
Ann. Inst. Statist. Math. 
Vol. 47, No. 3, 525-549 (1995) 

GENERALIZED CRAMI~R-VON MISES TESTS OF GOODNESS 
OF FIT FOR DOUBLY CENSORED DATA* 

JIAN-JIAN REN 

Division of Statistics, Department of Mathematics and Statistics, 
University of Nebraska-Lincoln, 810 Oldfather Hall, 
P.O. Box 880323, Lincoln, NE 86588-0323, U.S.A. 

(Received February 16, 1994; revised December 12, 1994) 

A b s t r a c t .  We generalize Cram~r-von Mises statistics to test the goodness of 
fit of a lifetime distribution when the data are doubly censored. We derive the 
limiting distributions of our test statistics under the null hypothesis and the 
alternative hypothesis, respectively. We also give a strong consistent estimator 
for the asymptotic covariance of the self-consistent estimator for the survival 
function with doubly censored data. Thereby, a method, called the Fredholm 
Integral Equation method, is proposed to estimate the null distribution of test 
statistics. In this work, the perturbation theory for linear operators plays an 
important role, and some numerical examples are included. 
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I. Introduction 

Let XI,X2,... ,Xn be independent observations on a random variable (r.v.) 

X with a distribution function (d.f.) F. If it is wished to test the null hypothesis 

H0 : F -- F0, where F0 is a specified d.f., then the Cram6r-von Mises test statistics 
are given by 

/? 
o o  

where Fn is the empirical d.f. based on XI,)/2,..., X~. 

However, in practical  situations, X1, X 2 , . . . ,  Xn a r e  not always available. Life- 
t ime da ta  are often censored. Examples  of the lifetime samples'  being censored 
ei ther from above or below, called doubly censored samples, have been given by 
Gehan (1965), Mantel  (1967), Pe to  (1973), Turnbull  (1974), and others. Turnbul l  
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(1974) constructed a self-consistent estimator S (n) (nonparametric MLE) for the 
survival function Sx(t) = P {X  > t}(= [1 - F(x)]) using a doubly censored sam- 
ple. Chang and Yang (1987), Chang (1990), Gu and Zhang (1993) have studied 

the strong consistency and the weak convergence of S(x ~). More discussions on 
the doubly censored samples can be found in Tsai and Crowley (1985), and Gill 
(1989). In this paper, we generalize the Cramhr-von Mises test statistics through 

the self-consistent estimator S(x ~) so that we can test the goodness of fit of F when 
the data are doubly censored. 

Let X be a nonnegative random variable denoting the lifetime under investi- 
gation. In our study, one observes not {Xi} but a doubly censored sample: 

and 

Wi = max{min{Xi, Yi}, Zi} 

1 if Zi <_ X~ < Y~ 

8i=  2 i f X i > Y i  

3 if X~ < Zi 

where (Xi, Yi, Zi), i = 1, 2 , . . . ,  n, are independent observations on (X, Y, Z) for 
nonnegative variables X, Y and Z, and the r.v.'s Y/ and Zi are called right and 
left censoring variables, respectively. This means that  Xi is observable whenever 
Xi lies in the interval [Zi, Yi], and we know whether Xi < Z~ or Xi > Y/ and 
observe the value of Zi or Y/ accordingly. The problem considered here is to test 
the goodness of fit of F based on (Wi, 5i). 

Specifically, in this paper we consider the following hypothesis test: 

(1.1) H0: F(t) = F0(t), t E [o,r] 

where T > 0 is any large number. Gehan (1965) specified T as the upper limit of 
the observations in his generalized two-sample Wilcoxon test for doubly censored 
data. This means that we are interested in the goodness of fit of F within the 

range of our observations. 

Let 
/~n = 1 -  S (n) ' 

Since the estimator S~ ~) of Sx in obtained based on (W~,Si), then a natural 
extension of ff2(Fn) for the test (i.i) based on (Wi, 5i) is given by 

/o (1.2) ~b(F~) = [F~(x) - Fo(x)]2dFo(x). 

Note that the functional ¢ (F) = f [  [F (x) - F0 (x)] 2 dFo (x) induces a functional 
on the space D[O,/3] (of right continuous function having left-hand limit) as below: 

(1.3) T(G) = ¢(G o F) = [G(F(x)) - Fo(x)12dFo(x) 

/o = [ a ( t )  - Uo(t)]2dUo(t), 
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where ~ = F(T) E (0, 1), G E D[0, ~] and U0 = F0 o F -1 .  Hence, the test statistic 
~ ( L )  given by (1.2) is equal to 

(1.4) T(U~) = [U~(t) - Uo(t)]2dUo(t), 

where Un =/~n o F -1 . 
In Section 2, we present our results on the limiting distributions of r(U~) under 

the null hypothesis and the alternative hypothesis. Along with some discussions 
about our main results and the simulation results, we also give a strong consistent 
estimator for the asymptotic covariance of v~[S(x n) -Sx]  in Section 2. In Sections 3 
and 4, we give the proofs of our theorems. 

2. Main results 

Denote Sx(t) = P{X > t}, Sg(t) = P{Y > t} and Sz(t) = P{Z > t}. We 
present the self-consistent estimators of Sx, Sz and Sz as follows. Let (Wi, 5i) 
be distributed as (W, 5), and let 

(2.1) Qj( t )=P{W<_t ,~=j} ,  j = 1,2,3, 

(2.2) o ( ~ ) ( t )  = _1 ~ I{W~ < t,~i = j},  j = 1,2,3 
-~3 Tt - -  

i = 1  

then the estimators S(x n), S(y ~), S(z ~) of Sx, Sy, Sz (Turnbull (1974), Chang and 
Yang (1987), Chang (1990)) are given by the solutions of the following equations: 

L ~ [s(y~) _ s(~)~as(~) @ ~ ) ( t )  = -  ~ J  x ,  

/0 ~ X  ~ Y  , 

Q~n)(t) = - f 0 t [ 1 -  s(n)lds(~) 
X Z " 

The solutions of S(x ~), S(y ~), S(z ~) can be calculated numerically by using the EM 
algorithm (Turnbull (1974), Tsai and Crowley (1985)) or by the Newton-Raphson 
method to find the maximum point of the log-likelihood function. 

