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A b s t r a c t .  Frequently, corresponding to a given estimating equation it would 
be desirable to have a scalar combinant having parametric derivative equal 
to the estimating function since such a combinant may serve as a quasi log 
likelihood. In general this cannot be achieved but it is nevertheless possible to 
define a quasi profile log likelihood and also a quasi directed likelihood, for an 
arbitrary one-dimensional parameter of interest and with the standard kind of 
distributional limit behaviour. 
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I. Introduction 

Let g = g(y; O) be an unbiased est imating function for a d-dimensional pa- 
rameter  0. Here y denotes the full da ta  set and g is a vector  of dimension d. The  
est imate  of 0 determined by g will be denoted  by 0, i.e. 

(1.1) g(y; O) -- O. 

Occasionally we shall write 9o for the vector g. 

In case go is the score vector of the log likelihood function l for da ta  y, so tha t  
go is of the form 

(1.2) go = I/o, 

where / indicates differentiation, we have that 

(1.3) cov{g0 } = - E { g o / o  }. 

In general, the  relat ion (1.3) does not hold. However, as noted by McCullagh 
((1991), Section 11.7), we can achieve tha t  it does, wi thout  changing the propert ies  
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of the estimator 0, by multiplying g by a matrix that may depend on 0 but is 
constant in y. We assume henceforth that this has been done. 

Even when (1.3) holds there does not in general, when d > 1, exist a scalar 
function h = h(y; O) whose gradient with respect to 0 equals g, i.e. which has the 
property that 

(1.4) h/o = go. 

In case such a function h is available it may be thought of as a log likelihood-like 
function for 0 and it may be used, in analogy with ordinary log likelihoods, for 
setting quasi likelihood regions, for constructing quasi profile likelihoods, etc. 

Essentially, whether (1.3) holds or not, the necessary and sufficient condition 
for the existence of a h satisfying (1.4) is that the matrix go/o be symmetric or, 
equivalently and in the language of differential geometry, that the vector field 
given by go is conservative. When go is conservative the function h is said to be 
the potential function associated to go. 

The desirability of existence of a potential function, or 'quasi likelihood', has 
been stressed by Li and McCullagh (1994) in the context of generalized linear 
models with 9 as the quasi score 

g(y ;  0) = { b ( 0 ) } T { V ( 0 ) } - I { y  - 

in the standard notation. As a remedy when g is not conservative they suggest 
a method of projecting the quasi score onto a class of conservative estimating 
functions and they show that the projected quasi score has many properties similar 
to those of an ordinary log likelihood function. Alternative approaches, also based 
on projection, have been proposed by MeLeish and Small (1992) and Li (1993). 

As will be discussed in the following, the problem of nonexistence of a primitive 
h of 9 may usually be circumvented as regards one-dimensional parameters of 
interest. 

Suppose that 0 is partitioned as 0 = (% X) into a one-dimensional parameter of 
interest ~ and a ( d -  1)-dimensional nuisance parameter )C, and that go is similarly 
divided as (g¢, g)¢) with gx being the estimating function for X that would be used 
also if ~ was known. The estimate for X derived from gx when ~b is considered as 
known will be denoted by ;~¢, i.e. 

(1 .5 )  = 0 

We will indicate that a combinant (i.e. a function of the data y and the parameter 
O) q = q(y; O) is evaluated at 0 or (g?,)~¢) by the symbols^and,  respectively. Thus 
0 = q(Y; O) and ~ = q(y; ~, 2~). By convention, the operations ^ a n d - a r e  taken 
to be always the last carried out; without this convention a symbol such as [/~¢ 
would be ambiguous. 

The fact on which we will draw is that if there is a log likelihood function l 
for 0 and if we take 9 = 1/o then the profile log likelihood 1p = I p ( ~ )  = l(~, 2~) 
for ~ satisfies 

(1.6) =[j¢. 
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In more explicit notation equation (1.6) is 

01(~, 2 , ) / 0 ~  = 01(~, x) /0¢  I ~ - ~  

This implies that the normalized profile log likelihood for ~p may be written as 

/; (1.r) ~ ,  = l p ( ~ )  - t p ( ~ )  = [ /~d~ .  

In view of this we propose, for an arbitrary estimating function g as specified 
above, to define the quasi profile score ~¢ = g~(~b, ;~¢) and a corresponding quasi 
profile log likelihood hp = hp(@) by 

(1.8) hp(¢) = f g¢(¢, 2¢)d¢. 

This may then be used for setting quasi likelihood intervals for ¢, for defining a 
quasi directed likelihood t = t o for ¢, etc. In Section 2 we discuss the relevant 
properties of hp(¢) and t. 

The normalized quasi profile log likelihood hp = hp(~p) is given by 

(1.9) ~.(¢) = h.(¢) - hp(~) 

= s~(~, 2~)d~. 

In case the interest parameter ~p is multidimensional it may happen, though 
this will be a rare situation, that the vector field determined by the quasi profile 
score ~¢ is conservative. Equation (1.8) then determines a unique (up to an addi- 
rive constant) potential function for ~¢. Note in this connection that the relation 
(1.6) is valid also for multivariate ~p. The potential function may sensibly be used 
as a quasi profile log likelihood for ~p. Firth and Harris (1991) suggested this in 
the context of quasi likelihood for generalized linear models. (However, the exam- 
ple they consider, which is for a multiplicative random effects model, is in error. 
Apparently, what has been overlooked is that ~¢ = g(~p, )~¢) depends on ¢ both 
'directly' and through 2~.) 

2. Distribution properties of hp(x ) and t 

The quasi directed likelihood t = t¢ is defined as 

(2.1) t = sign(~ - @ ) { - 2 h p ( ~ ) }  1/2. 

Under regularity conditions of standard type the statistic t will be approx- 
imately standard normally distributed and -2[~s(~) will be approximately X 2- 
distributed on one degree of freedom. 

To see this note first that, under such conditions, the partial estimator ;~e is 
approximately normal with mean X and covariance matrix 

(2.2) cov{2~} - b ~ ' ~  cov{g~}b~'~ 



464 

where 

(2.3) 
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bX,X = E{gX/X} -1. 

Denoting coordinates of X by Xi, Xj , . . . ,  the matrix gx/x has (i , j)-th element 

gx,/x~ = Ogxj/OX~ 

and the inverse matrix b x,x = [b j,i] is not in general symmetric. 
Combining (1.3) and (2.2) we have 

(2.4) coy{2,} - -b~'~E{g~/~}b ~'~ 

Taylor expansion of hp(¢) around ~ yields 

(2.5) - 2 £ p ( ~ )  - (~  - ~ ) 2 { ~ / ~  _ ~ / f i ~ , ~ / ~ }  

where we have used the fact that 

(2.6) 2 ¢ / ¢  = - ~ x / ~ b  x''~, 

as follows on differentiating the equation (1.5), determining )~¢, with respect to ~. 
Further, writing I for coy{g0} we have approximately, in view of (1.3), 

(2.7) - { ~ ¢ / ¢  - O ~ / f i ~ ' L % / ~ }  - I ~  - I~IZ~-1 I~¢ 
= { I ~ } - *  

in standard notation for block matrices. Since ~ -  ~b~N(0, i ~¢) the above- 
mentioned conclusions concerning the asymptotic distributions of - 2h p (¢ )  and 
t follow. 
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