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A b s t r a c t .  Tradit ionally the distributions of the number  of pa t terns  and suc- 
cessions in a r andom permuta t ion  of n integers 1, 2 , . . . ,  and n were studied 
by combinatorial  analysis. In this short article, a simple way based on finite 
Markov chain imbedding technique is used to obtain the exact distr ibution of 
successions on a permutat ion.  This approach also gives a direct proof  tha t  the 
limiting distr ibution of successions is a Poisson distr ibution with pa ramete r  
), = 1. Furthermore,  a direct application of the main  result, it also yields the 
waiting t ime distr ibution of a succession. 

Key words and phrases: Permutat ion,  succession, Markov chain imbedding, 
t ransi t ion probabilities, Poisson convergence, waiting time. 

1. Introduct ion 

Le t  Fn  --- {~r : ~r = ( T r ( 1 ) , . . . , I r ( n ) ) }  be  t he  set  of  n! r a n d o m  p e r m u t a t i o n s  
g e n e r a t e d  b y  n pos i t ive  in tegers  1, 2 , . . . ,  (n - 1), and  n, whe re  7r(i) s t a n d s  for t he  
in teger  a t  t he  i - t h  c o o r d i n a t e  of  a r a n d o m  p e r m u t a t i o n  7r. A success ion  (of size 
2) in a r a n d o m  p e r m u t a t i o n  7c is a n y  pa i r  7c(i), 7c(i + 1) w i th  7c(i + 1) = ~r(i) + 1, 
i = 1 , . . . ,  n - 1. M o r e  genera l ,  for 2 < k < n, we define the  index  func t ions  on a 
r a n d o m  p e r m u t a t i o n  7c as, i = 1, 2 , . . . ,  n - k + 1, 

(1.1) 
f 1, 

in(i ,  = 
( O, 

i f ~ ( i + k - 1 ) = ~ ( i + k - 2 ) + l , . . . ,  

= 7~(i) + k -  1, 

o therwise ,  

a n d  define t he  r a n d o m  var iab le  

n-k-4-1 

(1.2) Xn(TG k) = E l ~ ( i , k , 7 0  
i=1 
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being the total number of successions of size k in a random permutation ~r. 
Further for k = 2, we define the random variable of the number of the circular 

successions of size 2 as 

n 

(1.3) 2) = l (i, 
i=i 

where 1~(i,2,7c), i =  1 , . . . , n -  1 are given by (1.1) and 

J ' l ,  i f z r ( n ) + l = T r ( 1 ) ,  
(1.4) in(n, 2, 7r) 

0, otherwise. 

For example, the random permutation 7r = (51237864) has three successions of 
size 2, Xs (7c, 2) = 3, four circular successions of size 2, X~ (Tr, 2) = 4, one succession 
of size 3, Xs (~r, 3) = 1, and no succession of size k > 3, Xs (7c, k) = 0. 

Suppose we insert the integers 1, 2 , . . .  randomly on a line one by one, starting 
with 1, then 2, and continue. We could define the random variable 

(1.5) Wk(S, 2) = the smallest integer required that the k-th succession of 

size 2 occurred in the insertion process, 

as the waiting time (number of insertions) of k-th succession of size 2. 
The number of successions of size 2 in a random permutation 7c has appeared 

often in mathematical statistics and combinatorial theory literature. It has a long 
and rich history. For the early history, one can find from the papers such as 
Whitworth (1943), Kaplansky (1944), Riordan (1945, 1958). The earliest results 
about successions are published in the Annals of Mathematical Statistics, for exam- 
ple, Kaplansky (1945), Riordan (1965) and Abramson and Moser (1967). Recently, 
the results appeared often in combinatorial theory journals, especially the Journal 
of Combinatorial Theory, for instance, Dwass (1973), Tanny (1976), Jackson and 
Aleliunas (1977), and Dymacek and Roselle (1978). This phenomenon is proba- 
bly due to the fact that almost all the approaches, except the Dwass' (1973), are 
combinatorial in nature. Dwass (1973) provided a probabilistic argument which 
shows that the limiting distribution of the random variable X~*(Tc, 2) of circular 
successions is a Poisson distribution with parameter A = 1, i.e.; 

