  Op(1) as 
min(g', g") ~ ec, uniformly in (N), the central sequences A(N)(o)  are linear com- 

Tz(N) ~,, binations of the vectors . e',~"' For fixed ~', Lemma 4.12 implies asymptotic nor- 

mality of such linear combinations, with mean zero and covariance matrix rP, e,, (o) 
converging to rA(~)  as min(~', g") -~ oc. The result then follows from a classi- 
cal result on triangular arrays (Brockwell and Davis (1987), Proposition 6.3.9). 
T r r Z~ • z~ min(~'  ~") he left uppe corne of re,,e,,(0), for example, is ri;e,,e,,(O) = ~ , j = 0  ' ( I  ® 
h i ) ' [ ( K ' R l i _ j l K  ) ®•(f)] ( I  ® hi) which, applying twice the identity (A ® B ) ( C  ® 

Z~ min(£ '  ~ ' )  ! ~ D) = ( A C ) ® ( B D )  reduces to r~;e,,e,,(O ) = ~,~=0 (K R~_jlK)®(h~Z(f)h~) 
and converges to r a ( 0 )  given in (3.16). The corollary then follows from the (LAN 
1) part of Proposition 3.1, which completes the proof of the (LAN 2) part of 
Proposition 3.1. 
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As for the (LAN 3) part, from the proof of Lemma 4.11, we have, permuting 
~ i  and }--~4, 

N 

2 E #(N) st 

N - 1  

Z ( N  - i ) 1 / 2  t r [b(N)h~ T/(~ )] 

i=o 
N - 1  

+ ( x  - 

i=1 
min(i,p) i--~ min(ql,i--j--g) 

E E  E 
g=l j=0  k=l  

N - 1  min(i,q) 
+ (N 

i-~l g=l 

t--(N) ~ /  (2t ,,/(N)/_lrt] 
tr[Fi;f /:ik " ~ i - j - k - g l ~  ~aj] 

t r ~ ( N ) e ( N ) ~ t  1 
r [ l i ; f  O~ -t l i_ d -t- Op(1);  

(3.20) then readily follows. 
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