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A b s t r a c t .  This paper deals with the problem of how to adjust a predictive 
mean in a practical situation of prediction where there is asymmetry in the 
loss function. A standard linear model is considered for predicting the price 
of real estate using a normal-gamma conjugate prior for the parameters. The 
prior of a subject real estate agent is elicited but, for comparison, a diffuse 
prior is also considered. Three loss functions are used: asymmetric linear, 
asymmetric quadratic and LINEX, and the parameters under each of these 
postulated forms are elicited. Theoretical developments for prediction under 
each loss function in the presence of normal errors are presented and useful 
tables of adjustment factor values given. Predictions of the dependent price 
variable for two properties with differing characteristics are made under each 
loss function and the results compared. 

Key words and phrases: Asymmetric loss, Bayesian prediction, real estate 
valuation. 

i . Introduction 

Valuation of real estate is a world-wide phenomenon. A wide range of prop- 
erties are evaluated for a multitude of purposes. With respect to single family 
residences the predominant purposes are purchases and sales, tax assessment, ex- 
propriation, divorce, inheritance or estate settlement, and mortgaging. The valu- 
ations are performed by members of different professions--real estate agents, ap- 
praisers, assessors, mortgage lenders, and, not infrequently, by various specialists 
or consultants. Sometimes adjudication or arbitration by boards, tribunals, courts 
and other legal or administrative bodies is involved. A variety of techniques have 
been developed for carrying out the valuations, one of the principal approaches 
being the market comparison essentially establishing the value of a property by 
comparisons with similar properties. Relatively little attention, however, has been 
paid to the loss associated with over or under-valuation. 
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Considered here is the situation of a real estate agent being engaged by a 
vendor to provide a market valuation of a house. In practical terms this involves 
prediction of the selling price with different losses being associated with different 
prediction errors. The loss from overestimation would generally be different from 
that of underestimation by the same amount, and its magnitude typically different 
from the monetary amount of the error. 

The consequences of over and underestimation are discussed and an attempt 
is made to elicit the real estate agent's loss function. It is shown that if the loss 
function is asymmetric linear, or asymmetric quadratic, or of the LINEX type, 
and the distribution of prediction errors normal, the expected loss is minimised 
by additively adjusting the predictive mean-- the  adjustment being a fraction of 
the standard deviation, or variance, of the prediction errors. Although the paper 
deals with real estate, its applicability is much wider. 

The paper is organised as follows. The theory concerning the adjustment 
term is developed and presented in Section 2. The particulars of the application 
including the listing process, and how losses occur, are set out in Section 3. The 
prediction model is given in Section 4, and the elicitation process for the prior 
information in Section 5. Regression results are presented in Section 6. The whole 
methodology is brought together in Section 7 to give specific predictions for two 
properties. Conclusions are in Section 8. 

2. Theoretical developments 

Let F be the predictive (cumulative) distribution function of the continuous 
random variable Y for which it is required to find the optimal prediction, h, tak- 
ing into account the loss g(y - h) associated with the predictive error. The loss 
function, g, which is not necessarily symmetric, can be written in the form (with 
u =  y - h ) :  

gl(u), u>O 
g(u) = g2(u),  < o 

where it is assumed that gl (0) = 0 = g2 (0), g~ (u) > 0 for u > 0 and g~ (u) < 0 for 
u < 0. It is required to minimise the expected predictive loss f ~  g(y - h )dF (y )  
and the optimal prediction is a solution h -- h* of 

2 (2 .1)  g i ( y  - h ) e F ( y )  + g ; ( y  - h ) e r ( y )  = 0. 
O 0  

Granger (1969) obtained a solution for prediction with an asymmetric linear 
loss (cost) function of the form 

~ au, u > 0 

g(u) = L _ b u  u < O 

where a > 0, b > 0, and gave conditions which essentially ensure that  the predictive 
mean is optimal. The solution of (2.1) in this case is 
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If the loss function is symmetric (a = b) the predictive median, M, is optimal and 
the corresponding minimal mean loss is aE(IY - MI). 