1 --1 
(1.6) limo P(X*(fc, 2 ) = x ) =  ~ e  , x = 0 , 1 , . . . ,  

and then proved that Xn(TC, 2) and X*(Tr, 2) have same limiting distribution. 
For fix n, various formulae for the distribution of Xn(7c, 2) developed via com- 

binatorial analysis and recursive equations are rather complex, for instance, Roselle 
(1968), Jackson and Reilly (1976), and Reilly and Tanny (1979). Currently, the 
exact distributions of many patterns and successions in a random permutation still 
remain unknown. The main difficulty for the traditional combinatorial approach 
is the long range inter-dependency among the n integers in a permutation. In this 
short manuscript, a simple approach based on the finite Markov chain imbedding 
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technique introduced by Fu and Koutras (1994) and Fu (1994) is used to obtain 
the exact distribution of Xn(Tr, 2). This approach is somewhat closer to Dwass' 
(1973) approach by nature but is more general. The main idea of our approach 
is to decompose the permutation ~r into a sequence of random sub-permutations 
so that  a nice finite Markov chain would be established on the sequence of sub- 
permutations. This nice Markov chain not only gives a simple way to find the 
exact distribution of the successions X~(~r, 2) but also provides a direct proof that  
its limiting distribution is a Poisson distribution with parameter A = 1. For k _> 3, 
the random variable X~(~r, k) has a degenerating limiting distribution at zero. 
This means that  if the size of a permutation 7c tends to infinity then there will be 
no succession of size greater than or equal to 3. Furthermore, this method also 
yields the waiting time distribution of a succession. 

2. Main results 

Within a random permutation % the arrangements of integers are highly cor- 
related. The forward and backward principle for finite Markov chain imbedding 
technique developed by Fu (1994) for studying the exact distribution of a spec- 
ified pattern in a sequence of multi-state trials cannot be directly used in this 
correlated situation. With the following modifications, the finite Markov chain 
imbedding technique yields our main results. 

For example, a random permutation 7c = (31524687) of eight integers 1, 2 , . . . ,  
and 8, we decompose the permutation 7c into 8 sub-permutations by deleting the 
largest integer from the permutation one by one, hence, in this case they are 7rn = 
% 7cn_1 = (3152467), ~r~-2 = (315246), ..., 7r3 = (312), 7r2 = (i, 2), and ~rl = (I). 

In general, for each permutation 7c it has a unique decomposition {7ci, 7r2,..., 7Cn}, 

where 7rt_1 equals to 7ct with the largest integer t being deleted and 7c~ = 7r. This 

decomposition of 7r is equivalent to the method of inserting n integers {I, 2, ..., n} 

one by one. Let us consider a state space f~ = {0, 1,2,... ,n- i}, an index set 

Fn = {0, i,..., n}, and a sequence of transformations Yt : Fn --* ft, t = I, 2,..., n 

as, for each 7c E Fn, and t = i, 2,..., n 

(2.1) = 2) = the total number of succession8 4 8i e 2 iN 

the sub-permutation 7ct generated by 

the random permutation re. 

For example, the realization of the Markov chain associated with the random 

permutation 7c = (31524687) is Yl(Tr) = 0, Y2(Tr) = I, Y3(~r) -- 1, Y4(Tr) = i, 

Ys(Tr) = O, K6(Tr) = O, Y7(Tr) = 1, and Ys(Tr) = O. 

From the method of insertion and above example, it is easy to see that  if 
Y~_l(Tr) = k (t = 2 , . . . , n  and 0 _< k _< t - 2), then ~(Tr) can only be at states 
k - 1, k, and k + 1. Since the integer "t" has equal probability being inserted 
into any one of t positions of the sub-permutation 7rt-1 then we have the following 
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t ransit ion probability 

(2.2) 

k 
y, 

P ( Y t  = x [ Y  t - 1  = k)  = __t - k - 1 
t 

1 

t '  

if x =  k -  1, 

, i f x  = k, 

i f x = k + l .  

