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A b s t r a c t .  Recently, quantiles and expectiles of a regression function have 
been investigated by several authors. In this work, we give a sufficient condi- 
tion under which a quantile and an expectile coincide. We extend some clas- 
sical results known for mean, median and symmetry to expectiles, quantiles 
and weighted-symmetry. We also study split-models and sample estimators of 
expectiles. 
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i .  Introduction 

Given an explana tory  variable X and a response variable Y, a regression model  
a t t empts  to describe the relationship between X and Y. Typical  regression models 
have the form 

(1.1) Y = m ( X )  + ~, 

where the function m is usually referred to as the regression funct ion or regres- 
sion mean, and ¢ is a known random variable. These kind of models have been 
widely studied. However o ther  features of Y such as its ext reme behavior  did not 
receive as much at tent ion.  Recently, in the economics l i terature,  several authors  
investigated condit ional percentiles. These quanti t ies are found to  be useful de- 
scriptors of regression da ta  sets. It  s ta r ted  with a paper  of Koenker  and Basset 
(1978) where they  defined condit ional quantiles (or regression quantiles) via an 
asymmetr ic  absolute loss. In the context  of linear models (i.e. re (x )  = a + bx),  

if (x~,yi), i = 1 , . . .  , n  is a cloud of points in ~2, and a is fixed in (0, 1), then  a 

quantile line of order a is defined by y = 5~ + / ~ x  where ~ a n d / ~  minimize 

~ P ~ ( Y i  - a - bxi)  
i=1 

* Work supported by the Natural Science and Engineering Council of Canada and by the 
Universit6 du Qu@bec ~ Trois-Rivi@res. 

371 



372 BELKACEM ABDOUS AND BRUNO REMILLARD 

with 

{~ltl i f  t > 0 
(1.2) p (t) = I s -  l{ <0}lltl = (1 -  )ltt i f t  < 0. 

Later Newey and Powell (1987) criticized the use of regression quantiles in linear 
models and instead of (1.2), they proposed an asymmetric quadratic loss: 

( c~t 2 if t > 0 
(1 .3)  = I s  - l{t<o}l t2  : 

- t ( 1 - a ) t  2 if t_<0. 

These authors called the resulting curves regression expectiles. More details and 
results on regression expectiles are given by Efron (1991) who used an equivalent 
criteria to (1.3) namely 

¢~(t) = (wl{t>o} + l { t<o})t  2, 

where w is a positive constant. Finally Breckling and Chambers (1988) embedded 
both quantiles and expectile8 in the general class of M-estimators by proposing 
asymmetric M-estimators. Some non-parametric estimates of regression expec- 
tiles were proposed: smoothing splines (Wang (1992)), kernel estimates (Abdous 
(1992)). 

We will see that several models of distributions used in practice indeed possess 
what we call weighted-symmetry, a notion that  generalizes the classical notion of 
symmetry. Under the hypothesis of symmetry, it i8 well-known that the center 
of symmetry, the mean (when it exists) and the median coincide. As pointed out 
by Rosenberger and Gasko (1983), this fact provides threefold heuristic basis for 
defining the location parameter; it also enriches the meaning of location parameter 
for symmetric distributions and provides a starting point in the search for robust 
estimators. Motivated by this useful property, we show that in general, under the 
hypothesis of weighted-symmetry one expectile and one quantile also coincide with 
the center of weighted-symmetry, thus yielding two estimators of that important 
parameter of location. In addition, this provides a class of asymmetric distributions 
which have a "natural" location parameter with the same threefold interpretation 
as the center of symmetry of a symmetric distribution. 

This work is organized as follows: Section 2 gives some properties of expectiles 
and introduces the notion of weighted-symmetry; Section 3 deals with an extension 
of weighted-symmetry and studies split-models; Section 4 characterizes weighted- 
symmetry and Section 5 gives some asymptotic results on sample estimators of 
quantiles and expectiles. 