Cain (1991) considered the minimisation of the p-th (0 < p < 1) quantile of 
predictive loss (cost) and compared the solution with that  of minimising mean 
loss. He took as one example an asymmetric quadratic loss function of the form: 

au 2, u >_ 0 
9(u) I bu 2, u < 0 

where a > 0, b > 0. The optimal (minimising expected loss) prediction then 
satisfies the particular case of (2.1): 

and to proceed further more information about F is required; however, if the loss 
function is symmetric it follows from (2.3) that  the predictive mean is optimal and 
the minimal expected predictive loss is thus aV(Y) .  

Zellner (1986) considered prediction with a particular class of asymmetric loss 
functions introduced by Varian (1975) and obtained estimators and predictors 
which are optimal relative to Varian's (LINEX) loss function. The LINEX loss 
function: 

(2.4) = b [ e  - ° "  + - 1] 

where a ~ 0, b > 0, has a minimum at u = 0. 

2.1 Normal predictive distribution 
If the predictive distribution of Y is N(#,  az), the optimal prediction, given 

by (2.2), with the asymmetric linear loss function is 

and the corresponding minimal expected predictive loss is 

(2.6) 

Here, ¢ and • are, respectively, the standard normal probability density function 
and (cumulative) distribution function. Note that in (2.5) the optimal solution, 
h*, is an additive adjustment to the predictive mean. Table 1 gives values of both 
the optimal adjustment factor 5* = 5*(a,b) = ~-I(~--~-5) and, to facilitate the 
evaluation of (2.6), li(5") = (a/b + 1)¢(5") for a range of values of a/b > i. The 
results for a/b < 1 can be deduced by observing that 5" (b, a) = -5* (a, b) for a > 0, 
b>O.  
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Table 1. Adjus tments  for linear loss. 

a/b 1 1.5 2 3 4 5 6 7 10 100 

5* 0 0.253 0.431 0.674 0.842 0.967 1.068 1.150 1.335 2.334 

11(5") 0.798 0.966 1.091 1.272 1.399 1.500 1.579 1.648 1.800 2.645 

Table 2. Adjus tments  for quadra t ic  loss. 

a/b 1+  1.5 2 2.5 3 3.5 4 4.5 

e* 0 0.162 0.276 0.364 0.436 0.497 0.549 0.595 

12(e*) 1 1.218 1.391 1.537 1.663 1.774 1.874 1.966 

a/b 5 5.5 6 6.5 7 7.5 10 100 

e* 0.636 0.673 0.707 0.737 0.766 0.792 0.902 1.721 

/2(e*) 2.050 2.127 2.200 2.268 2.331 2.392 2.653 5.222 

The optimal prediction with the asymmetr ic  quadrat ic  loss function (a ¢ b) 
is now, from (2.3), 

h* = # + ere* 

where the adjus tment  factor e* is a solution for e of 

(2.7) ¢ ( c ) - c  - = 0 .  
a b 

Observe that  e* < 0 if a < b and c* > 0 if a > b. The corresponding minimal 
expected predictive loss is 

(2.8) (a - b)cr2¢(e*)/e *. 

Equat ion (2.7) can be solved numerically; Table 2 gives values of both  c* = 
e*(a, b) and, in (2.8), 12(e*) = (a/b - 1)0(C) /e*  for a range of values of a/b > 1. 
Note that  lima/b-~l+ 12(e*) = 1. The results for a/b < 1 can be deduced by 
observing that  e*(b, a) = -e*(a ,  b) for a, b > 0; note tha t  

( ,) (a _b (I)(e _= ¢ ( - e )  + e q) ( -e  
¢ ( E ) - c  b a a - b  

The optimal prediction with the LINEX loss function of (2.4) is 

act 2 
(2.9) h* = 2 

and the corresponding minimal expected predictive loss is 1 - 2 2 goa cr ; see (5) of Varian 
(1975), (3.3) and (3.5) of Zellner (1986). Note  that  the adjus tment  to the predic- 
tive mean in this case is a multiple of the predictive variance and not the s tandard  
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deviation as with the linear and quadratic asymmetric loss functions. In contrast, 
the minimal value of expected predictive loss is a multiple of the predictive stan- 
dard deviation in the case of asymmetric linear loss and a multiple of the predictive 
variance with asymmetric quadratic loss or LINEX loss. 