In view of (2.2), it is clear tha t  the sequence of random variables {Yt : t E P~} 
form a non-homogeneous finite Markov chain on ft with transi t ion matrices given 
by 

(2.3) Mr(n) 

0 

t - 3  

t - 2  

t - 1  

n - 1  

0 1 2 3 
t - 1  1 

t T 
1 t - 2  1 

t 
2 t - 3  1 

t t 

0 

t - 3  2 1 

t - 2  1 

t Y 

t - 2  t - 1  . . .  n - 1  

1 
7 

-In--t-t-1 

for t = 1, 2 , . . . ,  n, where Mr(n) has entries pi j ( t :  n), 

(2.4) pij( t  : n) = P(Yt  = j I Yt-1 = i) 

for i = 0 , 1 , . . . , t - 2  and j = O ,  1 , . . . , t - 2  

defined by (2.2), In-t+1 is a ( n - t +  1) x ( n - t +  1) identi ty matrix,  and 0 otherwise. 
Let a(O) = ( 1 , 0 , . . . , 0 )  and a(t) = (ao ( t ) , a l ( t ) , . . . , an_ l ( t ) )  for t = 1 , . . . , n ,  

be n 1 x n vectors with components 

(2.5)  a~(t) = P ( ~  = i I Yo = 0),  

f o r i = O ,  1 , . . . , n - 1 ,  a n d t = l , . . . , n .  
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THEOREM 2.1. Given P(Yo = O) = 1 and P(Yo = i) = 0 for i = 1 , . . .  , n -  1, 
then 

(2.6) P(X~(Tc, 2) = i) = P(Y~ = i I Yo = O) = a(O) Mt(n U'(i), 

where Mr(n) is given by (2.3) and U'(i) = (0. . .  0 1 0 . . .  0)' is a n × 1 vector with 
one at the i-th coordinate and zero elsewhere. 

PROOF. There are n! random permutat ions of size n. For every permuta t ion  
7r E F~, it can be decomposed uniquely as (77~, 77~-1,. . . ,  7r2,771). The decompo- 
sition of 7r can be viewed as tha t  we start  with 77i =- (1) and insert the integer 
2, 3 , . . . ,  and n randomly one by one into the positions between the integers and 
the two end positions. Hence, the decomposition (77n,.. •, z72, 7rl) of 7r is one-to- 
one corresponding to a realization (771,772,... ,77~) of the method  of inserting n 
integers 1, 2 , . . . ,  and n one by one. Therefore, it follows from the definition of Y~, 
t = 1 , . . . , n  tha t  we have 

(2.7) P(Xn(77, 2) = i) =- P(Yn = i ] ]Io = O) 

for all i = 0, 1 , . . . ,  n - 1. Since the sequence {Yt : t C Fn} is a non-homogeneous 
Markov chain with transit ion probabili ty matrices Mr(n), t = 1 , . . . ,  n given by 
(2.3), the results follows immediately from Chapman-Kolmogorov equation (see 
Kemeny and Snell (1960) and Feller (1968)), the definition of Yt, and the equation 
(2.3). 

The equations (2.3), (2.4) and (2.5) yield the following fundamental  recursive 
equations for the Markov chain Yt: for 0 < x < n - 1, 

(2.8) ax(n) = a(O) Mr(n) U'(x) 

= (a o (n -  1), a l ( n -  1 ) , . . . ,  a n _ l ( n -  1))M~(n)U'(x) 

n n l a o ( n - 1 ) + l a l ( n - 1 ) ,  i f x = 0 ,  

l a x _ l ( n -  1) 

n - x - 1  . x . 
= ~[ 1 + ~ - - a x ( n l  - 1) + n a x + l i n -  1), 

na~_3(n - 1) + na~_2(n - 1), 

l a ~ _ 2 ( n -  1), 

i f l < x < n - 3 ,  

i f x  = n -  2, 

i f x = n -  1. 

The recursive equation (2.8) also provides a simple and direct way of approx- 
imating the probabilities ax(n) = P(Xn(~,  2) = x), x = 0, 1, 2 , . . . ,  n -  1 as n 
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tends to infinity. This yields tha t  the limiting distribution of the random variable 
Xn (7c, 2) is Poisson with parameter  ~ = 1. 

