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A b s t r a c t .  In the general linear model consider the designing problem for 
the Gaufi-Markov estimator or for the least squares estimator when the ob- 
servations are correlated. Determinant formulas are proved being useful for 
the D-criterion. They allow, for example, a (nearly) elementary proof and a 
generalization of recent results for an important linear model with multiple re- 
sponse. In the second part  of the paper the determinant formulas are used for 
deriving lower bounds for the efficiency of a design. These bounds are applied 
in examples for tridiagonM covariance matrices. For these examples maximin 
designs are determined. 
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1. Introduction, notations and preliminary results 

Consider  a general linear model  

Y = X / 3 +  z 

where X is a known real (n × m) -ma t r i x ,  n _ m , /3  E ~m is an unknown p a r a m e t e r  
vector  and Z is an n-dimensional  real r a n d o m  vector  wi th  

E Z  = 0n = ( 0 , . . . ,  0) T E ~ ,  Cov Z = C posi t ive definite. 

In this pape r  we are interested in es t imat ing/3 .  In the first instance we assume 
tha t  C is known. For /3  being es t imable  X mus t  be  of full rank,  t h a t  is, r a n k ( X )  = 
m.  We consider two es t imators  mos t ly  used for es t imat ing/3.  F i rs t ly  the  best  linear 
unbiased es t imator ,  the  so-called Gauf i -Markov es t imator  

( x T c - 1 x ) - I x T c - 1  : ~n ~ ~m 

* Parts of the paper are based on a part of the author's Habilitationsschrift Bischoff (1993a). 
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having covariance matrix (XTC- iX) - I ,  secondly the ordinary least squares esti- 
mator 

( X T X ) - i x  T : R  ~ __+ R "~, 

having covariance matrix ( x T x ) - i x T c x ( x T x ) - I .  It is well-known that 
range(CX) = range(X) is a necessary and sufficient condition such that the Gaufi- 
Markov estimator and the least squares estimator coincide; see for example Zyskind 
(1967) or Kruskal (1968),. see also Rao (1967). Note, we do not distinguish between 
a linear mapping from R * to R j and its unique matrix representation with respect 
to the standard bases of unit vectors. 

If designing for the general linear model is of interest the model matrix X 
is determined by choosing an (exact) design 7- E g~ where g is the experimental 
region. To emphasize the dependence on 7 we write X~. Then the class 3~ of 
feasible designs for estimating /9 is given by g~ = {T E g~ : rank(X~) = m}. 
So, for 7 ranging over g~, we have a class of linear models which we denote by 
LM(X.~, C:~- E C~). 

Almost all optimality criteria in design theory depend on the covariance matrix 
of the Gaut3-Markov estimator. An optimal design 7 E E~ minimizes an appropri- 
ate functional of the corresponding covariance matrix or equivalently maximizes 
an appropriate functional of the inverse of the covariance matrix; see Pukelsheim 
((1993), Sections 5 and 6). One of the more commonly used criteria for choosing 
a design ~- E E~ is the famous D-optimality criterion. A design T* E E~ is called 
D-optimal (for LM(X~-, C :T  E ~ ) )  if 

de t (X~C-1X~)  _< de t (X~,C-1X~,)  

for all w E C~ . The statistical aim of the paper is to give a general concept how 
one can tackle the problem of finding optimal or efficient designs with respect to 
the D-criterion when observations are correlated. 

For special factorial linear models with correlated observations exact optimal 
designs are known; see for example, Kiefer and Wynn (1983, 1984), Budde (1984), 
Kunert and Martin (1987), and the references cited there. 

Only little is known on optimal designs of regression models when the observa- 
tions are correlated; see Bischoff (1992) and the references cited there. Recently, 
Bischoff (1992, 1993b) has stated conditions such that a D-optimal design for 
uncorrelated observations with common variance is also D-optimal for correlated 
observations. 

Because it is difficult to determine optimal designs for a linear model with 
correlated observations, a hybrid approach is often chosen: namely to look for an 
optimal design not in the class of all possible designs $~ but  only in the class of 
all designs which are optimal for the uncorrelated case with common variance; see 
Kiefer and Wynn (1981) and the literature cited there, see also Budde (1984). We 
explain the above approach in more detail because it may be used in two different 
ways. However, we consider these two approaches for the D-criterion only. To this 
end let the class of linear models LM(Xr, C : r E an) be given. 