Thus, a real estate agent valuing a house, and being subject to losses given 
by one of the above forms, should make the corresponding adjustment to the 
predictive mean. 

3. The application 

The situation considered is that of a real estate agent providing an estimate of 
market value of a property for the owner. In a competitive urban market, where 
many houses in the neighbourhood are sold each year, there is generally enough 
data to permit comparisons with similar houses recently sold or presently for sale; 
a prerequisite for the market comparison approach to valuation. 

3.1 Consequences of over or underestimation of selling price 
An agent's responsibility to the principal under agency law is strict in most 

jurisdictions. The agent therefore needs to be aware of possible consequences for 
the property owner of errors in the determination of market value. If the valuation 
is in preparation for a future sale, under-estimation may lead to the owner losing 
money and over-estimation to market resistance. The house might not sell, or only 
sell after a protracted period. The economic consequences for the owner may well 
be different from the amount of the error, and if serious there might be a case for 
compensation. In some instances the issue of professional negligence could arise. 
The loss to the agent may then exceed the amount by which the market value was 
incorrectly estimated. 

3.2 The loss function 
Conceptually we think of each house in a neighbourhood as having a certain 

market value. The selling price is an estimate of the unknown market value and, 
strictly speaking, it may not be possible to determine if a house sold above or below 
its market value. For the purpose of this paper we will focus on the prediction 
error--the difference between the observed (Y) and predicted (I)) selling prices. 
Underestimation is then associated with positive errors and overestimation with 
negative ones. 

The determination of the precise form of the loss function requires substantial 
information about the likelihood of a vendor seeking damages, the amount sought, 
and awarded, legal costs, and the likelihood of various settlements. However, 
extensive discussions with a real estate agent provided typical expected losses 
for a series of assumed cases, and it transpired that for a fairly broad range of 
errors the loss could be adequately represented by a general linear, or a general 
quadratic, function with different parameters chosen for over and underestimation 
to incorporate possible asymmetry. Varian (1975) arrived at a similar conclusion 
with respect to the LINEX loss function, even if in his application (property tax 
assessment) the consequences of prediction errors are more closely defined. 
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Table 3. Definition of variables. 

X1 Intercept  

X2 Age in years 

X3 Floor  area in m 2 

X4 Number  of car spaces in the  garage (No garage = 0) 

X5 Garage a t t ached  to house (Yes = 1, No = 0) 

)(6 Basement  development  (0 = None to 3 = Complete)  

X7 Number  of woodburn ing  fireplaces 

Xs  Mon th  of sale 

X9 Located in the  Aspen ne ighbourhood  (Yes = 1, No = 0) 

Xlo  Driving t ime from ne ighbourhood to central  business distr ict  (cbd) 

Y Selling price ($) 

Table 4. Sample statistics.  

Smallest  Largest  S t anda rd  

Variable Mean  observat ion observat ion deviat ion 

X1 1 1 1 0 

X2 19.6 3 32 5.6 

X3 121 86.5 179.1 17.8 

X4 1.8 0 4 0.60 

X5 0.29 0 1 0.46 

X6 2.5 0 3 0.72 

X7 0.63 0 3 0.74 

X8 12.7 6 18 3.7 

)(9 0.06 0 1 0.24 

Xlo  20.3 15 25 2.6 

Y 109954 74000 172000 16081 

3.3 The example 
The approach is illustrated by application to a sample of 133 single family 

homes sold through a multiple listing system during a one-year period. Each 
house is described by some forty characteristics in the listing information. A 
subset of these was selected in cooperation with a real estate company active in 
the market being studied. The features chosen were those that  the agents regarded 
as important and would generally use for the purpose of estimating the market 
value of a home. 