2. Properties of expectiles 

From now on, we will consider only the case of a single random variable, since 
the regression case (1.1) can be obtained by studying the random variable a. 
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DEFINITION 1. Let X be a random variable with distribution function F.  
Let a E (0, 1) be fixed. Suppose that X has a finite second moment. We say that 
#~ is an a- th  expectile of F if 

(2.1) #~ - - - -  argmino E[la-  l{x<_oIl(X- 0)2]. 

Remark that when X has only a finite absolute moment of order one, then 
instead of (2.1), one may define pa by 

#~ = argmin o E [ O ~ ( X  - O) - Ca(X)] 

where Ca is given by (1.3). 
Quantiles and expectiles both characterize a distribution function although 

they are different in nature. As an illustration, Fig. 1 plots curves of quantiles and 
expectiles of the standard normal N(0, 1). 

Q 

Fig. 1. 

. ' " "  : ' "  . . . .  
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Expectiles (solid curve) and quantiles (broken curve) of a normal N(0, 1). 

Since E [ ¢ ~ ( X  - O) - ¢~(X)] is differentiable in 0, #~ satisfies 

~E[IX - ~,~1] = E[I{x<_,~}IX - a ~ l ] ,  

which is equivalent to saying that G(#~) = a, if the law of X is not concentrated 
at one point, where 

It - x l d f ( x )  
G : t ~  

f + 2  I t -  xldF(x)'  

Hence #~ may be expressed as the c~-quantile of the distribution function G. 
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The following theorem due to Newey and Powell (1987) gives some properties 
of expectiles. 

THEOREM 2.1. Suppose that m = E ( X )  exists, and put I f  = {x I 0 < 
F(x)  < 1}. Then for each 0 < a < 1, a unique solution p~ of (1.2) exists and has 
the following properties: 

(i) As a function # ~ :  (0, 1) ~-, N, #~ is strictly monotonic increasing. 
(ii) The range of #~ is IF and p~ maps (0, 1) onto IF. 

(iii) For f (  = a + bX, the a-th expectiIe fl~ of X satisfies: 

{ a + b#~ if b > O 
~ta = 

a + b#l_~ if b ~ O. 

PROOF. See Newey and Powell ((1987), Theorem 1). 

If the mean exists and if the median is uniquely defined, we have #1/2 = mean 
and ~1/2 = median; if in addition F is symmetric  about  0, i.e. 

(2.2) 1 - F(O + x) - F(O - x - O) = O, Vx E ~, 

where F(t - 0) = lim F(t + h), then 
hW 

~1/2 = #1/2 = 0. 

Our aim is to extend a similar relationship to any a in (0, 1). To this end, 
observe tha t  when the mean #1/2 exists, it satisfies the following equation: 

( 2 . 3 )  [ 1  - r( 1/2 + z )  - r( 1/2 - z ) ] d z  = o. 

Moreover, the integrand in the previous equation corresponds to the term on left- 
hand-side of (2.2). Thus, for an a - th  expectile, a similar equation to (2.3) should 
give us a generalization of the classical symmetry.  Indeed, for a E (0, 1) and any 
distribution function F such tha t  #~ exists, #~ satisfies 

f0~[1  F(#~ + z ) - a F ( p ~ -  z)]dz=O 

where co = (1 - a ) / a .  Therefore one possible generalization of the classical sym- 
metry  is given by the following definition. 

DEFINITION 2. A random variable X or its distribution function F is said 
to be weighted-symmetric about  0 if and only if F is such tha t  

(2.4) 1 - F(O + Ix[) - coF(O - ]xJ - O) = O, Vx C ~, 

where co = (1 - F(O))/F(O - 0). 
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Remark tha t  equation (2.4) in the last definition is equivalent to the following: 
for any Borel subset A in (0, oo), 

02P(X - 0 E - A )  = P ( X -  0 E A). 