Firstly an optimal design TO E g~ in the above sense minimizes the determinant 
of the covariance matrix of the ordinary least squares estimator in the class of all 
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designs of g~ being D-optimal for LM(X,,  In : ~ • an). That means that 7o E $n 
fulfills the conditions 

and 

max det(X¢ r X¢) = de t (X~ X¢o) 
CEg~ 

det(X~CX~) >_ det(X~CX~o) 

for every 7 • gn satisfying 

maxdet(X~-X¢) = det(XTXT ). 
CEg~ 

Kiefer and  Wynn (1981) investigated and gave reasons for that approach. 
Secondly the Gaui3-Markov estimator may be used for estimating ft. Then 

an optimal design 70 E gn in the above sense minimizes the determinant of the 
covariance matrix of the GauB-Markov estimator in the class of all designs of gn 
being D-optimal for LM(X,,  In : 7 E an). That means that 70 E g~ fulfills the 
conditions 

and 

max det(X~-X¢) = det(X~X~o) 
CCg~ 

det(X~C-1XT) <_ det(X~C-1X~o) 

for every ~- E g~ satisfying 

maxdet(X¢cX¢) = de t (X~X, ) .  
CEg~ 

But on the other hand the question arises. How efficient is an (in the above 
sense) optimal design To for the given linear model with correlated observations 
among all designs ~- E En? 

Therefore if the Gaut3-Markov estimator is considered let us define the effi- 
ciency with respect to the D-criterion of an arbitrary design ~- E gn in the class of 
linear models LM(X~, C : T • an) by 

_ f det(XTrC_lX. ) ]l/m 
eft@) = eff@,LM(X¢,C: ¢ • a n ) ) : =  [SUPCEe---- ~ det(X[C_~lX¢) ; 

see Pukelsheim ((1993), Sections 5.15 and 6.2). 
If the structure of the covariance matrix is not known to be sufficiently regular 

for calculating the Gaufi-Markov estimator, then it is common practice to use the 
ordinary least squares estimator. (See also the approach of Kiefer and Wynn 
described above.) Using the ordinary least squares estimator the efficiency with 
respect to the D-criterion of an arbitrary design ~- • gn in the class of linear models 
LM(X~, C: 7 • an) is given by 

effes(7) = effe.~(7, LM(X¢, C: ~ • an)) = -det(X~X~')2" det(X~CX~)-I 1/,~ 
suPces~ det( X~ C-1X¢ ) 
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It is worth mentioning that the GaufJ-Markov Theorem states that given a 
fixed design T the Gaufi-Markov estimator is the only best linear unbiased esti- 
mator of ft. Therefore we have eft(z) _> effe~(T) with equality if and only if the 
GauB-Markov estimator and the ordinary least squares estimator coincide; for the 
function det(.) is strictly isotonic on the set of all positive definite (m × m)-matrices 
with respect to the Loewner ordering. 

In Section 2 determinant formulas are developed. We use these formulas in 
Section 3 to give general formulas for the efficiency of an arbitrary design T E Ca, 
see Theorem 3.1. Then by these means we can generalize and provide yet easier 
evidences for statements that  have been recently proven by Bischoff (1992, 1993b). 
Especially, Theorem 3.1 is applied to an important general linear model having 
multiple response. This allows a (nearly) elementary proof and a generalization of 
recent results given in Krafft and Schaefer (1992). 

In Section 4 general lower bounds for eft(T) and effe~(T) are developed. 
Finally, in Section 5 we show by examples how good designs may be found 

with the help of the developed results. There maximin designs are determined 
for tridiagonal covariance matrices. These are designs maximizing the minimal 
efficiency where the minimum is taken over all possible covariance matrices and 
the maximum is taken over all feasible designs. 

We like to mention that lower bounds for eft(T) and eff~(T) are also inves- 
tigated in Bischoff (1994) in case the models have an intercept term. Further 
symmetrical circulants are considered as special covariance structure there. 

2. Determinant formulas 

Let D be a nonnegative definite real (n x n)-matrix, and let V be an m- 
dimensional subspace of N~ with 1 _< m < n. Next, we consider an arbitrary 
isometric mapping ¢ : V --+ N'~ with respect to the standard scalar products. 
Then a unique nonnegative definite real ( m x  m)-matrix b with respect to the 
standard basis of unit vectors of R m exists such that 

¢(v)TD¢(w) = vTDw for all v ,w E V. 