To obtain a large enough sample it was necessary to include sales over a 
certain period--in this case a year. Consideration was given to expanding the 
study area, but other factors weighed against this, in particular issues pertaining 
to basic comparability of neighbourhoods. At present the neighbourhoods are 
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T a b l e  5. T h e  X ' X  d a t a  m a t r i x .  

4 0 7  

133.0  2 6 0 8 . 0  16038 .3  236 .0  39 .0  339 .0  84 .0  1683 .0  8.0 2698 .0 -  

2 6 0 8 . 0  5 5 2 4 8 . 0  3 0 6 5 8 6 . 2  4 5 7 1 . 0  618 .0  6820 .0  1538 .0  33202 .0  190.0  5 1 7 3 4 . 0  

[6038 .3  3 0 6 5 8 6 . 2  1 9 7 5 8 8 6 . 7  28707 .2  5157 .1  4 0 4 9 6 . 2  10504 .5  2 0 2 5 5 3 . 3  9 0 2 . 4  3 2 7 4 3 1 . 9  

236 .0  4 5 7 1 . 0  28707 .2  466 .0  68 .0  6 1 1 . 0  155 .0  3 0 0 4 . 0  13.0 4 7 9 7 . 0  

39 .0  618 .0  5157 .1  68.0  39.0  90 .0  29 .0  4 9 6 . 0  2.0 8 0 8 . 0  

3 3 9 . 0  6 8 2 0 . 0  4 0 4 9 6 . 2  611 .0  90.0  933 .0  221 .0  4 3 0 1 . 0  18.0  6 8 1 6 . 0  

84 .0  1538 .0  10504 .5  155.0  29 .0  221 .0  126.0  978 .0  7.0 1737 .0  

1683 .0  3 3 2 0 2 . 0  2 0 2 5 5 3 . 3  3 0 0 4 . 0  4 9 6 . 0  4 3 0 1 . 0  978 .0  2 3 0 6 1 . 0  116 .0  3 4 1 2 7 . 0  

8.0 190 .4  902 .4  13.0 2.0 18.0 7.0 116 .0  8.0 168.0  

2698 .0  5 1 7 3 4 . 0  3 2 7 4 3 1 . 9  4 7 9 7 . 0  808 .0  6816 .0  1737 .0  3 4 1 2 7 . 0  168 .0  55602 .2  

quite comparable with respect to schools, parks, shopping facilities, street layout, 
traffic patterns, bus service, and general access to transportation corridors. The 
houses are all one-storeyed of the same type. 

One issue that  arose was how to account for the passage of time. General 
economic conditions changed only slightly over the study period, but the market 
for resale homes did experience some inflationary demand pressure. This made it 
important to keep track of when during the year a property was for sale and sold. 
This was done by including a 'time' variable, being the number of months from 
the beginning of the year when sold. This way the effect of time was accounted 
for inside the model. Applying various deflators to the selling price appeared to 
be less effective. 

The regression model for selling price included nine explanatory variables: 
age, floor area, garage size, whether garage is attached or detached, basement 
development, fireplace, month, distance to the city centre, and whether located in 
the Aspen neighbourhood--a somewhat exclusive area due to natural surroundings 
like wooded ravines. These variables are fairly typical of those commonly used in 
studies of hedonic price estimation; see e.g. Wang et al. (1991) and Varian (1975). 
The variable definitions are given in Table 3, sample statistics are given in Table 4, 
and the X ' X  data matrix in Table 5. 