THEOREM 2.2. For given x = O, 1 , . . . ,  it follows 

1 -1 
(2.9) l imoP(X~(Tc ,  2 ) = x ) =  ~..e , x = 0 , 1 , . . . .  

In order to prove the above result we need the following lemma. 

LEMMA 2.1. Given n and a(0) = (1, 0 , . . . ,  0), it follows 

1 
(2.10) (i) a ~ ( x + l ) -  ( x + l ) ! '  for  x = 0 , 1 , 2 , . . . ,  and ( n - l ) ,  

(2.11) (iX) a x ( y ) = O ,  for  y = l , 2 , . . . , n  and n -  l > x > y. 

PROOF. To prove this result, we use method of induction. For given y = 1, it 
follows from (2.6) or (2.8) a0(1) = 1, al(1) = a2(1) . . . . .  an- l (1 )  = 0. Similarly, 
for y = 2, we have a1(2) = 1/2!, and a2(2) = a3(2) . . . . .  an_l(2  ) ---- 0. Now,  

let us assume tha t  the results hold for y = k, it follows from last part  of equation 
(2.8) tha t  for x = y = k + 1, we have 

1 1 
a k ( k + l )  -- k+ i a(k) -- ( k +  1)!' 

and for x > y = k + 1 

a x ( k  + 1) = a x - l ( k ) P ( Y k + l  = x I Yk = x - 1) + a x ( k ) P ( Y k + l  = x I }zk = x )  

+ a x + l ( k ) P ( Y k + l  = x I Yk = x + 1) = 0, 

a direct consequence of ak(k) = ak+l(k) = ak+2(k ) . . .  ----- a n - l ( k )  =-- O. 

Intuitively, this lemma is trivial for the following simple reasons; (i) for Yz+l = 
x, the permutat ion 7rx+l has to be the form (1, 2 , . . . ,  x, x + 1) hence it has prob- 
ability 1/ (x  + 1)! and (ii) for t < x, Yt = x could not happen at all, hence, it has 
probability zero. 

PROOF OF THEOREM 2.2. For x = 0, it follows from (2.8) and some simple 

algebra that 

(2.12) ao/n/= (1 1) ao/n '/+lal/O 1/ 
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Furthermore,  for fixed x (x _> 1), it follows for (2.8) again tha t  

(2.13) -ax-11 (n 1) + (n x 1)ax( n 1) + -a~+l(n- 1) ax\n/( ] : -- 
n n n 

( = 1 -  [az(x + 1) + o(1)1. 

Taking n --+ oc, the result (2.9) follows immediately  from equations (2.12) and 
(2.13) and Lemma 2.1. 

THEOREM 2.3. For k >_ 3, 

1, i f x = O ,  
(2.14) l i~mo~P(X~(%k)=x)= O, i f x >  l. 

The random variable Xn (7r, k), for k _> 3, has a degenerate limiting distribution 
at zero. 

PROOF. Let, f o r i = l , . . . , n - k + l ,  E i = b e t h e e v e n t t h a t T c ( i ) + k - l =  
7r(i + 1) + k - 2 . . . . .  7r(i + k - 1). It follows from the definition of E~ tha t  
P(Ei) = 1/n k-1 + o(1/nk-1), for each i = 1 , . . . ,  n - 1. By Bonferroni inequality, 
it gives 

n-O+1 ) n-k+1 
(2.15) P(Xn(Tr, k) >_ 1 ) =  P Ei < E P(Ei) 

\ i = l  i = 1  

+ o 

i = 1  

nk_2 + o  ~ . 

For k _> 3, the result (2.14) is an immediate  consequence of the above inequality. 