Note, the eigenvalues o f / )  only depend on D and on V but not on ¢. Therefore we 
may denote the m eigenvalues o f / )  by AI(D; V ) , . . . ,  )~,~(D; V). In the sequel we 
write for shortness Ai(D; X) instead of Ai(D; range(X)) when X is a real (n x re)- 
matrix. The above discussion suggests the notation 

m det(D; V) :-- de t / )  = IIi=lAi(D , V) 

that we like to use in the following. Analogously as above we write det(D; X) 
instead of det(D; range(X)). Because det(D; V) is the decisive notion in the sequel 
we like to mention two further interpretation of det(D; V). 

Firstly, let E be the possibly degenerated ellipsoid corresponding to D, that 
is 

E = {x E ~ I x T D x  < 1}. 
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Then E N V is a possibly degenerated ellipsoid in V. Thus, if E N V is not 
degenerated, then det(D; V) equals (al  " "  am) -2  where a l , . . . ,  am are the lengths 
of the semi-axes of E N V; in case E N V is degenerated then det(D; V) = 0. That  
means det(D; V) is the determinant of a nonnegative definite matrix describing 
E N V with respect to the standard inner product in an analogous way as D 
describes E. 

Secondly, let us consider a coordinate free approach. For that let V ± be the 
orthogonal subspace of V with respect to the standard inner product in R ~, that  
m e a n s  

V ± = {x E Nn I xTv  = 0 for all v E V}. 

Then the matrix D may be understood as nonnegative definite linear operator from 
V ® V ± to V ® V ±. Thus D can be uniquely partitioned in the two nonnegative 
definite linear operators D l l  : V ~ V, D22 : V ± --* V z and in the linear operator 
D12 : V ± ~ V satisfying for all (v, w) E V ~ V ± 

D(v, w) = (Dl lV -t- D12w, D22w + D~2v ) E V • V ± 

where D~2 is the adjoint of D12; see Eaton ((1983), Proposition 2.15). Obviously, 
we have de t (D;V)  = detD~l.  The operator D l l  was investigated by Halmos 
(1950); but his studies do not overlap this paper. 

Taking into account the above discussion we obtain for a nonnegative definite 
(n x n)-matrix D and an (n x m)-matrix B with B T B  = I,~: 

det(D; B) = d e t ( B T D B ) .  

The above formula is used in the proof of the following crucial lemma. 

LEMMA 2.1. Let A be an arbitrary ( n x m )-matrix, and let D be a nonnegative 
definite (n x n)-matriz. Then 

de t (ATDA)  = det(ATA) • det(D; A). 

PROOF. Let B be an (n x m)-matrix fulfilling B T B  = I m  and range(A) = 
range(B). So a real ( m x  m)-matrix L exists with A = BL.  Thus the assertion 
follows easily. [] 

Remark 2.1. The above lemma may also be proved in a more technical way 
by a QR-decomposition of A. 

Remark 2.2. In Section I the fact was shown that the Gaul3-Markov Theorem 
implies the inequality eft(T) _ effe~(~-). The equality holds true if and only if 
range(CX~) = range(X~). Therefore Lemma 2.1 implies for an arbitrary subspace 
V ~ {0n} of R n that 

det(C-1;  V) > det(C; V) -1 

with equality if and only if C(V)  = V. 
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Next, have a look to the coordinate free approach described before Lemma 
2.1. Let again V = range(X), and let C(v, w) = (C**v + C,2w, C22w + C{2v ) E 
V ( g V  ±, v E V, w C V ±. Then it may be easily verified that  the inverse of 
C can be uniquely partitioned in the two nonnegative definite linear operators 
[Cli - I ,  -1 C12C22 C12 ] : V V,  [C22 ! - 1  -1  V 2 V /  -- ---+ -- C 1 2 C l l  C12] : ---+ a n d  in t h e  
linear operator -c~ilc12[C22 - C[2C~ilCi2] - i  : V z ~ V. Thus 

C C-IC ' ~ - i  (2.1) det(C-1; V) = de t (Cn - 12 22 121 • 

Further a suitable (n x n)-matrix F exists with FTF = In and 

{CII 6 1 2 )  
r c F T  = k,c  c22 

where Cij has the same meaning as above; note we make no distinction between 
the coordinate free expression of an operator and a suitable matrix expression of 
it. By a well-known determinant formula for partitioned matrices we get 

det C = get(C22), de t (Cn - C12C~ICT). 