4. The model 

The n x 1 vector Y = (Yz, Y2,. . . ,  Y~)' of prices is assumed to have a multi- 
variate normal distribution with mean vector Xfl and variance-covariance matrix 
G2I, where fl = (ill ,- . . , /3k) is a k x 1 vector of unknown parameters (k < m), G 2 
is an unknown scalar and I is the n x n identity matrix. The n x k design matrix 
X of observed characteristics has full column rank and includes a column of ones 
to account for an intercept. A realisation of Y is denoted by y. 

A further value of price, Y~+I, corresponding to a vector of characteristics 
x = (Xi, X 2 , . . . ,  Xk)' is assumed to have a normal distribution with mean x'~, 
variance G 2 and Y~+I independent of Y (given fl and a2). 
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A conjugate normal-gamma prior distribution for/3 and 0 -2 is adopted: 

(4.1) /3, o2 ~ MVN(m0, o2D0), ~r-2 ~ 7 (~d0, ~g0) 

where the prior parameters mo, Do, do > 0 and go > 0 are assumed to have been 
elicited and are thus known; with Do positive definite. Interest centres on the 
prediction of Yn+l given y. 

The predictive distribution of Y~+I with a diffuse prior was derived by Zellner 
and Cherty (1965) and is given by Zellner (1971) as univariate-t with n - k  degrees 
of freedom, mean x~b and variance 

( n- k ) 8211+ xt(X,X)_lx], (4.2) V o = V o ( x ) =  n - k - 2  

where b, s 2 are the ordinary least squares (OLS) estimates of/3 and 02, respec- 
tively. This corresponds to the classical result that 

+ ~ t _k 

where/3, c~ 2 are the OLS estimators of/3, 02, with realisations b, s 2. The predictive 
distribution with an informative prior of the form (4.1) is given by 

(4.3) [(g/d)(1 ÷ x ' D x ) ] - I / 2 ( y n +  1 - x '  m )  ] y ~ td, 

a Student's t with d degrees of freedom; see Broemeling (1985) and Cain and Owen 
(1990). Here, 

D = ( D o  1 + X ' X )  -1 ,  

m = mo + D X ' X ( b  - too), 
d =  do + n ,  

g = go + (n - k ) s  2 + (b - m o ) ' X ' X D D o I ( b  - too), 

and b, s 2 are the OLS estimates 

b = ( X ' X ) - ~ X ' y ,  s2 = ( Y ' Y  - b ' X ' y ) / ( n  - k).  

Note that (4.3) implies that the predictive mean of Y~+I is x ~ m  and the 
predictive variance is 

g [X+x'Dx]. (4.4) v = v(x) -- (d - 2) 

The lack of prior knowledge about/3 and 02 can be expressed by a diffuse prior 
in which/3 and In 02 are independent and uniform; see Jeffreys (1961) and Savage 
(1962). This corresponds to the choice of (improper) prior parameters do = - k ,  
go = 0, D o  1 = 0 and non-specific too; cf. the previously given result of Zellner 
(1971). 
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5. The elicitation process 

It is necessary to elicit the parameters of both the loss function and the prior 
distribution, and this is considered below. 

5.1 Eliciting the loss function 
Detailed discussions with a real-estate agent were held with a view to elicit- 

ing the parameters of the loss function in relation to each of the postulated forms: 
asymmetric linear, asymmetric quadratic, LINEX (see Varian (1975), Zellner 
(1986)). The values obtained were derived by OLS fitting to a series of suggested 
points on the loss function curve and are given below. 

Asymmetr ic  Linear. With an asymmetric linear loss function of the form: 

au i f u _ > 0  

g(u) = - b u  if u < 0  

the elicited value of a was 0.993, b was 1.465 and hence b/a = 1.475. 
Asymmetr ic  Quadratic. With an asymmetric quadratic loss function of the 

form: 
= / au 2 if u _> 0 

g(u) 
[ bu 2 if u < 0 

the elicited value of a was 0.0000483, b was 0.0000696 and hence b/a = 1.441. 
L I N E X .  With a LINEX loss function of the form: 

9(u) = b(e -au + au - 1) 

the elicited value of a was 0.0000212 and b was 258500. 
The above values of a and b identify for each loss function the adjustment 

factor from Tables 1, 2 and equation (2.9) to be applied to the predictive mean, 
#, in the minimal expected loss prediction of Y. 