This concept of weighted-symmetry is not new. It has been used by Parent  
(1965) in order to construct sequential signed rank tests for the one-sample lo- 
cation problem. Wolfe (1974) gave a characterization of weighted-symmetry and 
some related results. Our motivation in s tudying weighted-symmetry came from 
the reading of the nice papers of Aki (1987) and Nabeya (1987) who considered 
weighted-symmetry as an extension of the problem of test ing symmet ry  about  
zero. In fact, weighted-symmetry is a special case of alternatives to symmet ry  
proposed by Lehmann (1953). In the next theorem, we explore the relationship 
between the center of weighted-symmetry, and certain quantile and expectile. 

From now on, we will suppose tha t  the distr ibution function F is such tha t  the 
quantiles are uniquely defined, i.e. the support of the underlying random variable 
is a closed finite interval or an interval of the form [a, +c~),  ( - c o ,  b] or ( - co ,  +oo).  

THEOREM 2.2. (i) Assume that there exists 02 > 0 such that for all x >_ O, 
the following condition is satisfied: 

1 - r ( ~  + x) - 02F(~  - x - 0) _> 0, 

where (~ = (1 + 02)-1. Then 
~ <_ #~. 

(ii) Suppose that F is weighted-symmetric about 0 and (1-F(O)  ) /F(O-O)  = 02. 
I f a  = (1 +02) -1, then 

~ = #~ = 0. 

Moreover, for any u E (0, a) ,  

o =  + 

PROOF. (i) Pu t  r ( t )  = f o [ ( 1  - F ( t  + z)) - w F ( t  - z)]dz. By definition of 
#~, F(#~) = 0. Hence 

= - 

= {[F(#~ + z) - F ( { ,  + z)] + w[F(#~ - z) - F ( ~  - z) l}dz.  

On the other hand, if we assume tha t  

[(1 - F ( ¢ ~  + z ) )  - ~ F ( ~  - z - 0)]  _> 0,  Vz _> 0,  

then F ( ~ )  > 0. This implies tha t  there exists at least one zo _> 0 such tha t  

[ F ( ~  + z0) - F ( ~ ,  + z0)] + 02[F(~  - z0) - F ( ~  - z0)] _> 0. 
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(ii) Weighted-symmetry about  0 entails tha t  

Consequently 

i.e. 0 = ~ .  As for the assertion 0 = #~, the hypothesis of weighted-symmetry 
gives 

An integration by parts  enables to write 

or equivalently 

i.e. 0 = #~. Next, let u • (0, (~) be fixed; weighted-symmetry implies tha t  0 -- ~ .  
Set one zo = 0 - ~ .  If uo = F(0  - 0) < ul  = F(0),  then ~u -- 0 for all u • [Uo, ul]. 
Using weighted-symmetry, we get Ul = 1 - wuo. Therefore, for any u • [uo, (~], 
1 - w u  • [a, ul]; hence ~u = 0 = ~1_~ .  Finally, if Zo > 0, then weighted-symmetry 
implies tha t  

and 

Combining the last two inequalities, we obtain 

proving tha t  ~i-u~ = ~9 + z0 = 20 - ~ .  This completes the proof of the theorem. 

Remark .  Part  (i) of Theorem 2.2 is an extension of a sufficient condition for 
the mean, median, mode inequality given by Van Zwet (1979). 
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3. Extension of weighted-symmetry and split-models 

Weighted-symmetry, as introduced in Definition 2, is somewhat restrictive. It 
compares the distribution function at two symmetrical points 0 + Ix] and 0 - Ix[. 
However, in many practical cases, one needs to compare F at 0 +  [x] and 0 -  Ix[/w' 
with a;' > 0. Therefore, we propose the following generalization of weighted- 
symmetry, which will replace Definition 2 in the sequel. 