Thus we obtain the following lemma by (2.1). 

LEMMA 2.2. With the above notation we have 

det (C- i ;  V) = det C22" det C - i  = det(C; V ±) • det C -1. 

3. Efficiency of designs with respect to the D-criterion 

As an immediate consequence of Section 2 we obtain the following theorem. 
There we use the abbreviation det(C; X~) for det(C; range(X~)±). 

THEOREM 3.1. Let the class of linear models LM(X~, C : ~- E Cn) be given, 
and let T E Cn be arbitrary. Then the following equality holds true 

det(XTC-1Xr) = det(XTX~) • det(C-1; X;)  

= de t (XTX;)  • det(C; X ~ ) .  det C -1. 

Thus we get 

[ det(XTX~)'det(C-X;Xr) ] 
eft(T) = eft(T, LM(X¢, C: ~ E En)) = supCeE n det(X~-X¢) • de t (C- i ;  X<) 

r det(X:X~).det(C;X~) ]llm 

= Lsua ) -j_  x?)j 
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and 

effes(T) = effe~(T, LM(X<, C:  ¢ • g~)) 

= [ d e t ( X : X ~ ) . d e t ( C ; X . ) _  1 ]l/m 
supccs ~ det(X~-X¢), det(C-1;  X¢) 

[ det(X~X~)'det(C-1;X~) -~ ]1/.~ 

Remark 3.1. The above determinant formulas have some advantages. 
Firstly, we need not to calculate the inverse of the covariance matrix C. (Note, the 
covariance matrices considered in the literature depend on an unknown parameter. 
So a closed formula for the inverse of the covariance matrices does not necessarily 
exist.) Secondly, the above equation gives a relation between the designing prob- 
lem of the uncorrelated homoscedastic case (usually considered) and the designing 
problem with correlated observations; see also Section 4. 

Remark 3.2. The above result like the most of the following results may be 
generalized to covariance matrices depending on T. But for shortness we mostly 
restrict ourself to covariance matrices not depending on T. 

3.1 First applications 
Next, we use the above theorem for determining the efficiency of designs when 

the covariance matrix of Z is given by ~r2C + p l n l ~  instead by C where In = 
(1 , . . . ,  1) T • R n. In particular, the class of completely symmetric covariance 
matrices is covered. For instance, such a model is used for body surface potential 
mappings (BSPM). There the electrical potential of the heart is measured at 
different points on the surface of a human body. The measurements are taken at 
the same point of time. BSPMs are described in detail in Bischoff et al. (1987, 
1990). 

COROLLARY 3.1. Let C be an arbitrary positive definite (n × n)-matrix, let 
a class of linear models LM(X¢ ,  C : ~ • g~) be given, let ~- E Sn be fixed, let the 
constants cr 2 > O, p > - ~ 2 1 ~  C1~/n2 are known or unknown, and let the following 
condition be satisfied 

in • range(X¢) for each C • g~. 

a) Then 

eft(T, L M ( X  O C  : ~ • g~)) = e f f (%LM(X¢,a2C + plnlTn : ~ • $~)). 

b) I f  additionally 1~ is an eigenvector of C, then 

eff~s(T, L M ( X  O C :  ~ E gn)) = ef fes(%LM(X¢,a2C + p l ~ l ~  : ~ e gn)). 



392 W O L F G A N G  BISCH O FF 

T.  ± PROOF. a) The assertion follows because det(G~C + p l n l n , X  r ) = 
det(cT2C; X~).  

-1 1 T ' - I  b) Because of det((G2C + p n n) ;X~)  = det(G 2C-1 ;X~)  assertion b) 
holds true. [] 

Remark 3.3. Part a) of the above corollary may be obviously generalized in 
following way. Let C~ be an arbitrary covariance matrix for each T E En fulfilling 
C~u = Cu for each u E range(X~) ±. Then we have 

eft(T; LM(X~,  C~; T c an)) = eft(T; LM(X~,  C:  T E g~)). 