Although more general results on the weak convergence of S (") have been 
established by Gu and Zhang (1993), the method of calculating the asymptotic 
variance of ~ [ S  (n) - Sx] as processes o n  [0, T] developed by Chang (1990) are of 
essential use in our study here. The following are the conditions required by Chang 
(1990) for the weak convergence and the calculation of the asymptotic variance of 

s ( 2 ) .  

ASSUMPTION A. (A1) The random variable Xi and the vector (Yi, Zi) are 
independent for each i and the vectors (Xi, Y/, Zi), i = 1 , . . . ,  n, are independently 
and identically distributed. 
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(A2) P { Z  < Y }  = 1. 
(A3) Sy( t )  - Sz ( t )  > 0 on (0, ~ ) .  
(A4) Sx ,  Sy  and S z  are continuous functions oft ,  on t _> 0, and 0 < Sx( t )  < 1 

for t > 0. 
(15) s x ( o )  = s r ( o )  = 1, S x ( o o )  = s r ( o o )  = S z ( o o )  = o. 
(A6) There exist 5 and T, 0 < 5 < T < oo, such that Sz( t )  = constant < 1 on 

[0,5] and Sz (T )  = 0, i.e., P { Z  = 0} > 0, P { Z  E (0,5)} = 0 and P { Z  <_ T}  = 1. 

We impose the following condition on F throughout this paper. 

ASSUMPTION B. F is strictly increasing on (0, oo). 

Remarks. (a) (A6) implies that T in (1.1) can be chosen arbitrarily large. 
(b) (A3), (14) and (16) imply  that S y ( t ) -  S z ( t ) i s  continuous on [0, T] with 

positive lower bound for any 0 < T < oo. 

(c) If there is no left censoring, i.e., if S z  - O, (16) is satisfied and S(x ~) is 
the product-limit estimator of S x  in the right censored case (see Chang and Yang 
(1987)). Hence, all of our results in this paper hold in the right censored case. 
In other words, our test statistics include the right censored sample problem as a 
special case. 

(d) Assumption B is to ensure the equivalence of (1.2) and (1.4). 
For the sake of convenience, we state some results established by Chang (1990) 

in the following proposition. 

PROPOSITION 2.1. Under Assumption A, we have that for t E [0,T] 

1 
(2.3) ,/~[Pn(t) - F(t)] = ~ ~ ~(t) + o(~)(1), 

i=1 

where T > 0 is any large enough real number, o(~)(1) almost surely converges to 
0 uniformly on [0, T] as n -+ oc, 

(2.4) ~i(t) = - ICj( t , s )d[I{Wi  < s, 5i = j }  -Q j ( s ) ] ,  

and ICj  (t, s) is the solution of the integral equation 

Jo (2.5) Ic~( t , s )  = F;(t ,s)  + g(t ,~,d~)IC~(~,s) ,  

for 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

j = 1,2,3 

I{0 < s < t} 
Fl(t ,s)  = Sy(s)  - Sz ( s ) '  

_ I { ° < s < t } f l  d S x  F2(t, 8) 
Sx(s )  L s ~ 7 - S z '  
1 /sAt dSx 

r3(t,  s) - 1 - s x  (s) jo s t  - - s z  

g(t, u, du) = F2(t, u)dSr(~)  - F3(t, ~)dSz(~).  
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Furthermore, if we additionally assume Assumption B, we have that for t E [0,/31, 

n 
1 

(2.1o) v~[<(t) - t] = 4~ ~-~ ~(t) + o~)(i), 
i 1 "= 

where/3 : F(T), ~{(t) : ¢{(F-~(t)) and o~)(I) almost surely converges to 0 
uniformly on [0,/3] as n ~ oo. 

We denote the asymptotic covariance of x/~[0~ - U] as below: 

~ ( 8 , t )  : E { ~ ( s ) ~ ( t ) } ,  (s, t) e [0,/3]~ 

where U is the uniform d.f. on [0, 1]. We also denote /~j as  the eigenvalues for the 
following eigenvalue problem: 

/o (2.11) ,,/(s,t)¢(t)dt = a¢(s), ¢ 6 L2[0,/3]. 

Then we have the following properties of "T(s, t) and l j ' s .  

LEMMA 2.1. Under Assumptions A and B, we have: 
(i) ~(s, t) is bivariate continuous on [0,/312; 

(ii) Aj 's are countable, and are positive real numbers with finite multiplicities. 

Our first result gives the limiting distributions of the test statistics given by 
(1.4) under the null hypothesis and the alternative hypothesis, respectively. 

THEOREM 2.1. Under Assumptions A and B, we have that 
(i) under H0, 

(2.12) n~'(Un) ~ f ~  T2(t)dt 
Yo 

OO 

-- E jzj, 
j = l  

?%--+00 

where T(t) is a Gaussian process for t E [0,/3] with mean 0 and covariate 7(s, t), 
and Zj are independent normal random variables with mean 0 and variance 1; 

(ii) when Ho does not hold, 

(2.13)  

where 

T 

~ = 2 I F ( x )  - Fo(x)]Zcj(~, y)dF0(x) dQj(y) 
j = l  

- ~o T ~0T 2 [ F ( x ) -  Fo(x)]ICi(x,y)dQj(y)dFo(x ) . 
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The proofs of Lemma 2.1 and Theorem 2.1 are given in Section 3. 
Note tha t  the covariance function ~/(s, t) is given by 

(2.14) 7(s,t) = ICy(F-l(s) ,x)ICj(F-i(t) ,x)dQj(x) 