5.2 Eliciting the prior parameters 
The elicitation of the prior parameters in (4.1) was more difficult and it in- 

volved a lengthy process of discussion and interchange of ideas between the authors 
and the subject real estate agent. The parameters of the (gamma) distribution 
for cr -2 were obtained by eliciting the median and possible range of a2, convert- 
ing these to statements about a -2  and obtaining the standard deviation of a -2  
by dividing its range by 5; the approximate length of a 95% HPD interval be- 
ing 5 standard deviations for a gamma distribution. This produced do = 8 and 
go = 4 × 10 s. Next, m0 and the associated standard deviations were elicited. This 
was accomplished by first obtaining mean values and ranges; and then dividing 
each range by 4 to obtain the standard deviation, as would be reasonable for a 
normal distribution. 

The matrix Do was elicited by first eliciting a correlation matrix for fl, convert- 
ing this to a covariance matrix by making use of the previously elicited standard 
deviations, and then dividing by the already elicited median of a2. The real estate 
agent could not directly contemplate covariances. Even the correlations were quite 
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difficult to obtain and this part took a considerable length of time. The elicitation 
of the correlation matrix was accomplished by considering a number of 2 x 2 tables 
of joint probabilities (each variable being either above or below its mean value) but 
in a few cases it was felt necessary to look at a 3 x 3 or 4 x 4 table to obtain further 
insight. Whilst this was very interesting, it was also very demanding and conse- 
quently subject to imprecision; nevertheless it was felt that the results obtained 
adequately reflected the beliefs of the subject real estate agent. For comparison, 
a diffuse prior was also considered. 

The above process produced 

m o =  (50000 -1000 500 5000 5000 3000 3000 500 10000 -1000)'  

with the corresponding vector ofs tandard deviations 

s = (10000 300 50 1000 1000 500 500 200 1500 250) ~ 

and a correlation matr ixfor  f l [g2  of 

Corr(~ [ cr 2) = 

1.0 -0 .2  -0 .6  0.0 0.0 0.0 0.0 0.0 0.0 0.2 
-0 .2  1.0 -0 .8  0.0 -0 .6  0.2 0.0 0.0 0.0 -0 .6  
-0 .6  -0 .8  1.0 0.2 0.2 -0 .2  0.2 0.0 0.0 0.4 

0.0 0.0 0.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 -0.6 0.2 0.0 1.0 0.0 0.0 0.0 0.0 0.2 
0.0 0.2 -0.2 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.2 0.0 0.0 0.0 1.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
0.2 -0.6 0.4 0.0 0.2 0.0 0.0 0.0 0.0 1.0 

The evaluation of Do was completed as 

Do = do Diag(s)Corr(~ ] cr 2) Diag(s) 
go 

and yielded 

D O z 

2.00000 

-0.01200 

--0.00600 

0.00000 

0.00000 

0.00000 

0.00000 

0.00000 

0.00000 

0 . 0 1 0 0 0  --0.00090 

- - 0 . 0 1 2 0 0  - - 0 . 0 0 6 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0 0  

0.00180 --0.00024 0.00000 -0.00360 0.00060 0.00000 

-0.00024 0.00005 0.00020 0.00020 --0.00010 0.00010 

0.00000 0.00020 0.02000 0.00000 0.00000 0.00000 

--0.00360 0.00020 0.00000 0.02000 0.00000 0.00000 

0.00060 --0.00010 0.00000 0.00000 0.00500 0.00000 

0.00000 0.00010 0.00000 0.00000 0.00000 0.00500 

0 . 0 0 0 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0 0  

0 . 0 0 0 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0 0  

0.00010 0.00000 0.00100 

0.00000 0.00000 0.01000" 