DEFINITION 3. A random variable X or its distribution function F is said 
to be weighted-symmetric about 0 if and only if there exist two positive constants 
0~1 and a;2 such that 

(3.1) 1 - F ( o  + Ix l )  - Cdl-F(O - -  Ixl/ = - o )  = o,  e 

Observe that  aJ1 must satisfy: wl = (1 - F(O))/F(O- 0). In addition, equation 
(3.1) in Definition 3 is equivalent to the following useful property: for any Borel 
subset A of (0, oo), we have 

COlP(X - -  e E - A )  = P ( X  - O e c02A). 

Weighted-symmetry is not a mathematical construction just for the fun of it. 
We now give a brief review of some weighted-symmetric models used in practice. 

One such model is the two-piece normal, also called the joined half-Gaussian 
distribution or the split-normal distribution in the literature. 

DEFINITION 4. (i) A random variable X has the continuous two-piece normal 
(CTPN) distribution with parameters 0, al  > 0 and o-2 > 0 if its probability 
density function is 

f A e x p ( - ( x  - 0)2/(2o-12)) if x < 0 
f (x )  I A e x p ( - ( x  - 0)2/(2o-2)) if x > 0 

where A = 2/(v/~(o-1 + o-2)). 
(ii) A random variable X has the discontinuous two-piece normal (DTPN) 

distribution with parameters 0, o-1 > 0 and o-2 > 0 if its probability density 
function is 

A l e x p ( - ( x -  0)2/(2o-~)) if x _< 0 

f (x)  = A 2 e x p ( - ( x -  0)2/(2o-2)) if x > 0 

with A1 = 2o-2/(v/~o-l(o-1 q- o-2)) and A2 = 2o-1/(v/'2-~Trcr2(o-1 q- o-2)). 

We can see easily that both the CTPN and the DTPN distributions are 
weighted-symmetric with Wl = co2 = o-2/al and a;1 = 1/aJ2 = o-l/o-2 respectively. 

Split-normal models were used and studied by several authors, perhaps the 
first one being Fechner (1897) (see Runnenburg (1978)). Later, Gibbons and 
Mylroie (1973) used these models to fit impurity profiles data in ion-implemen- 
tation research. Since then, they have been used in applied physics, see Gibbons et 
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al. (1975). An application in economics may be found in Aigner et aI. (1976) who 
used split-normal models in the estimation of production frontiers. Properties of 
split-normal models have been investigated by John (1982) and Kimber (1985). 
Finally Lefran~ois (1989) applied split-normal models to the estimation of future 
values in a forecasting process. 

More general models than the DTPN models have been considered by Gupta 
(1967). The corresponding probability density may be written: 

f (x )  = 9(x) l (x  < O) + g ( X / T ) T - 1 1 ( X  > 0), 

where ~- > 0 and g is symmetric about 0. These models are weighted-symmetric 
with 

1 
021 = 1 and 022 = - .  

r 

A very simple and curious weighted-symmetric model is the uniform distribution 
on (a, b). Indeed, for any c E (a, b), the uniform distribution is weighted-symmetric 
about c with 

b - c  
021 = 022 - -  

c - - a "  

Finally, let X1 and )22 be two independent exponential random variables with 
parameters /31 and /32 respectively. Then Z = X2 - X 1  is weighted-symmetric 
with 

/32 
021  z 0 2 2  ~ - - -  

/3i 
More generally, any symmetric model may be split in order to obtain a weighted- 
symmetric model. Indeed, let Z be a random variable with distribution function 
G symmetric about 0. Let 0 c •, a E (0, 1), 0-1 > 0 and 0-2 > 0. Then 

0 -  0-1[Z] with probability a 

X = 0 + 0-2[Z[ with probability (1 - a) 

is a random variable whose distribution function is 

2aG x -  0 

(x o) 
(2a - 1) + 2(1 - a)G 

if x < 0  

i f x > O  

and X is weighted-symmetric with 

1 - a 0-2 
0.) 1 - -  a n d  03 2 ---~ - - .  

oL 0 1 

For particular values of a, 0-i and 0-2, we retrieve CTPN, DTPN models, and 
Gupta's alternatives. 