X {~f°TIcj(F-I(~)'Y)dQj(Y)} 

Hence, we can easily see that  even under H0, the eigenvalues Aj of (2.11) depend 
on unknown survival functions Sy and Sz. In order to approximate the limiting 
distribution of ~-(U,~) (under H0) given by (2.12), we observe tha t  in (2.5), we have 
tha t  for j = 1, 2, 3, 

(2.15) i0 T ICy(t,s) = Fj(t,s ) + ICj(u,s)Py(t,u)dSy(u) 

- Icy (u ,  s)F3(t, u )dSz(u)  

[ = ry(t,s) - ICj(u,s)ry(t,u)g(u)du 

+ ICy(O, s)F3(t, 0)[1 - Sz(0)] 
T 

+ [ ICy(u, s)F3(t, u)h(u)du, 
Jo 

where g is the density function of 1 - Sy,  1 - Sz  is absolutely continuous on [5, oc) 
with derivative h and we assign h(x) = 0 for x E [0, 5] (5 is given in (A6)). The 
kernel estimators of g and h based on (Wi, 5i) are given by 

x - y  
(2.16) g~(x) = a--~ 

1 f ( x - Y ) d [ 1  - S(~)(y)], x E [0, co), (2.17) h~(x) = -~ K2 

respectively, where K1 a n d / ( 2  are density functions, and an, bn are sequences of 
positive numbers such that  an --+ 0, b~ --+ 0, as n ~ ec. These kernel estimators are 
similar to those for right censored data  (Marron and Padget t  (1987), Mielniczuk 
(1986), among others). We obtain F(n)(t, s), j = 1, 2, 3, from replacing Sx, Sy, 
Sz by their est imators S(x n), S(y ~), SOz n) in (2.6)-(2.8), respectively, and obtain 
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(n) IC) , j = 1, 2, 3, from the equations: 

(2.18) I C ~ ) ( t , s )  j~0 T C~)(t,s) (,~) (~) = - zc) (~,~)F~ (t,~)g~(~)d~ 

+ IC~)(O,s)F(g)(t,o)[1- G~)(o)] 

respectively. Let [[-t1 be the supremum norm throughout  the paper. Furthermore, 
we obtain 

(2.19) 
3 T 

j = l  

(F-~(s)' ~)e(~Jn)(x)} 

( r - l ( t ) ,  Y)~O~n)(Y) } ,  

Oq ~) satisfying: where (s, t) E [0, fl]2 and (~!n) is the continuous version of -~3 

(2.20) I10~ '~>-o!n)ll~,~ _< 1/~, 

with probability 1. We should notice that  under H0, we have F = F0 in (2.19). 

Hence, under H0, the eigenvalues A~ ~) for the following eigenvalue problem: 

(2.21) G~(s,t)¢(t)dt = A¢(s), ¢ E L2[0, fl] 

is determined through the doubly censored sample (Wi, 5i), i = 1 , . . . ,  n. Under 
the following conditions on the kernel estimators, we have the theorem on the 
limiting distribution of ~-(~-n) under Ho. 

ASSUMPTION C.  L e t  1 - SF have a density function g, and for ~ > 0 in (A6), 
let 1 - Sz  be absolutely continuous on [5, co) with derivative h. For appropriate 
K1, K2, an and bn, we have 

o r Ig~(z) - g(x)ldx -~ O, as n -~ ~ ,  

foo T phn(x) - h(x)ldx --, O, as n ~ oc, 

with probability 1. 
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THEOREM 2.2. Under Assumpt ions  A, B and C, we have that 
(i) for  sufficiently large n, +~(s,t) is bivariate continuous on [0,/3] 2 and is 

nonnegative; 

(ii) for  sufficiently large n, ) ~ )  's are countable, and are positive real numbers 
with finite multiplicities; 

(iii) with probability 1, 

(2.22) I1  - 11 0, as n 

(iv) with probability 1, 

(2.23) E ( ) ~ )  _ Aj)2 ~ O, as n - +  oc 
j = l  

we arrange )~y and )~j~) ~ as )~1 > ~2 >_ "" ", and ~ )  > ) ~ )  >>_...; where 
(v) for  those Zi ' s  in (2.12), which are independent f rom (Wi, 5i), i = 1, 2 , . . . ,  

n,  

E (n) 2 a E  2 (2.24) )~j Zj  ~ j Z j ,  as n ~ oc, 
j = l  j = l  

and moreover, under H0: 

C ~  

V" xC z2 
"'3 --3 ' 

j = l  

The proof of Theorem 2.2 is given in Section 4, where the perturbation theory 
for linear operators plays an important role. 

Remarks.  (e) The choices of K1, K2, an  and bn in Assumption C are not our 
concern in this study. For the special case of S z  - O, Assumption C has been well 
established by Mielniczuk (1986), among others. For the general doubly censored 
case, Assumption C was established under regularity conditions by Ren (1994). 

(f) There are two reasons that we use density estimation in equations (2.18). 
One is that for any fixed s, (2.18) are linear Fredholm integral equations of the 
second kind. The numerical methods for finding the solutions of this type of inte- 
gral equations have been well studied. Typically, Nystrom method and Galerkin 
method (Delves and Walsh (1974), Delves and Mohamed (1985)) can be used to 

numerically calculate IC}n) (., s), s E [0, T], in (2.18). Another reason is that the 
use of density estimation in (2.18) avoids some difficulties encountered in our proof 
of Theorem 2.2 (iii). It is not clear whether the results are valid without using 
density estimation in (2.18). 

(g) Theorem 2.2 (iii) shows that our ~n given by (2.19) is a strong consistent 
estimator for the asymptotic covariance function 7 of x/~[Un - U]. This result is of 
great importance in many other statistical inference problems for doubly censored 
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data. For instance, the generalized L-, M- and R-estimators for doubly censored 
data are shown to be asymptotically normal (Ren and Zhou (1993, 1994)). The 
asymptotic variances of these estimators are all given through 7(s, t). Hence, our 
result here provides a strong consistent estimator for the asymptotic variances of 
all these statistics. 