In an analogous way part b) of the above corollary may be generalized, too. 

Remark 3.4. The theory of approximate designs is the key idea for solv- 
ing designing problems in regression models with uncorrelated observations and 
common variance. Note that in the uncorrelated case with common variance the 
connection between exact designs and approximate designs is given by the formula 

1X~X~-n = f z  f ( t ) f ( t )Ty(dt)  

where X~ = (f(t]) I ' "  I f( t~))  T, r = ( t l , . . .  ,•n) T C ~n, and ~ is a suitable prob- 
ability measure on g. But an analogous relation does not exist for the correlated 
case in general. In practice on the other hand an approximate optimal design is 
only used as basis for choosing an efficient design; see, for instance, Pukelsheim 
and Rieder (1992). Therefore if we have 

eft(T, LM(X¢,  In :  ( E E~)) = eft(T, LM(X¢,  C:  ( E C~)) 

for all T E ~ ,  or more generally if the equivalence 

det(X~X~) _> det(X~-X¢) ~=~ det (X~C-1X~)  >_ d e t ( X [ C - ] X ; )  

(-: > d e t ( X ~ X ~ ) . d e t ( C ; X ~ )  _> det(X~-X¢)- det(C;X~-)) 

holds true for all T, ( E an, then an approximate D-optimal design for LM(X~,  L~ : 
T E an) may be considered as approximate D-optimal for LM(X~,  C : T E an), too. 
Thus Corollary 3.1 may also be interpreted in such a way. These considerations 
are also important for the model considered next. 

3.2 Applications to a regression model with multiple response 
Next we apply Theorem 3.1 to a linear regression model with multiple response 

considered recently by Krafft and Schaefer (1992). They have shown that a D- 
optimal design for uncorrelated observations with common variance remains D- 
optimal for special covariance matrices. This result was generalized to several 
directions and the proof was simplified under less stringent assumptions by Bischoff 
(1993b). By the technique developed here the proof can be further simplified and 
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the result can be generalized to least squares estimation. To this end the model is 
introduced briefly. 

For simplification we use the same notation as Krafft and Schaefer (1992). 

--f~i), 1 _< j < ri, 1 _< i _< m, be known real functions defined on an exper- Let 

-(i) be unknown parameters to be estimated. For points imental region X and aj 
xl, x2 , . . . ,  xn E X one observes random variables Yi(xk) satisfying 

EYi (xk )=  E~j=I a(i)'j f¢i)(xk) 
1 < i < m. To write this model in terms of matrices, we put for for l < k < n ,  

l < i < m  

and 

~/ = (Y/(Zl) , Y / (x2 ) , . . . ,  :Y/(Xn)) T, 

( f~)(x~)i "'" f(~)!x~) ) 

a (i) = (a~i),a~i),...,a(~)) T, 

y = (yT y T , .  y y~y 
' " ' '  f t 2 ]  (i10 0) F2 . . .  0 

X z . . 

0 . . .  F,~ 

a = (a (1)T,a(2)T,...,a(m)T) T, 

= diag(F1, F2 , . . . ,  F ,  0.  

Then the above model can be written as E Y = Xa. Additionally, it is assumed 
that  Cov Y exists and is positive definite. This model just described we shall refer 
to as regression model with multiple response. For more details on that  model see 
Krafft and Schaefer (1992) and Bisehoff (1993b). 

A typical design matrix X~ of the regression model with multiple response 
is given by diag(Fl,~, F2,-~,..., F,~,.~) where r E X n. An exact design r E X ~ is 
feasible for estimating a if and only if Fi,~ has full rank for every i E {1 , . . . ,  m}. 
Let the set of such designs be denoted by ;~ .  For further considerations we assume 

(3.1) range(Fl,~) _D range(F2,~) _D... _D range(Fr~,~) 

for each 9- E Xn. For instance, condition (3.1) is fulfilled, if each response belongs 
to a polynomial regression. 