Some characteristics of F may be easily derived from those of G. We summa- 
rize some of them in the following proposition. The proof of this proposition is 
omitted since these results are obtained by standard manipulations. 
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PROPOSITION 3.1. (a) I f  G is unimodal then F also does. 

(b) Let/3 be fixed in (0,1). Put  ~(F) and ~(a) for /3- th  quantiles of F and G 
respectively. Then 

and 

1q}3/(2(x) i f  3 <-- (~ ~ F ) =  0 + ( 7 c ( ~ )  

0 (7 e (a)  - -  2 q ( 1 _ / 3 ) / ( 2 ( 1 _ o 0  ) if~3 > c~. 

(c) Let r > O, i f  u+c = E(Z~l{z>_o}) is finite, then 

E ( X  - O) r = u+o[2(1 - oz)o-~ + 2o~(-crl)~'], 

E I X  - 01 ~" = U+G[2(1 -- a ) o ;  ÷ 2acr[]. 

Finally, let us mention that  the relationships between quantiles, expectiles and 
weighted-symmetry  given in Theorem 2.2 still hold for the weighted-symmetry  
given in Definition 3. 

THEOREM 3.1. Let cJi > 0 and w2 > 0 be fixed. Set a = (1 + wl) - i  and 
a '  = (1 + o21c02) -1  . 

(i) Assume  that for  all x >_ O, the following condition is satisfied: 

Then 

1 - F(~a + z )  - wiF(~a  - z /w2  - O) >_ O. 

~ <_ #~,. 

(ii) Suppose that F is weighted-symmetric about 0 relatively to (~1~ ~2).  Then 

~ = #~, = O. 

Moreover, for  any u E (0, a),  

0 = ~ i - ~ i .  + ~2~. 
1 ,+ ~2 

PROOF. The proof  is similar to the proof  of Theorem 2.2. 

4. Characterization of weighted-symmetry 

When  signed ranks are used for continuous random variables, the theory of 
distribution-free tests for the center of symmet ry  is essentially based on the fol- 
lowing property. 

"If a random variable X is symmetr ic  about  0, then 

IX - 01 and l{x_>0} are stochastically independent."  
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Wolfe (1974) extended this result  to the weighted-symmetry  given in Definition 2. 
In the following theorem, we establish the same result for the weighted-symmetry  
in t roduced in Definition 3. 

THEOREM 4.1. Let wl and w2 be two positive constants. Let X be a random 
variable with distribution function F and such that F(  O -  O) = F(  O) = (1 +cu1) -1.  
Put 

IX - Ol~ = IX - Ol{ l{x>o} + ~21~x_<o}}, 

and 
1 i f X > O  

sign(X - 0) = 0 if X = 0 

- 1  i f X < O .  

Then IX - 01~ ~ and sign(X - 0) are independent if and only if X is weighted- 
symmetric about 0 relatively to (aJ1, cz~). 

PROOF. First,  we prove sufficiency. We have to show tha t  if F is weighted- 
symmetr ic  about  0, then,  for any x > 0 and y = - 1 , 0 ,  1 

(4.1) P r ( [ X - O [ ~  2 < x, s i g n ( X - O )  = y) = P r ( [ X - O I ~  2 _< x ) P r ( s i g n ( X - O )  = y). 

Indeed, when y = 1, 

P r ( l X -  01~o2 < x, s i g n ( X -  O) = 1) = Pr(O < X _< x + O) = F(x  + O) - F(O), 

Pr ( IX  - 01~2 < z) = F(O + x) - F (0 x O) - 1 + OJ 1 F(O -~ g)  1 
0.) 2 031 031 

& l  
Pr(s ign(X - O) = 1) = 1 ~- Wl" 

This gives (4.1). Cases y = 0 and y = - 1  may be proved similarly. 