(h) Based on our Theorem 2.2, in practice the estimation of the limiting distri- 
bution of T(~fn) may be done as follows. (1) For each si e [0, T], i = 1 , . . . ,  M, we 

can numerically calculate the solution IC}~)( ., si) of the integral equation (2.18) 

using the methods mentioned above; (2) Obtain IC5n)( ., .) numerically through 

IC5~)( ., si) using Cubic Spline Interpolation method (Burden and Faires (1989), 
the CSI method is available in Mathematiea); (3) Calculate the covariance esti- 

mator ~,~ based on formula (2.19); (4) Find finite eigenvalues A~n), A(~)2 , . . . ,  A~ ) 
of the eigenvalue problem (2.12) numerically using Nystrom method or expan- 
sion method (Delves and Walsh (1974)), where N can be chosen arbitrarily large; 

(5) Generate observations Wi(~) = Y~'-f-1 "'3 )' !~)-3~' Z2 i =  1, . . . ,  m, through computer, 

where Zji are i.i.d, standard normal r.v.'s, and obtain the empirical d.f. G(~ ) based 
o n  W (n)  , T)f/(n) • . . . ,  ,, ,~ , (6) Use the sample quantile estimator G ~  )-1 (P), 0 < p < 1, as 
the desired critical point for the test (1.1). We call our procedure described here 
the Fredholm Integral Equation (FIE) method. 

In Figs. 1 and 2, we compare the distribution of n~-(f)n) by our FIE method 
with that obtained by Monte Carlo method, where the special case of Sz -~ 0 
and the sample size n = 200 of the observations are considered. In our study, the 
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Fig. 2. 

simulation results are based on 300 runs and for each run, the percentiles of nT(U~) 
are obtained from 400 replicates of the procedure. From the figures, we can easily 
see that  our FIE method provides very accurate estimation for the distribution 
of the test statistics. The routines of our FIE method are available in Fortran 
and may be obtained from the author. Our experiences show that  our routines 
compute the solutions rapidly even for quite large samples, and in step (4), the 
number of the eigenvalues N does not have to be overly large, as in general the 
eigenvalues decrease rapidly. We used N = 100 in Figs. 1 and 2. For more details 
on the implementation of FIE, see Ren and Ledder (1995). 

(i) An alternative method to our FIE method for the problem considered here 
is the nonparametric bootstrap. We should point out that  the usual n out of n 
bootstrap fails in our problem here and that  the rn = o(n) out of n bootstrap 
should be used (see Bickel and Ren (1995)). Simulation studies show that  for the 
tests considered here, the power curve by FIE is better than that  by bootstrap 
(Bickel and Ren (1995), Ren and Ledder (1995)). Moreover, FIE method provides 

a strong consistent covariance estimator "~n of the self-consistent estimators S (n). 
Nonetheless, the bootstrap method is still quite appealing for the testing problem, 
since it is very easy to program. 

3. Proof of Lemma 2.1 and Theorem 2.1 

PROOF OF LEMMA 2.1. (i) By Chang (1990), ICy are measurable and 
bounded. Hence, the second term of (2.5) is continuous in t for any fixed s, 
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because both F2 and F3 are bivariate continuous. Therefore, for j = 1, 2, 3 and 
any fixed s, ICy (t, s) has at most one discontinuity point at t = s. Since Qj and F 
are continuous, by the Dominated Convergence Theorem and the Assumption B, 
we know that 7(s, t) is bivariate continuous, because for any to E [0, T], 

l i r a / T  fo T t~to Jo ICj(t,x)dQj(x) = t~tolim ICj(t,x)dQj(x) 

/o ~oTIC2(to,x)dQj(x) ICj(to,x)dQj(x) 

where IC] (to, x) = ICj (to, x) for x ¢ to. 
(ii) Consider an operator £: n 2 [0,/3] ~ n 2 [0,/3] given by 

/0 (3.1) Z;(G) = 7(s,t)G(t)dt,  G E L2[0,Z], 

and denote E(£) as the set of all eigenvalues of £. Note that 7(s, t) is symmetric. 
Hence, by Kato ((1980), pp. 157, 257 and 269), Z; is a compact and selfadjoint linear 
operator. From Theorem 2.26 of Kato ((1980), p. 185), E(£)  is a countable set 
with no accumulation point different from zero (i.e., all eigenvalues are isolated), 
all eigenvalues in E(£) are nonzero and have finite multiplicities. 

Since 7(s, t) is a real covariance function, it is nonnegative. Therefore, all Aj 
are positive real numbers. [] 

Let 

(3.2) 

PROOF OF THEOREM 2.1. (i) Under Ho, we have 

// 

Since 

n 

i = 1  

- v~i=ly=lf0 ICs(F-I(t), s)d[I{W~ _< s, ~ = j} - Qj(s)]. 

(3.3) fo9 ~(t)dt 

= - ± C j ( F - l ( t ) ,  s ) d [ ± { W ~  _< s, ~ = j }  - Q j ( ~ ) ]  dt  

are i.i.d.r.v.'s, by the Central Limit Theorem, we have 

fo ~ 1 ~ foo~(t)dt=O(~)(1), (3.4) T~(t)dt = v~  ~--1 
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where O(~)(1) is bounded in probability as n--+ oc. Hence, by (2.10), we have 

(3.5) ?%~-(U~) = T~(t)dt + o(pn)(1). 