0.00000 0.00000 --0.00090 

0.00000 0.00000 0.00010 

0.00000 0.00000 0.00000 

0.00000 0.00000 0.00100 

0.00000 0.00000 0.00000 

0.00000 0.00000 0.00000 

0.00080 0.00000 0.00000 

0 . 0 0 0 0 0  0 . 0 4 5 0 0  0 . 0 0 0 0 0  

0 . 0 0 1 2 5  0 . 0 0 0 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0 0  
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6. The regression results 

The OLS regression results are as follows: 

n = 133, k = 10, s = 8498, 

b = (56147 -960  472.5 4923 5282 4338 2690 859 11985 -936)  ~. 

The coefficient estimates were all of the appropriate magnitude, had the sign 
expected, and generally made sense. They were also viewed as reasonable by the 
real estate agent participating in the study. Some seventy four percent of the 
variation in selling prices was explained by the regression. Detailed results are 
given in Table 6. 

Table 6. Regression results. 

Contr ibut ion 

Variable Coefficient Standard  error Tolerance to R 2 

X1 56147 14179 - -  - -  

X2 - 9 6 0  227 .34 .038 

X3 472.5 55 .58 .159 

X4 4923 1307 .89 .030 

X5 5282 1934 .70 .016 

X6 4338 1157 .78 .030 

X7 2690 1093 .83 .013 

Xs  859 213 .90 .034 

X9 11985 3406 .83 .026 

X10 - 9 3 6  392 .54 .012 

R 2 ---- 0.740, Adjusted R 2 = 0.721. 
Note 1. 'Tolerance' (a measure of collinearity) is the proport ion of the variation in a par- 

ticular explanatory variable unexplained by regressing the variable on all the other  explanatory 
variables. 

2. The 'contr ibution to R 2' is the amount  by which R 2 would be reduced were tha t  variable 
to be removed from the equation. 

6.1 The error  d i s t r ibu t ion  

Residual analysis and diagnostic plots were used to check for model assump- 
tion violations, and normality of the error distribution. A histogram of residual 
errors with a normal distribution superimposed was drawn. The general shape 
conformed quite well to normality, a fact not contradicated by the value of the 
Kolmogorov-Smirnov statistic (with the parameters estimated from the sample). 
The sample parameters of the error distribution were: mean 2.4 (0 without the 
rounding errors), standard deviation 8203, skewness 0.09 and kurtosis 3.01. 

From the point of view of the real estate agent, some of the large positive 
and negative errors would be worrisome. On average, the predictive ability of the 
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model is quite good with mean absolute error 6356 and mean absolute percentage 
error under six percent. But the larger errors indicate that the model may seriously 
under or overestimate the selling price of an individual house. This could then lead 
to the type of losses discussed earlier. It was decided to refrain from purifying the 
sample through outlier analysis in order to maintain realism, and investigate the 
loss to which real estate agents are potentially subject. ARer all they must on 
occasion encounter properties that are not very similar to the "typical" house. 

7. The prediction 

Thus, given the predictive distribution of selling price and the loss functions 
associated with over and underestimation, the problem is to modify the predictive 
mean in order to minimise the expected loss. The earlier theoretical developments 
suggest, for an asymmetric quadratic loss function, an additive adjustment of ere* 
where e* is a solution of (2.7) and is given in Table 2 for a variety of values of 
a/b > 1; and, for asymmetric linear loss, an additive adjustment given by (2.5) 
with values given in Table 1. Similarly, the adjustment for LINEX loss is given by 
(2.9). The standard deviation, a, corresponds to that of the predictive distribution 
of Y, given the particular values of the explanatory variables and the previous data. 
Thus 

(r = 1 + xtDx] 

as given by (4.4). Since the number of degrees of freedom is large, d = 141 with 
an informative prior and n - k = 123 with a diffuse prior, we regard the predictive 
distribution of Y to be normal rather than t. 