In order to state the next result we need the notation of a Kronecker-product. 
Let A = (aij)l<_i<_s,l<_j<_t and B be arbitrary matrices then the notation A ® B is 
used for the Kronecker-product of A with B, that  is A ® B = (aij • B)l_<i<s,l_<j_<t. 
It is worth noting that  with the above notation the set of all exact designs for 
which a is estimable is given by 

Obviously g,~.~ may be indentified with X~. By using Theorem 3.1 we can general- 
ize Theorem 1 of Krafft and Schaefer (1992) and Theorem 3.1 of Bischoff (1993b). 
Moreover, the proof is much simpler than the corresponding ones. 
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THEOREM 3.2. Let the regression model with multiple response 
L M ( X , ,  In .n:  ~- E X~) be given where X ,  = d iag(F1, , , . . . ,  Fn,,) ,  T E Xn, let con- 
dition (3.1) be satisfied, and let D be an arbitrary positive definite (m x m)-matrix. 
Then det(D ® In; X , )  is constant, that means the determinant is independent of 
T E X n .  

Thus the following equalities hold true for each T E %n : 

and 

eft(T; L M ( X ( ,  I n n :  ¢ E Xn)) = eft(T; L M ( X ( ,  D ® In:  ( C Xn)) 

effe~(7;LM(X¢,[nn:  ¢ C X~)) = c. efft~(T;LM(X¢,D ® [~ : ¢ C Xn)) 

where c > 1 is a constant independent of T. 

PROOF. Because of (3.1) we can choose (n x r/)-matrices B/,,, i = 1 , . . . ,  m, 
fulfilling for ra > i > j >_ 1: 

range(B/,,) = range(F<,), BTi,.Bj,. = (Ir~ I 

where Op,q is the (p x q)-null-matrix. Then 

det (diag(B1, , , . . . ,  Bm,~) T (D ® In) d iag(B1, , , . . . ,  Bn , , ) )  

is independent of T E )C~ for each positive definite (m × m)-matrix D. Thus the 
assertions follow by Theorem 3.1 and Remark 2.2. [] 

Remark 3.5. The covariance structure considered in Theorem 3.2 is quite 
natural. For if the i-th experiment is performed under the control variable xi we oh- 
serve the response (Y1 (x i ) , . . . ,  Yn (zi)) where Yj (zi) belongs to the j - th  response. 
Thus it would be artifical to assume that Cov((Yl(xi) , . . .  ,Yn(Xi)) T) = ~r21n 
but it is quite natural that this random vector is correlated because the oh- 
servations are taken from the same experiment. On the other hand it may be 
possible that the observations of different experiments are uncorrelated and that 
Cov((Yl(xi) , . . .  ,Yn(X/)) T) = D for i = 1 , . . . ,  n. Therefore the models consid- 
ered in Theorem 3.2 are the natural extensions of the uncorrelated homoscedastic 
univariate linear model to the linear model with multiple response. For further 
motivation and results we like to refer to the work of Krafft and Schaefer (1992). 

4. Lower bounds for eff(f) and effes(T) 

Let a class of linear models L M ( X ¢ , C  : ~ E gn) be given, let m = 
dim(range(X¢)), and let t l  _< -.. _< )~n be the ordered eigenvalues of C. Us- 
ing a corollary of the Courant-Fischer-Theorem (cf., for instance, Marshall and 
Olkin (1979), Result A.l.c, p. 510) then Theorem 3.1 implies 

[ 1 l/n 
effgs(r) >_eff(r, L M ( X ( , I n  :~ E gn) ) 'de t (C;X~)  -1/m" sup de t (C-1;X¢)  

Leben J 
> eft(q-, L M ( X ¢ , I ~  : < 6 gn)) det(C; X,) -1/n llm )l/n 
_ • . x . i = l , ~  i , 
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and analogously 

eftes(r) > eft(r, LM(X¢ ,  In:  ~ • gn)) " de t (C-1;X~)  -1/m " tin--reX--lira 
- -  * * i = 1  " ' m + i  " 

Note, in a similar way we get lower bounds for eft(r). 
Next, let us consider the principles mentioned in Section 1. First isolate the 

class of designs for which det (X~X~) is maximized. Then within this class look for 
a design which minimizes the determinant of the covariance matrix of the Gaut3- 
Markov estimator and the least squares estimator, respectively. By the above 
inequalities we recognize that the principles work well if a design r exists being 
D-optimal for the uncorrelated homoscedastic case and for which de t (C-1 ;X~)  
is about H ~n x-1.  that means that the regression manifold corresponding to r is i = l " ' i  ' 
"nearly" spanned by eigenvectors of the covariance matrix corresponding to the m 
smallest eigenvalues. But on the other hand if det(C-1;  Xr)" Him_-lki is small for 
each r being D-optimal for the uncorrelated homoscedastic case, then one should 
investigate designs C for which de t (C-1;X¢)  is greater than the corresponding 
expression for r. 