Note that E{T~(t)} = 0 and the covariance of Tn(t) is given by 

n n 

1 ~ E E{~]i(s)~]j(t)} (3.6) E{T~(s)T~(t)} = n 
i : 1  j : l  

n 

_ ! ~ E { ~ ( s ) ~ ( t ) }  : E { ~ ( s ) ~ ( t ) }  = v(~,t). --?% 
i : 1  

By Mercer's Theorem and 'Proper Orthogonal Decomposition Theorem' (Lo6ve 
(1963), p. 478), we know that 

O G  

(3.7) ~(~,t) : ~ ~jCj(~), j( t) ,  
j = l  
o ~  

(3.8) T~(t) = E X//~-JCJ(t)~J 
j = l  

where Cj are the orthonormal eigenfunctions (i.e., f :  ¢i(t)¢j(t)dt = 8ij, for 8ij = 
1, i = j; O, i ¢ j)  corresponding to the eigenvalues ,~j, and ~,j are given by 

1/0  (3.9) ~J - v~ i=1 -~J  rl~(t)¢j(t)dt. 

Note that we have E{~j}  = 0 and E { ~ j }  = 5~j. By a similar proof of 
Theorem 1 of Rosenblatt (1952), we have that 

(3.10) T~(t)dt ~ T2(t)dt = ajZ~., as n ~ oc, 
j = l  

where r ( t )  is a Caussian process for t E [0,/3] with mean 0 and covariance ~(s, t), 
and Zj are independent normal random variables with mean 0 and variance 1. 
Therefore, by (3.5) and (3.10), we have 

fgT2( ) dt = Z 
j = l  

aS Tt--+ (~.  

(i[) Assume that H0 does not hold. We will derive the limiting distribution 
of ~-(Un) through the Hadamard differentiability approach. References on this 
approach can be found in Ren and Sen (1991), Gill (1989) or Fernholz (1983). 
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We observe that the functional ~- given by (1.3) can be expressed as a compo- 
sition of the following Hadamard differentiable transformations: 

n : D[0,/3] ---* D[0,/3], defined by TI(G) = (G - Uo) 2, is Hadamard differen- 
tiable at U with derivative ~-~v(G) = 2(U - Uo)G, for G E D[0,/3]. The proof 
follows easily from the definition of Hadamard differentiability (Fernholz (1983), 
Ren and Sen (1991)). 

~-2: D[0,/3] --* R, defined by T2(G) = f :  a(t)dgo(t), is Fr6chet differentiable 

at any S E D[0,/3] with derivative ~-2s (G) = f :  O(t)dUo(t), because it is a linear 
and continuous functional. 

We have ~(a) = ~2(n(a) ) ,  and by Chain Rule (Fernholz (1983)), ~- is 
Hadamard differentiable at U with derivative 

(3.11) r / : ( a )  = 2 [t - Uo(t)]O(t)dgo(t), a E D[0,/3]. 

From Gu and Zhang (1993), we know that v~[grn - U] weakly converges in the 
space (D[0, 1], I1" II) to a Gauss i an  process with continuous covariate ~/(s, t) given 
by (2.14). Hence, by Gill (1989), we have 

v/-n[r(U~) - r(U)] = v~r/z(U ~ - U) + o(~)(1). 

Therefore, by (2.10) of Proposition 2.1, we have 

1 
(3.12) v~[7(~-~) - T(U)] = x/~ ~ T/y(rli) + o(p~)(1). 

Since, 

@(rli ) = 2 .~Z[ t -  Uo(t)]rli(t)dUo(t) 

= 2./a It - Uo(t)]~i(F-l(t))dUo(t) 

= - 2  f ~ [ t  - u0(t)]  

× ICj(F- l ( t ) , s )d[I{Wi  <_ s, 6i = j }  - Qj(s)] dUo(t) 
j = l  

/0 = - 2  [ t - u 0 ( t ) l  zcj(F-x(t),wdI{w~ <_ r ,~  = j }  
j = l  

-iTIcj(['-l(t),8)dOj(8))}dUo(t) 
j = l  
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it is easy to see that  E{r/j(r/i)} = 0 and we can compute 

3 r { f 0 T  
j = l  

× zcj(~,y)aFo(~) dQj(~) 

j = l  

× I C j ( x , y ) d Q j ( y ) d F o ( x  . 

Therefore, by the Central Limit Theorem and Slutsky's Lemma, we have that  

D 2 
V ~ [ ¢ ( # n )  -- ¢ ( V ) ] - ~  m ( 0 ,  ~¢) ,  as n -+ oo 

follows from (3.12). [] 

Remark.  Note that  in (3.11), we have T/z(G) = 0 under Ho. This is why 
under H0, the limiting distribution of r (~-n) degenerates to the one given by (2.12). 

4. Proof of Theorem 2.2 

Before proving Theorem 2.2, we first need to establish some preliminary re- 
sults. Consider the operators T and T~ : D[0, T] -+ D[0, T], defined by 

(4.1) 

and 

(4.2) 

T 
T ( G )  = G(O)Fa(t, 0)[1 - Sz(0)] + ~ G(u)F3(t ,  u )h (u )du  

- fo ~ a(~)F~(t, ~)g(~)&, 

fOT T~(G) = G(O)F(3~)(t,O)[1 - S(z'~)(0)] + G(u)F(3~)( t ,u)h~(u)du 

- f ~  a(~)F~ ~)(t, ~)g~(~)d~, 
ao 

where G e D[0, T], and use ll' II to denote the norm of the operators when the 
is clear in the context. Clearly, we have that  ICy and IC~ n) are the meaning 

solutions of the following equations: 

(4.3) 
(4.4) 

svs(., ~) = Fj(., ~)+ ~-(±c,(., ~)), 
= T. t i C  (~) (. sc}~)(.,,) ~}~)(.,s) + ~, j , , ,)), 
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where s E [0, T], respectively. Moreover, we have the following lemma. 

