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Abst rac t .  The problem of estimating change points in various non-monoto- 
nic aging models is considered. A general methodology for consistent estimation 
of the change point is developed and applied to non-monotonic aging models 
based on the hazard rate function as well as on the mean residual life function. 
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1. Introduction 

The various nonparametric classes of life distributions common in reliability 
theory, deal with positive (or negative) aging according as the residual lifetime 
tends to decrease (or increase), in some probabilistic sense, with increasing age of 
the component/individual under consideration. This gives rise to different mono- 
tonic aging classes such as IFR, DMRL, NBU, NBUE and their duals depending 
on whether the aging pattern is positive or negative. However, in many practical 
situations, the effect of age is initially beneficial (a 'burn-in' phase where negative 
aging takes place), but after a certain period, it is adverse indicating a 'wear- 
out' phase where aging is positive. This kind of non-monotonic aging is typically 
modelled using life distributions displaying bathtub failure rates (BFR). Guess et 
aI. (1986) and Mitra and Basu (1994) have introduced the IDMRL and NWBUE 
families of distributions respectively, to study the above phenomenon through the 
mean residual life (MRL) function. 

For a life distribution function (d.f.) F(.),  the MRL function at age x > 0 is 
defined as eF(x) := E ( X  - z I X > z) = (1/F'(z)) f o~ [ ' ( t )d t  whenever F(z )  := 
1 - F ( x )  > 0 and 0 otherwise. 

DEFINITION 1.1. (Guess et al. (1986)) A life distribution F with support 
[0, oc) is said to be an Increasing initially, then Decreasing Mean Residual Life 
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(IDMRL) distribution if there exists a xo > 0 such that e~(x) is non-decreasing on 
[0, Xo) and non-increasing on (Xo, co); in such a case we say that 'F  is IDMRL(xo)'. 

Example 1.1. 
function 

J" 4/(2 + x) 2 P(x) 
(4x/9) exp[ - (x  2 - 1)/6] 

The corresponding MRL function is as follows: 

2 + x  i f 0 _ < x < l  
eF(X)  = 3/x if x > 1. 

It is evident that F is IDMRL(xo) with unique change point xo = 1. 

Consider the life distribution characterised by the survival 

i f 0 < x < l  

i f l < x <  ec. 

DEFINITION 1.2. A life d.f. F having support [0, ec) (and finite mean #) is 
said to be New Worse then Better than Used in Expectation (NWBUE) if there 
exists a point x0 > 0 such that 

_> (<)eF(0), for x < xo, 

eF(x) _< (_>)eF(0), for x >_ Xo; 

in such a case, we write 'F  is NWBUE(x0)'. 

It can be readily seen that the distribution function introduced in Example 
1.1 is also NWBUE(x0) with unique change point x0 = 3/2. It can be shown 
that {IDMRL} C_ {NWBUE} (Proposition 2.3 of Mitra and Basu (1994)). That  
{NWBUE} is a strictly larger class of life d.f.s is borne out by the following ex- 
ample. 

Example 1.2. Consider the life distribution having the following survival 
function: 

{0/(0 + x)} 2 if 0 _< x < 

{0/(0 + a)} 2 if a < x </3 

{0/(0 + a)}'[(0 + 2a - / 3 ) / (0  + 2a - 2/3 + x)]'  if/3 < x < 7 

~(x)  = 0 2 (0 + 2~ - 9) 2 
(0 + ~)2 (0 ~ ~ ~ ~ T:~) 2 (x/v) 

[ 1 ( x ' - 7 ' )  ] i f x >  7 
"exp 2 ~/(0 ~ - - ~ - ~  ÷ 7) 

where the parameters a, /3, 7 and 0 are such that  0 < a _< /3 _< 7, 2a > /3 and 
0 > 0. The corresponding MRL function then works out as 

O+x i f 0 < _ x < a  

0 + 2 a - x  i r a  < x </3 
e F  (X) = 0 + 2a -- 2/3 + x if/3 < x < 7 

7 ( 0 + 2 a - - 2 / 3 + ~ / ) / x  if x_>7. 
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It is easy to observe that the life distribution F is NWBUE with unique change 
point x0 = ~/(0 + 2a - 2fl + "y)/0; however, F is not IDMRL whenever a < fl < "y. 

For the purpose of the next definition, we require the notion of a failure rate 
function. Whenever F is absolutely continuous with a probability density function 
(pdf) f(-), we define r(-) = f ( . ) / f ' ( . )  to be its failure rate function. 

DEFINITION 1.3. A life distribution F having support [0, oo) is said to be a 
Bathtub Failure Rate (BFR) distribution if there exists a x0 _> 0 such that r(t) is 
non-increasing on [0, x0) and non-decreasing on Ix0, co); in such a case, we write 
'F  is BFR(x0)' .  