Wi th  the following modifications of the Markov chain {Yt}, the exact dis- 
t r ibution of the waiting t ime random variable Wk(S; 2) can also be obtained by 
using Markov chain imbedding technique. Given k, let {Yt(k), t = 1, 2 , . . . }  be a 
Markov chain defined on the state space ftk = {0, 1 , . . . ,  h - 1, k} with transit ion 
probability matrices 
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(2.16) M (k) 

t - 3  

~ - 2  

t - 1  

k 

0 

1 

2 

k - 1  

k 

0 
t - 1  

0 
t 
1 

1 )- 

1 2 3 
1 

t - 2  1 

t 
2 t - 3  1 

t t 

0 

0 1 2 3 ... 
t - 1  1 

t o 

1 t - 2  1 

2 t - 3  1 
0 7 t 

t - 3  

t 

2 1 

Y 7 
t - 2  1 

t 

k - 2  k - 1  k 

0 0 

t - 2  t - 1  - . .  k 

Ik-t+2 

k - 1  t - k  1 

t t t 
0 0 0 0 1 

for t <_ k + l, 

for t >_ k + 2. 

The two Markov chains {Yt} and {Yt(k)} are very similar• The major  differ- 
ence is tha t  the absorbing state "k" in the Markov chain Yt (k) corresponds to the 
states k, k + 1, . . . ,  and n - 1 in the Markov chain Yt lumped together.  It follows 
from the definition of Yt(k) and (2.16) tha t  

(i) if Yt(k) < k - 1 it implies Y~(k) _< k for all i < t, and 
(ii) if Yt(k) = k it implies Y/(k) = k, for all i > t. 

~51rthermore, the random variables Yt(k) and Wk(S, 2) are one-to-one related in 
the following way: 

(2.17) Wk(S, 2)___n if and only if Y~-l(k)  < k - 1 .  



DISTRIBUTION OF SUCCESSIONS IN PERMUTATION 

This yields the following theorem: 
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THEOREM 2.4. For n >__ k q- 1, k = 1, 2,... 

(Hn-1 ) 
(2.18) P(Wk(S, 2) = n)= a(O) \ t ~  Mr(k) ( I -  M~(k))U(k) 

where Mr(k) is defined by (2.16) and U(k) = (1 , . . . ,  1, 0). 

PROOF. It follows from (2.16) and (2.17) tha t  

P ( w k ( s ,  2) = n) = P ( w ~ ( s ,  2) >_ ~) - P ( w ~ ( s ,  2) >_ ~ + 1) 
= P(Yn-,(k) <_ k - 1) - P(Y~(k) <_ k - 1) 

=a(O) ([I1Mt(k))  ( I -  

This completes our proof. 

For k = 1, the exact distribution of the waiting t ime of the first succession of 
size 2, WI(S, 2), can also be determined by the  following recursive equation: 

( (2.19) P(WI(S, 2 ) = n ) = - I  1 -  P(Wi(S, 2 )=i  , n > l  i=1 
with P(WI(S, 2) = 1) - 0. This can be proved in the following way. By the 
definition of WI(S, 2) it is clear tha t  P(WI(S, 2) = 1) = 0 and P(WI(S, 2) = 2) = 
1/2. If W1 (S, 2) = n, it means tha t  no succession of size 2 has occurred until the 
stage (n - 1) and at stage n, tha t  the "n" is inserted to the  right of "n - 1" in the  
insertion process (with probabili ty 1/n), thus equation (2.19) holds. 

For k = 1, the matrices Mr(k) given by (2.16) reduce to M1(1) = I and 

(2.20) Mr( l )  Mr( l )  0 [ t - 1  1 ]  = = t t for t_>2.  
1 0 1 

Since, by Theorem 4.2, 

(2.21) 
n--I n--i i--I 
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then the recursive equation (2.19) follows immediately from Theorem 4.2, (2.21) 
and 

(U\~_~n--1 ) 
P(WI(S, 2 ) : T t ) =  (1,0) \ f -~  Mr(l) ( I -  M~(1))(1,0)' 

( ~ I  1 M r ( i ) ) ( 1 ,  0)'. = 1(1 '0)  \ t= l  

It follows, for example, P(WI(S, 2) = 2) = 1/2, P(WI(S, 2) = 3) = 1/6 and 
P(WI(S, 2) = 4) = 1/12 ((3421) and (2134) are the only two permutations with 
W I ( S ,  2) = 4 among 24 permutations of four integers 1, 2, 3 and 4). 