The value of Y was predicted for each of the following two vectors of values 
of explanatory variables: 

xl = (1, 20,115, 2, O, 3, 1, 15, O, 21)', 

x2 = (1, 10,100, O, O, O, O, 8, O, 18)', 

xl being quite close to the vector of sample means and ~ somewhat extreme. 
With the informative prior distribution, the predictive means and variances 

of Y for the two chosen x vectors, are [see (4.3) and (4.4)]: 

x ~ m =  111195, 

x ~ r n =  86876, 

v(xl) = 69784032, 

v(xa) =76252072. 

The adjustments to the predictive mean for each of the three loss functions are 
given in Table 7, and the predicted values of Y in Table 8. Here, and subsequently, 
the number of non-zero digits displayed is not indicative of the accuracy of the 
results. 

With a diffuse prior the predictive means and variances are [see (4.2)]: 

x~b = 110074, 

~ b  = 83829, 

Vo(Xl) = 75038763, 

vo(a2) = 96340922. 
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Table 7. Additive adjustments with informative prior. 

Asymmetric Asymmetric 

linear quadratic LINEX 

Xl -2030 -1211 -740 

x2 -2122 -1266 -808 
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Table 8. Predicted Y values with informative prior. 

Asymmetric Asymmetric 

linear quadratic LINEX 

Xl 109165 109984 110455 

x2 84754 85610 86068 

Table 9. Additive adjustments with diffuse prior. 

Asymmetric Asymmetric 

linear quadratic LINEX 

xl -2105 -1256 -795 

x2 -2385 -1423 -1021 

Table 10. Predicted Y values with diffuse prior. 

Asymmetric Asymmetric 

linear quadratic LINEX 

xl 107969 108818 109279 

x2 81444 82406 82808 

The corresponding adjustments and predicted values are given in Tables 9 and 10, 
respectively. 

Note that  Tables 1 and 2 do not give the precise values of the adjustment 
factors 6* (for a/b = 1.475) and e* (for a/b = 1.441); and hence these have 
been evaluated separately as 6" = 0.243, e* = 0.145 with 11(6") = 0.959 and 
12(e*) = 1.195. The minimal expected predictive loss (risk) is thus (0.959)aa with 
asymmetric linear loss, (1.195)act 2 with asymmetric quadratic loss and 1, 2 2 ~oa cr with 
LINEX loss; where a2 is the relevant predictive variance. With the unadjusted 
predictive mean, the corresponding expected losses are (0.987)aa, (1.221)a~r 2 and 
b(exp(la2a 2) - 1); approximately 3%, 2% and 1%, respectively, higher than the 
corresponding minimum. Observe also that the adjustment term in each case is 
influenced by the predictive variance and not the mean, and the adjustment factor 
only by the loss function parameters. 
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The results were discussed with the real estate agent and the adjustments ob- 
tained under each fitted loss function were regarded as eminently plausible in the 
present context; although those for asymmetric quadratic loss and for LINEX loss 
seemed somewhat small in percentage terms. It is clear that the precise form of 
the loss function needs careful consideration. The fact that the adjustment terms 
for each of the three loss functions are not very different with the informative 
as compared with a diffuse prior, suggests that they are fairly robust with re- 
spect to changes in the parameters of the prior distribution. Likewise, the overall 
predictions are fairly insensitive to changes in the prior parameters. 

8. Conclusion 

In this paper an integrated methodology is presented for determining the opti- 
mal prediction of the response variable in a standard linear model with a conjugate 
normal-gamma prior distribution for the parameters. Various types of asymmetry 
of the loss function are considered. Theoretical developments are presented, deriv- 
ing adjustments to the predictive mean in order to minimise expected loss in the 
presence of the asymmetry. Tables of values of adjustments are given, to be used 
in predicting the response. In the process, an intermediate step is the elicitation 
of the parameters of both the loss function and prior distribution of an expert 
decision maker, in this case a real estate agent active in the market. Although the 
particular application is to real estate valuation the methodology is applicable to 
a wide variety of problems of prediction. 
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