We shall refer to such an x0 (which need not be unique) as a change point of 
a d.f. F in the BFR sense and write F is BFR(x0). Similarly, the change points 
in the two previous definitions can be referred to as change points in the IDMRL 
and NWBUE sense respectively. 

As has been shown in Mitra and Basu (1994), {BFR} _C {NWBUE} and 
accordingly, the BFR distributions mentioned in Rajarshi and Rajarshi (1988) are 
also NWBUE. It may be mentioned at this juncture that  the NWBUE family is 
strictly larger than the BFR family as has been demonstrated in Example 2.2 of 
Mitra and Basu (1994). 

In the next section, we outline a procedure for estimating such change points 
and demonstrate that our method applies in all the above mentioned classes. Ear- 
lier efforts in estimating change points were limited to specific life distributions 
only, rather than the issue being addressed to general nonparametric classes of 
life distributions at large. For example, Nguyen et al. (1984) and Yao (1986) 
considered the life distribution having failure rate function 

r ( t )  = < t < + 9X( t  > 

where x(A) is the indicator function of the set A and a, fl, ~- E ]~. The following 
general model characterized by the hazard function 

m 

r(~) = ~ OLk~(Tk_ 1 ~ t < Tk) 
k=l  

with 0 = 7-o < ~-1 < ""  < rm = oe and ak _> 0Vk, was subsequently consid- 
ered by Pham and Nguyen (1990). They used techniques of maximum likelihood 
estimation (the 'pseudo-maximum likelihood' approach) and established strong 
consistency of the suggested estimators. The application of bootstrap methods in 
the case m = 2 in this model has been studied by Pham and Nguyen (1993). Basu 
et al. (1988) treated the 'truncated bathtub model' specified by the rate function 

r(t)  =  (t)x(O < t < 7) + aox( t  > 7), 

where )~(t) is a decreasing positive function and ),0 is a positive constant. As 
opposed to the above parametric and semiparametric models, here we propose 
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to consider the problem of estimating the change point in purely nonparametric 
setups. An earlier effort in this direction has been by Kulasekera and Lal Saxena 
(1991) who considered life distributions displaying bathtub failure rates having 
a unique change point and proposed a consistent estimator of the same. The 
methodology described in the next section when applied to the BFR case, seems 
to work under less restrictive assumptions. 

2. Change point estimation 

We consider BFR, IDMRL and NWBUE life distributions having unique 
change points and suggest a unified approach for estimating these. Estimation 
of change points is relevant particularly in the context of maintenance policies, 
since, as is natural, one would hardly think of preventively replacing a compo- 
nent having such a life distribution before the 'threshold' (unknown) age of x0 is 
achieved. 

In a general setup, our problem can be formulated as follows: 

Given a random sample, X1, 2(2, . . . ,  Xn of size n from an unknown life d.f. 
F,  where F is NM(x0), x0 < ce, (NM is the abbreviation for non-monotonic and 
in subsequent discussions it would stand for either BFR or IDMRL or NWBUE 
as the case may be), how to estimate the unknown change point x0? 

We shall make the following two assumptions: 

(A1) The finite change point x0 of the d.f. F ,  whenever positive, is the unique 
positive minimizer/maximizer of a suitable non-negative transform hF(.) of F; 
otherwise, it is the unique minimizer/maximizer. 

(A2) We have an upper bound for the unknown change point--call it B, i.e., 
Xo <_B < o% F(B) <1. 

Note that (A2) is quite a weak assumption because, in most practical sit- 
uations, an idea about B can be formed on the basis of some prior experience 
concerning the phenomenon under consideration. 

While estimating the change point of a IDMRL distribution F,  we shall take 
hE(X) to be eF(X); likewise, in the BFR case, hE(X) is taken to be rF(x). Con- 
sequently, in the context of both these cases, the assumption (A1) is equivalent 
to 

(AI*) The finite change point x0 of the d.f. F is unique. 

However, this equivalence fails in the NWBUE case where we choose hE (x) -- 
leE(x) - #El with #F being the mean of F. This is so because here, under (AI*), 
hE(x) = 0 may have multiple solutions, exactly one of which is the change point. 

The unified approach for change point estimation in either of the three cases 
consists in identifying x0 as the unique minimizer (or maximizer, as the case may 
be) of a specific non-negative transform hF(x) of F.  We then estimate hE(x) by 
hF~ (x), where F* is a suitable estimator of F and is based on a random sample 
of size n from it. Depending on the case, let An be the set of minimizers or 
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maximizers (not exceeding B) of hFg (x). We then estimate Xo by x%, where 
xo~ := inf An whenever An is non-empty; xo~ is defined appropriately otherwise. 
The choice of F~ would depend on the specific problem being tackled as will be 
evident from the three cases dealing with the estimation of the change point when 
F is (i) NWBUE(xo), (ii)IDMRL(x0) and (iii) BFR(x0). 