LEMMA 4.1. Under Assumptions A, B and C, we have: 
(i) T and T~ are bounded and compact operators for  n > 1; 

(ii) ( I - T )  -1 exists onD[O,T], a n d I C j ( . , s ) =  ( I - T ) - I ( F j ( . , s ) ) ,  j = 1,2,3, 
for s E [0, T]; 

(iii) with probability 1, for j = 1, 2, 3, 

IIF~ ~ > -  Fill -~ 0, a8 ~ ~ ~ ,  

and 

I1¢~ - ~-II ~ 0, as ~ -~  o~; 

(iv) with probability 1, ( I  - T~) -1 exists on D[0, T] for sufficiently large n and 

I c}~) ( . ,~ )  = ( z -  ~ ) - l < } ~ ) ( . , s ) ) ,  j = 1 , 2 , a ,  for  ~ • [0 ,r ] ;  

(v) with probability 1, 

][IC} n) - ICj[ I ~ O, as n ---+ oc, 

where j = 1, 2, 3. 

PROOF. (i) Clearly, T and T~ are bounded on D[0, T]. Note that  £'2 and F3 
are bivariate continuous, and that  for any tl and t2, 

(4.5) sup I F J n ) ( t l , s ) -  FJn)(t2,8)l, j = 2,3 
se[O,T] 

can be made arbitrarily small by taking It1 - t21 small. Hence, T(G)  and T~(G) 
are the elements of the space of (C[0, T], I1' II), where G • D[0, T] and C[0, T] 
is the space of all continuous real valued functions on [0, T]. Moreover, by Kato 
((1980), p. 157), we have that  T and T~ are compact. 

(ii) From (13) of Chang (1990), we have that  for 

k n ( t ,  ~) = I{0  < ~ < t )  
s- s F-- ' 

k~l(t ,  s)  - ±{0  < s < t }  
S x ( s )  ' 

k ~ ( t ,  s) = I { t  < s < T }  
1 - S x  (s) ' 

and some Ul, u2, u 3 E D[0, T], the following equations: 

(4.6) 

fo ~ k12 (t, s ) b ~  (s) - u2(s)ldS~, (s) = ~ ( t ) ,  

/ o  T 

- /o T k31 (t, s ) ~  ( s ) d S z  (s) = ~ (t), 
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imply that  ul = u2 = u3 = 0. Since we can express T as the following: 

(4.7) /o {/0 ~ r ( a )  = ~12 ( ' ,  ~t) ]~21(tt, V)a(v)dSy(V) 

/o - k31 (u, v)G(v)dSz(v) 

then T(G) = G implies (4.6) with 

f 0  T %1 = ~ ,  7~2 = - -  ~21( ' ,  v)~(v)dSy(v), 

/0 ?1'3 = - -  ]~31 ( ' ,  v)a(v)dSz (v). 

, dSx (u), 

s o) sy sz 

fo t 1 Szd[S(xn) _ Sx}.  + S z -  

Since [Sy - Sz] -1 is continuous and bounded  on [0, T], by Theorem 4.2 of Chang 
and Yang (1987), we know that  with probabil i ty 1, 

fo t dS(x n) ~o t dSx 
S(v~) _ S2) Sz  - Sz  

--+ 0, a s  ~ --+ oo ,  

uniformly for t C [0, T]. Hence, we have that  with probabil i ty 1, 

( 4 . 8 )  ]l F(n) - 511 ~ O, a s  n ~ o c ,  

where j = 1, 2, 3. 
Furthermore,  since 

II~ - ~-II = sup I I ~ ( c )  - T(a)II 
GeD[O,T], II GII =1 

< IIFa(n)(., 0)[1 - S 2 ) ( 0 ) ]  - F~(. ,  0)[1 - Sz(0)] l l  

+ sup / ~  a(~)F~(n) (., ~)g~(u)d~ 
aeD[o,r],ltall=l Jo 

t t dSx 

Hence, we have G = 0. Therefore, we know that  1 is not an eigenvalue of T.  Since 
T is compact,  by Theorem 6.26 of Kato  ((1980), p. 185), we know that  ( I  - T)  -1 
exists and is defined on D[0, T]. Hence, we have ICj(., s) = ( I -  T) - I (Fj (  ., s)), 
because Fj(., s) is an element of D[0, T] for any s E [0, T]. 

(iii) Note that  
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_ rio ~" C(~)Y2(., ~)g(u)d, 

+ sup L ~  a(~)Y~(n) (., ~ )h~(~)d~  
GcDO,T],IIGI=I 0 

--/0 T G(u)F3(', u)h(u)du 

< IIF(~)(., 0)[1 - s ( n ) ( 0 ) ] -  F3(.,0)[1 - Sz(O)]l[ 

/o + IlF~'~)(.,u)g~(u) - F2(.,u)g(u)lldu 
T 

+ L ]]F(3~)("u)h'~(u)- F3(.,u)h(u)l]du, 

by Assumption C, (4.8) and the strong consistency of S(z ~) (Chang and Yang 
(1987)), we have that  with probability 1, 

(4.9) I1~ - ~rll --* 0, as n ~ o~. 

(iv) Since T and T~ are bounded, by (4.9) and Theorem 2.23 of Kato ((1980), 
p. 206), we have that  with probability 1, Tn ~ T in generalized sense. Since 
( I - T )  -1 exists on D[0, T], from Theorem 2.23 of Kato ((1980), p. 206), we know 
that  with probability 1, (I  - T~) -1 exists on D[0, T] for sufficiently large n, and 

(4.10) I1(I - -  ~ V n ) - - I  - -  ( I  - -  T)-I [ I  ~ 0, as n ~ oo, 

with probability 1. Hence, we have IU}~)(.,s) = ( I -  Tn)-I(F¢~)(. ,s))  for suffi- 

ciently large n, because F(~) (., s) is an element of D[0, T] for any s E [0, f ] .  
(v) Since 