3. Numerical results and discussions 

The Markov chain approach of finding the exact distribution of successions 
differs greatly with the combinatorial approach. This method is rather simple and 
direct, both in concept and computation. It also provides a potential to handle 
other patterns on a permutation. To illustrate the Theorems 2.1 and 2.2, we give 
the following numerical results. 

Table 1. The  exact  d i s t r ibu t ion  of XnOr, 2). 

x\n 3 5 7 10 15 20 

0 .500 .44167 .420437 .40466700 .3924050 .38627300 

1 .333 .36667 .367857 .36787900 .3678790 .36787900 

2 .167 .15000 .157738 .16554600 .1716770 .17474300 

3 .03333 .043651 .04905090 .0531381 .05518179 

4 .00833 .008929 .01072920 .0122626 .01302910 

5 .001190 .00184028 .0022482 .00245253 

6 .000198 .00025463 .0003406 .00038321 

7 .00002976 .0000438 .00051093 

8 .248 × 10 - 5  .4867 × 10 - 5  .59306 × 10 - 5  

9 .276 × 16 - 6  .4731 × 10 - 6  .60826 × 10 - 6  

10 .4057 × 10 - 7  .55758 × 10 - 7  

11 .3062 x 10 - s  .46081 × 10 - s  

12 .2088 × 10 - 9  .34560 × 10 - 9  

13 .1071 × 10 - 1 °  .2363 × 10 - l °  

14 .7647 × 10 -12 .1477 × 10 -11 

15 .8444 × 10 13 

16 .4381 x 10 -14 

17 .2109 × 10 -15 

18 .7810 × 10 -L7 

19 .4110 x 10 -18 
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The numerical evaluation of the exact distr ibution of Xn(Tr,2) is rather  
straightforward. The computa t ion  was done on a P C  computer  with Mathe- 
matiea. The C P U  time for each case takes only a few seconds. The numerical 
results manifest tha t  the rate of Xn(Tr, 2) converges to the Poisson random vari- 
able with parameter  A = 1 rather  fast. The results of the cases n = 3 and 
n = 5 could be checked out easily by hand computat ion.  For instance the case 
of n = 3, P(X5(rr, 2) = 0) = 0.5 which is the case {(1, 3, 2), (2, 1, 3) and (3, 2, 1)}, 
P(Xs(~, 2) = 1) = .333 which is the case {(3, 1, 2) and (2, 3, 1)}, and P(Xs(Tr, 2) = 
2) = 0.1167 which is the case {(1, 2, 3)}. 

The main two intuitive reasons for the random variable X~ (~r, 2) convergence 
to a Poisson random variable with A = 1 are (a) the stochastic dependency of any 
two index functions disappears gradually as n ~ oe and (b) the probabil i ty of the 
event 1~(i, 7c, 2) = 1 is approximately  1/n. Since the number  of successions of size 

2 on a random permuta t ion  7r, X~(Tc, 2) ~-1 = ~ i = 1  1~(i, 7c, 2), is a sum of ( n -  1) 
dependent  index functions 1~(i, lr, 2), i = 1 , . . . ,  n - 1, we believe, in view of the 
facts (a) and (b), tha t  the s tandard  method  such as Stem-Chart me thod  could also 
be used to prove the Poisson convergence. 

For the number  of circular successions of size 2 X~ (7c, 2), it follows from the 
definitions of X*(Tc, 2) and X~(Tc, 2) that  the relationship 

P ( X * ( r c ,  2) = x)  = P ( X n ( r r  , 2) = x - 1, i n ( n ,  2,7c) = 1) 

+ P(Xn( , 2) = x, 2, =) = 0) 

P(Xn(Tr ,  2) = x -- 1 ) - ~ 1  ~ 4- P(Xn(Tr ,  2) = x)  n 2 
n n - 1  

holds for all x. Taking n --* ec, it shows that  the circular successions X~* (Tr, 2) also 
has a same limiting distr ibution as Xn (Tr, 2), a Poisson distr ibution with parameter  
A = I .  
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