(i) The NWBUE(x0) Case. Suppose F is NWBUE(x0) with finite mean #F. 
Consider the non-negative transform defined by 

(2.1) hF(x) := l e F ( x ) -  ,FI .  

Note that, in this context, condition (A1) indicates that  whenever x0 = 0, it is 
the unique minimizer of hF (x) and it is the unique positive minimizer otherwise. 
Let F~ be the empirical c.d.f, based on the random sample X1 ,X2 , . . . ,  X~ and 
X(1) _< X(2) < "-" < X(n) be the corresponding order statistics. In this case, we 
estimate hF(x) by 

(2.2) h ~  (x) := le.~ (x) - , -~l ,  

where eF~ (x) is given by 

{ /7 1 Fn(v)dv if > x, 
eFt (x )  = Pn(x)  x ( ~ )  

0 otherwise, 

and #F~ is the sample mean X~. Note that eF~ (x) is nothing but the usual life 
table estimate of the life expectancy at age x. Also, it is easy to see that 

(2.3) 

n 
E j = l ( X j  - x)I(x~ - x) 

e~o(x) = ~ 7 ( ~  7 x )  

0 

if X(n) > x, 

otherwise, 

where I(a) -- 1 or 0 according as a > 0 or a < 0. It follows from Yang (1978) that 
a S  n - - - +  o(:), 

(2.4) sup leF,,(x) - eF(x) l  -+ 0 a.s. 
0 < x < b  

for every b > 0 satisfying F(b) < 1. Further, it is clear from (2.3) that eF~ (x) is 
a right continuous function having finite left limits and is piecewise linearly de- 
creasing in the intervals [0, X(1)), [X(1), X(2)) , . . . ,  [X(n-1), X(,~)). Also, note that 
esn(x) has jumps at x = X(i), i = 1 , 2 , . . . , n -  1. These jumps are of positive 
magnitude, since the averages (n - k + 1)-1 }-~-j~=k X(j) increase with k. Now, 
define 

(2.5) An := {0 < x <_ B:  [eF. (X) -- f(n[ is minimum}. 
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Observe tha t  limit0 leFt(x) - J~n] = 0 with probability 1; hence, if An is non- 
empty, the minimum value of ]eF~(x) --)(n] has to be zero; we thus have, 

An = {0 < x _< B :  = 2 n } .  

Then we have the following useful lemma: 

LEMMA 2.1. If  X0 > 0 (= 0), there exists an integer no > 1 such that for all 
n > no, An is non-empty (empty) with probability 1. 

PROOF. Consider the case x0 > 0. Let 0 < xl  < xo < x2 < B. As F is 
NWBUE(xo),  and x0 is the unique change point of F ,  

(2.6) e F ( z l )  - # F  ) 0, 

e r ( x 2 )  - ~ F  < 0. 

Using (2.4) and Kolmogorov's SLLN, we note tha t  

e o(x) - 2 n  e (x) a.s. as  4 

It then follows from (2.6) tha t  there exists no > 1, sutficiently'large, such tha t  for 
all n > no, ey~ (Xl) -- J~n > 0 and eFt(x2) - J?n < 0 hold with probability 1. 

The above inequalities, together with the fact tha t  ey~ (') has jumps tha t  can 
only be positive in magnitude,  guarantee the existence of a solution to the equation 
eF~ (x) = J?n with probability 1, for all sufficiently large n. 

If x0 = 0, then via (2.4) and SLLN, we observe tha t  for all x > 0, e ~  (x)-JCn > 
0 a.s. V large n, since F is then NWBUE with unique change point zero. [] 

In view of the above lemma, the observation An = 0 in a given instance seems 
to suggest tha t  F is NBUE, i.e. NWBUE with x0 = 0. We are thus motivated to 
est imate Xo by 0 in such a situation. On the other hand, when An is non-empty, 
we shall est imate x0 by x0~ := inf An; as a mat ter  of fact, we could est imate z0 by 
any member of An since in the long run, intuitively, we expect An to be a singleton 
set by virtue of (2.4) and our assumption (A1). 

Remark 2.1. Lemma 2.1 implies tha t  x0~ = 0 for all large n with probability 
1 whenever x0 = 0. 

The following theorem justifies the use of the est imator proposed above. 

THEOREM 2.1. The estimator xo~ is strongly consistent for xo. 