1 C j ( . , 8 )  = ( [ - ' 7 " ) - I ( F j ( . , 8 ) ) ,  

and 

II±cJ')(., s ) -  zcj(. ,  s)ll _< I1(I- ~ ) - 1  _ (±_ ~)-,lll)F~,)(., ~)ll 

+ I1(I - T ) - l l l  liFO'l( ., ~) - Fj(. ,  8)FI, 

by (4.8) and (4.10), we have that  

(4.11) sup IlIC]')(.,s)-ICj(.,s)[I--~O, as n---~oc, 
s E [ 0 , T ]  

with probability 1. [] 
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PROOF OF THEOREM 2.2. (i) Since by (4.5), we know that  F (~) and F3 (~) 
are continuous in t for any fixed s, from (v) of Lemma 4.1 and the Dominated  

Convergence Theorem, we know that  T~(IC} ~) (., s)) is continuous for any fixed s 

and j = 1, 2, 3. Since F} ~) (t, s) is continuous in t for any fixed s, except at t = s, 

by (4.4), we have that  IC} '~) (t,, s) are continuous in t for any fixed s, except at 

most  at point t = s. Since 0(Y ) are continuous, using a similar argument  to the 
one in the proof of (i) of Lemma 2.1, we know that  by the Dominated  Convergence 
Theorem, ~n is bivariate continuous. 

g n Let A be a r.v. with p.d.f.: P { A  = j}  = 1 Y~-i=l I{6i = j} ,  j = 1, 2, 3. Since 

QS=)/P{A = j}  are d.f.'s, there exist r.v. 's Q such that  

P{Q < x I A = j} = Q,~n)(x)/P{A = j}. 

Therefore, we have P{¢j << x , A =  j}---- (~.n)(x). Let 

and 

¢ = ¢ i I { A  : i }  + @ I { A  = 2}  + ¢31 {A  = 3} 

3 

X(t) = E IC] ~)(t'¢)I{A = J}' 
j = l  

then 

and 

E{x(t)} : z c ] ~ ) ( t , ~ ) d O ~ ) ( x ) ,  

E{x(t)X(s)} = E Z ~c}~)(t, ¢)±{~ = i}±c]~)(s, ¢)±{A : j} 
/ : 1  j : l  

3 

: Z E{±c]~)(t,¢)zc]~)(~,¢)±{ ~ = J}} 
j=l 

= Es I ~)(t,x)IC]")(s,x)d n)(X). 
j=l 

Hence, by (2.19), we have that  a/n(S, t) = cov{X(F-l(s)),  X(F- l ( t ) )}  is a covari- 
anee function. Therefore, ~n is nonnegative. 

(ii) The proof  is similar to the one of (ii) of Lemma 2.1. 
(iii) It can be shown that  with probabil i ty 1, 

(4.12) [Q~)  - Q j  + 0, as n - +  oo 

uniformly for t C [0, T]. Hence, from (2.20), we have that  with probabil i ty  1, 

(4.13) [ ( ~ )  - Qj] ~ O, as n --, 
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dformly for t E [0, T]. Note that  for (s, t) e [0,/3] 2, 

543 

I'~(s, t ) -  ~(s,t)l_ ICJn)(F-I(s),x)ICJ~)(F-I(f),x)dQJ~)(x) 
j = l  

-- ~o T ICj(F-l(s),  x)ICj(F-l(t) ,  x)dQj(x) 

-{~/o ~ z~ (~-1 (~' x)"o~ (~ } ~ = 1  

3 T 

_ Kff" f IC(~)(F-l(s),x)ZC}~)(F-l(t),x) < z _ ~ l  { j 
j = l  J 0  

-- ZVj(F-l(s),x)IVj(F-l(t),x)}d(OJn)(x) 

3 T 

+ ~ fo ±cJ(F-~(~)'~) j=l  

× ICj(F-l(t),x)d[O, Jn)(x)-Qj(x)] 

+ IC}~)(F-i(8),x)d~)~)(x) 

x ~ T I c ( ~ ) ( F - l ( t ) , y ) d t ~ Y ) ( y )  

4- IC~n)(F-e(t),y)dO, Jn)(y) 
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- foTICj(F-I(t),y)dQj(Y) } 

× ~=lfoTICj(F-I(s),x)dQj(x) . 

From Chang (1990), we know that  ICj(t, s) is continuous in s for any fixed t and 
j = 1, 2, 3, except at most at s = t. Since F2 and F3 are bivariate continuous, we 
have 

/o ( ICj (u, s)r2(t, u)dSy(u) - ICj(u, s)F3(t, u)dSz(u) 

is bivariate continuous on [0, T] 2. Since Fj(t, s) is monotone in t for j = 1, 2, 3 and 
any fixed s, by (2.15), (4.11) and (4.13), we have tha t  

I I % - v l l - ~ 0 ,  as n - ~ ,  

with probability 1. 
(iv) Consider operators £ ~ :  L 2[0,/3] ~ L 2 [0, 31 given by 

£~(G) = %(s , t )G( t )d t ,  G c L2[0, 3], 

and denote E(£,~) as the set of all eigenvalues of £~. Let 

(4.14) 

(4.15) 

By (3.7), we observe tha t  

Ai _> A2 >_ " " ,  

~?)_> a;°) _>.... 

f0 ;~ 
(4.16) 7(t'i:)dt : E Aj, 

j = l  

(4.17) ~2(s , t )dsd t  = a~, 
j = l  

and that similarly for ~, we have 

o(3 

fo ~ ~? (4.18) x/~(t,t)dt = E ' 
j = l  

[/0 (4.19) ^2 s = %(,t)dsdt ~- ' (A~) )  2. 
j = l  

Since by (2.22), we have tha t  with probability 1, 

]0 ~ ~ f0 ~ (4.20) %(t, t)dt = Z ;~ ~) 
j = l  

o<3 

j = l  

a s  Tt --+ 00,  
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we have that with probability 1, there exists M > 0 such that 

(4.21) 

Let @nk) be 

(4.22) 

0<A~ ~ ) < M ,  for j > l  and n > l .  

any convergent subsequence of @Y) such that for j = 1, 2 , . . .  

and let E = {Td; 7j > 0, j  = 1,2,3, . . .} ,  then by (4.15), we have 

(4.23) 71 _> 72 _> " ' .  