5. Tridiagonal matrices as covariance structure 

In this section we show by examples how good designs may be found. To this 
end we assume that C = Cp = Cov(Z) is of special structure, namely 

or if i = j 

Cov(Zi, Z j ) =  o '2p  i f i = j + l o r i = j - 1  

0 otherwise. 

krr The eigenvalues of Cp = (Cov(Zi, Zj)) are given by Ak(P) = a 2' (1 + 2p. cos 7gT), 

k = 1 , . . . , n .  Without loss of generality we may assume ~r 2 = 1. Thus C o is a 
covariance matrix if and only if ]Pl < (2"c°s ~ -1 h-Tf) . We assume that p is unknown. 
In order to emphasize the dependence on p we write eft(r; p) and effe,(r; p) in the 
sequel. In general there does not exist a design which is highly efficient for all p. 
So the following maximin principle seems to be of interest: 

and 

max inf eft(v; p) 
TEEn p E R  

max inf effgs(r; p), 
TE~n p E R  

~r - 1  respectively, where R C ( - ( 2 c o s  7~--f+1) - ] ,  (2cos 74-;) ) is the set of possible val- 
ues for p. For shortness we denote designs r* E Cn with infpEReff~s(r*;p) = 
max~c& infpcR effes(;; p) maximin designs; if in the definition of maximin designs 
the maximum is taken over a subset gn of Cn only, then we say maximin designs 
in Sn. A subset of Cn being of interest is the set gn(Ai) of all designs r whose 
regression manifold range(X~-) contains an eigenvector corresponding to /~ .  In an 
analogous way En(Ai, Aj) is defined. 
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We like to mention in passing that ,  obviously, information on p may  be used in 
order to get good designs with respect to the Bayes principle instead of the above 
maximin principle. 

THEOREM 5.1. Let an arbitrary class L M ( X ~ ,  Cp : r E En), p E R, of linear 
models be given where the covariance matrix C o has the structure given above. 

a) Let R = (a, (2 cos g-~+l ) -1)  with a > - ( 2 c o s  " -1 7-4-i) , and suppose that 
Cn(An) ¢ 0. Then ~- E gn is a maximin design if and only if 7 is a maximin design 

in Cn(An). 
-1 a) with < (2cos ~ -1 b) Let R = ( - ( 2 c o s ~ 4 ~ )  , a ~--4~) ' and suppose that 

gn(A1) ¢ 0. Then r E $~ is a maximin design if and only if r is a maximin design 

in ~n(A1). 
c) L e t R  = ( - ( 2  cos ~ -1 747) , (2cos 7~-7+1)-1), and suppose that E~(A1, A~) ~ 0. 

Then r E En is a maximin design if and only if r is a maximin design in Cn(A1, As). 

PROOF. a) For shortness we write Ai(p,r)  for the eigenvalue Ai(Cp;X~) 
introduced in Section 2, i = 1 , . . . , m ,  r E Cn. Further  let these eigenvalues 
Al(p;v)  < . . .  < A,~(p;r) be ordered. We consider a design r E C~ whose regres- 
sion manifold range(Xr)  contains no eigenvector corresponding to An and a design 

E E~(An). Then we have for each p > 0 

and 

A (p) < < . . .  < < Al(p) 

An(p) = AI(p;~) _<""  <__ Am(p;()  <__ AI(p)- 

Note, there exists a constant  c(r) > 0 with At(p; r )  > c(r)  for all p > 0. Thus we 
have 

det(Cp; Xr)  = HmlAi(p;  r) >_ c(r) m 

m det(Cp; X¢) = IIi=lAi(p; 4) > 0 

for all p > O ,  
- 1  

when p--* 2cos 

whence we get by Theorem 3.1 

effe,(r; p) _< 
" d e t ( X ~ X r ) "  det(Cp; X~) -1 

det(X~- X¢) .  de t (C~  1; X~) 

when p--* 

, 0  

( 2 cos n + 1 " 

On the other hand for 4 a constant  c > 0 exists with infpER effes(4; p) > c because 
infp~R(p+ (2 cos ~ -1 h-~)  ) > 0. So assertion a) is proved. 