PROOF. In case xo = 0, a much stronger conclusion holds in view of Remark 
2.1; in fact, beyond a certain stage, x0~ becomes zero identically. Fix any cJ E f t ,  
where (ft, $-, P)  is the probability space on which the Xi 's  are defined. By defini- 
tion, {x% } is a bounded sequence and as such, it has a convergent subsequence. 
Let {Xo~k } be any convergent subsequence of {xo~ } and suppose tha t  

(2.7) Xo. k --+ x 0 as k --~ oc. 
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At this stage, we note that the graph of eF~ (x) consists of n linear segments, each 
having negative slope. Each such segment extends between two successive order 
statistics. Moreover, eF~ (0) = J(~ and ef~ (x) is linearly decreasing between 0 
and X(1). Thus it is clear that An can have at most (n - 1) elements so that 
inf An = rain A~ and as such Xo~ k C A~ k . Therefore, 

(2s) 0 _< leFo.  - I -< leFo   - I. 

Taking limits as k --+ oc and using (2.4) and the SLLN, we have, with probability 1, 

0 _< leF( ;) - < be ( 0) - = 0. 

The last equality holds as x0 solves el (x)  = #F. Thus, with probability 1, x; = x0, 
by the uniqueness of the change point. Hence, any convergent subsequence of {x0~ } 
converges a.s. to x0. This completes the proof. [] 

(ii) The IDMRL(x0) Case. Here, we take hF(x) =-- eF(X) SO that we can 
identify Xo as the unique maximizer of eF(x) and estimate eF(x) by eFn(X) as in 
Case (i). Define 

A.  := {0 < x _< B :  e ~  (x) is maximum}. 

It follows from the graph of ef~ (.) that An is empty if and only if eF~ (x) -- f(n < 0 
a.s. Vx > 0; likewise if eFn (x) -- Xn _> 0 a.s. for some x > 0, then An will comprise 
exclusively of one or more of the order statistics. Now (2.4) and the IDMRL 
property of F imply that for all sufficiently large n, An is non-empty (empty) with 
probability 1 whenever xo > 0 (= 0). We define 

0 if An = 0 

z 0 n =  i n f A n = m i n A n  if A n # 0 .  

It is to be noted that the estimate of the change point would either be zero (if An 
is empty) or one of the order statistics (if An is non-empty). 

The consistency of x0~ can be proved very easily along lines similar to those 
in Case (i). 

(iii) The BFR(x0) Case. We finally discuss the estimation of the change 
point x0 of a BFR distribution F for which the failure rate function rE (X) is well- 
defined. For this purpose, we take hE(x) ---- rE(X); under (AI*), we note that x0 
is the unique minimizer of hE(x). 

We assume the p.d.f, f( . )  of F to be uniformly continuous and let fn(x) be 
a continuous kernel estimate of f( .) .  Accordingly, under suitable assumptions on 
the kernel function, we have, by Theorem A of Silverman (1978), 

(2.9) sup{lfn(x ) - f ( x ) l : x  >_ 0} --+ 0 a.s. as n ~ oe. 

We propose to estimate rE(x) by 

(2.10) 
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where 

fo x f 'n(x) = 1 - n / (n  + 1) f~(y)dy, 

fn(') being the above kernel estimate of f( .) .  The factor n / ( n  + 1) is introduced 
in the definition o f / ' n ( ' )  simply to ensure that rn(') in (2.9) is well-defined, as 
f o  fn(x)dx < 1. It is simple to deduce that 

(2.11) [rn(X) - r(x)t --~ 0 a.s. as n ~ oc 

uniformly, over any bounded interval. 
Define 

(2.12) An := {0 <_ x <_ B :  r~(x) is minimum}. 

Since, for each fixed sample point, rn(X) is a continuous function of x, it attains 
its bounds over the compact set [0, B]. Thus An is non-empty, and we set 

(2.13) x0~ := inf An = min An. 

The last equality holds in view of the continuity of rn(.). 
The estimator proposed in (2.12) seems more natural and intuitively appealing 

compared to the one given by Kulasekera and Lal Saxena (1991), which looks com- 
plicated, besides being computationally rather involved. Moreover, they needed a 
number of assumptions on the failure rate as well as the kernel function to establish 
the strong consistency of their estimator. But, the estimator in (2.12) is strongly 
consistent under much less restrictive conditions, as can be seen in Theorem 2.2 
below. 

For the purpose of Theorem 2.2 below, we assume the conditions of Theorem 
A of Silverman (1978), so that (2.9) follows. 

THEOREM 2.2. The estimator Xo~ defined in (2.12) is strongly consistent for 
XO.  

PROOF. 
{Xo~ } and let 

Let {Xo~ } be a convergent subsequence of the bounded sequence 

X o n  k ----+ X O. 

By definition of Xonk, 
rnk( %) rn (xo) 

Taking limits as k --+ oc and using (2.10), we get, 

r(x;) r(xo), 

which completes the proof because of the uniqueness of x0. [] 
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