E E, let ~[~) be the orthonormal eigenfunctions, i.e., r y  

= 5~j, corresponding to the eigenvalues A~ ~) for the eigenvalue 

(4.24) d)q n~) -~ Cj ~ 0, as k ~ oc. ~2 

Hence, we have 

o 9 ~/(~, t ) e j  (~)dt = ~jCj(~) ,  

which implies that 7j is an eigenvalue of £. Therefore, we have E C E(£).  
Now, we show that A1 C E and ~1 = 71 > 0. First, note that 

l i c e ( c )  - ~ (C) l l  ~ I I G  - ~ l l l lCl l ,  

and that T is selfadjoint and only has isolated eigenvalues A with finite multiplicity 
ma and isolation distance d~ > 0. From the discussion by Kato ((1980), p. 290), 

1 _ = _ 1 ~ } ,  we know that when 1]£~ £1[ < ~d~, in the circle of F~ {u; ]u h I _< 
there are exactly mx repeated eigenvalues of £~ and no other points of E(£~). 
Hence, by (iii) of Theorem 2.2, when n is sufficiently large, in Fa there are exactly 
rnl = rnz~ repeated eigenvalues of £n and no other points of E(£~). Since £ and 
£n are selfadjoint, by Theorem 4.10 of Kato ((1980), p. 291) and (iii) of Theorem 
2.2, we know that for any j _> 1, 

(4.25) dist{@ ~), E(£)} ~ [IA2n - z2II ~ flll@~ - 71I --+ 0, as n --+ co, 

For any "Yd 

prob lem (2.21).  Since £ is c o m p a c t  and II¢~/IJ = 1 and since 

, (~) . (n) ,  , 
: A j  ~j kS), 

by (iii) of Theorem 2.2, there exists convergent subsequence, also denoted by ¢~nk), 
such that  
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with probability 1. If for any large n, there exists an C E(£~) such that  an k 
1 A1 + 5d~x, then we have 

i d d i s t {~ ,  E(£)} > ~ /~1 ~ 0, 

which contradicts (4.25). Hence, by (4.15), we have that  for sufficiently large n, 

those ml  repeated eigenvalues of £~ in Fxl are A~), A~ ~), . . . ,  A ~ .  Therefore, by 
(4.22), we have )~1 = 71 E E. 

Similarly, we can show the same for )~2, ~3, . . . .  Hence, we have E = E(£) and 
79 = %J > 0 for j = 1, 2, . . . .  Therefore, we know that  every convergent subse- 

quence of )~ )  converges to Aj for every j k 1. This gives that  with probability 
1, 

for j = 1, 2, . . . .  
Since 

/o 7(t, t)dt = Aj < oo, 
j=l  

then for any e > 0, there exists Nc > 0 such that  Y ~  )~j < e. Hence, we have 
j = N ~  - -  

that  with probability 1, 

j =~1 N~ (4.27) )U(A~ n) -/~J) <- E "~i['~ ~) - .hj] + 2Me. 
j=l  

By (4.26), we have that  with probability 1, 

o o  

(4.28)  Z - 0, as 
j=l  

Note that  by (2.22), we have 

~ /3 ~ 2 
(4.29) f0 if0 ~/~(s,t)dsdt--+ fro fo 7(s't)dsdt'  as 

with probability 1. Hence, (4.17), (4.19) and (4.29) imply 

CX5 OO 

(4.30) E ( ) ' ~  '~))2 --+ E )~' as n ~ c¢ 
j=l j=l 

with probability 1. Also, note that  

o o  

j=l 

Tt  ---+ O O .  

f t  ---+ O O  

o o  o o  o o  

j=l  j=l j=l 

= 

j : l  j = l  j = l  
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Hence, by (4.28) and (4.30), we have that  with probabil i ty 1, 

O O  

E(a~n~-~/:-~0, a~ ~-~oo. 
j = l  

(v) Let W = ~j=l°C AjZ2 ' Wn = E j = l ° °  Aj (~)Zj2 and A (~) = (A~), A~ ~), . . . ) ,  theI 
by (4.20), we have that  as n --+ oo, 

(4.31) c~ = E { W n  - W }  = E { E { W , ~  - W ] A(~)}} = E k '~) - kj , --+ 0. 

Note that  A (~) and Z = (Z1, Z2 , . . . )  are independent,  and that  we have 

(4.32) E{[(W~ - W) - E(Wn - W)] 2 [ ~(n)} 

: .  ~(a?~-aj)z 2-ca l a(~) 

: E (a~ ~) - aj)(z] - i) + Z(a ~) - aj) - c~ 

j=l 

2 ) -[- A n)  _ A j )  - -  C n 

2 A (n) } 

O<3 O O  

= 2~(A~) -  a~) ~ + :  ~ ~)-~)-~  

Since for any e > 0, we have that  by (4.32), 

P { l ( m ~  - W)  - E(W~ - W)I _ 4 

= E{P( I (W~ - W)  - e ( w ,  - W)l _> ~ J ~('~))} 

< ~ { E ( [ ( w ~  - w )  - E ( w ~  - w) ]  ~ 

/ -- 1 E  

j = l  

hence by (iv) of Theorem 2.2, (4.20) and (4.31), we have 

( 4 . 3 3 )  P { l ( w ~  - w )  - E ( w ~  - w ) l  _> ~} -~ 0, as  ~ - - ,  o~.  

2 A (n) } 
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Therefore, by (4.31), we have W~ ~ W, as n -~ oc. Clearly, (2.25) follows easily 
from (2.24) and (i) of Theorem 2.1. [] 
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