In the same way assertions b) and c) may be shown. [] 

Example. Let us consider a regression model  with regression function f : 
$ --+ $, t ~ t where $ C ]R is the experimental  region. Given the design 7 = 
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( t l , . . .  , tn)  T E En, n > 2, we have a linear model  Y = 7./3 + Z. We consider the 
two cases E = [ -1 ,  1] (see a) below) and $ = [0, 1] (see b) below) because the 
results of one case cannot  be derived from the other case; for the above model  has 
no intercept term. We assume that  p is unknown. 

a) ~ = [ -1 ,  1]. Let us consider two special designs. 
i) Let 7-1 --~ (1,-I, 1,-l,...)t E $n. Because p is unknown we cannot 

calculate the Gaufi-Markov estimator corresponding to T1. Therefore we evaluate 
a lower bound for eff~s (wl;p) by the inequality given in Section 4: 

1 eff~s(ml;p)_> ( i - 2 [ p [ . c o s ~ - - ~ ) . d e t ( C p ; X ~ , ) :  ; ~  ~ - -  n2_~ ; ) .  

Note, given p _> 0 then 7.1 is the best  design for the correlated case in the class of 
all designs being D-opt imal  for the homoscedastic case. 

2) Let 

7.2 =- 

7[ 
sin n ÷ 1' s i n - -  

if n is odd 

( nTl" 

sin 2(n + 1 

if n is even. 

27r nTr  ) T 
n + 1 , . . . ,  ( - 1 ) n - 1  sin n ~  1 

sin 7r sin 2~ ( - 1 )  ~ - l s i n  nzr ) T  
- -  . . , 

n + l '  n + l '  ' n + l  

Then 7.2 is an eigenvector corresponding to A~. Thus we obtain by the considera- 
tions of Section 4 

e (7.2; p) = 

_> 

(¢2; p) 

n + l  

2n 

n + l  

2n 

7F 
1 - 2[p[ cos - -  

n + l  

1 - 2p cos - -  
n + l  

nTT (sin2 n+l ) --2 

if n is odd 

7[ 
1 - 2 [ p ] c o s - -  

n + l  
7F 

1 - 2p cos - -  
n- t -1 

if n is even. 

Firstly, we assume that  p > 0. Note, eft(T2, p) is greater than ½ independent  
of p. So 71 is a highly efficient design if p is not too great but  ~-1 is gett ing worse if 
p goes to (2 cos ~ -1 ~--~) . In tha t  case 72 is much better .  Indeed for fixed n _> 2 the 
design T2 is be t te r  than "/'1 if p E ( ~-1 1 2n- ~ +4n cos ~-~+~ ' 2 cos ~ )' Thus if one cannot 

7r --1 exclude values of p near (2 cos ~-~) one prefers the design 7"2 to 71 from the 
above maximin principle. Indeed Theorem 5.1 implies that 72 is a maximin design 
for R = (a, (2cos ~ -1 - ( 2 c o s  ~ -1 ~4~) ) w i t h a >  ~ )  . 

If p < 0, bo th  designs 71 and 72 are bad. In tha t  case the designs 73 = 1~ and 
a suitable eigenvector 7.4, say, corresponding to AI take over the role of 71 and 7.2, 
respectively. 
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But  if nothing is known about  p tha t  is p C ( - ( 2 c o s  gTf)  ~ -1, (2cos 747) ~ -1),  
then each of the above designs is bad for certain values of p. Then  from the above 

maximin point of view a design tha t  is a suitable eigenvector corresponding to 

k~/2 if n is even and A(n+l)/2 if n is odd, respectively, is bet ter  than  the above 
designs. 

b) C = [0, 1]. Then  ra = In  is the only D-opt imal  design for the homoscedas- 
tic case; hence it is the optimal design for the correlated case for each of the prin- 
ciples described in Section 1. But  it is really bad for most  p > 0 and r2 is bet ter  

than  ra in case p is not too small. 
If p < 0, r3 is a highly efficient design because the only eigenvectors corre- 

sponding to Cn are eigenveetors corresponding to the eigenvalue k~. But  such 
designs are very bad for p < 0. 
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