Next,  it remains to show tha t  if the two random variables IX - 01~ ~ and 
s ign(X - 0) are stochastically independent ,  then  F is weighted-symmetr ic  about  
0. Indeed, the independence of IX - 01~ ~ and s ign(X - 0) entails tha t  for any 

x > 0  

P r ( [X  - 0 ]~  _< x, s ign(X - O) = 1) = F(x  + O) - F(O) 

= Pr ( IX  - Ol.~ ~ _< x) Pr ( s ign(X - O) = 1) 

w2 1 + wl ' 

which in tu rn  implies tha t  F is weighted-symmetr ic  about  0 relatively to  (col, co2). 

Remark. The  character izat ion given in Theorem 4.1 may be used to extend 
many  results on rank tests to weighted-symmetry ' s  tests. For example,  Wilcoxon's  
signed rank test  can be generalized in the following way. Suppose you have a 
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s a m p l e  X l , . . . ,  X n and the null hypothesis is: this sample comes from a weighted- 
symmetric distribution about 0 relatively to (a~l,w2). To test that hypothesis, 
define the statistic 

n 

ARn = ~ sign(Xi - O)Rank(lXi - 01~=), 
i=1 

Note that we obtain Wilcoxon's signed rank statistic when a~2 --- 1. Then, under the 
null hypothesis, AR~ has the same distribution as ~i=1 iei, where the ei are i.i.d. 
random variables such that P(ei  = 1) = wl/(1 +Wl) and P(ci = -1 )  = (1 +a  J1) -1 

5. Asymptotic behavior of sample expectiles and quantiles 

In this section we deal with sample expectiles and quantiles. Results below 
are quite standard and are easily obtained by means of M-estimation theory. Note 
that some of these results were obtained by Breckling and Chambers (1988) for 
M-quantiles. 

Consider a sample X 1 , . . . ,  X~ of size n, from F. Fix a in (0, 1), then an a- th  
sample quantile of F is given by: 

n 

~n,a ~-  argmino E Ic~ - l{(x~-°)<-°} IIXi - Ol" 
i=1 

In other words, if the sample arises form the density 

fl(x,O, ct) = a ( 1 - - a ) e x p ( - - l c t - -  l{(x_o)<o}[[x--O]), x C ~, 

then ~n~ is the maximum likelihood estimator of the location parameter 0. Thus 
among all estimators of 0 the a- th  sample quantile has the minimum asymptotic 
variance at f l ( ' ,  0, a). 

Similarly, #n,~' the sample c~-th expectile of F satisfies 

n 

#~,~, = argmin o E [ 1  + (w - 1)l{(x~_o)<_o}](Xi - 0) 2, 
i=1 

(with (~' = (1 + w)-l). 

The iteratively reweighted least squares algorithm may be used to evaluate ~tn,a,. 
Observe that #n,a' is the maximum likelihood estimator of 0 when the sample 
comes from the probability density 

f2(x, O, a ')  = v/-~_~( 1 + V ~ )  

• exp (-[1 + (~o - 1)l{(x_o)_<o}](x - 0)2/2), X E ~ .  

In order to determine how #n,~, and ~n,~ asymptotically behave, it suffices to make 
use of the useful concepts of the influence curve discussed in Hampel (1974) and 
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M-estimation theory (see, e.g., Serfling (1980)). Indeed, standard manipulations 
show that the gross-error-sensitivity (see Hampel (1968, 1974)) of #~, is infinite, 
indicating the non-robustness of #~, and its extreme sensitivity to the influence 
of wild observations. Whereas the a-th-quantile ~ has a bounded gross-error- 
sensitivity which means that ~ is not affected by contamination of the data by 
gross errors. The expectile #~, is resistant to systematic rounding and grouping 
since its local-shift-sensitivity is bounded. The c~-th quantile has an infinite local- 
shift-sensitivity since its influence curve has a jump at ~ .  This means that ~ 
is affected by rounding and grouping. Finally, both ~ and #~, are not protected 
against sufficiently large outliers because their rejection points are infinite. 

Next, it is well known that if ~ is unique then ~n,~ ~ ~ a.s. as n ~ oc, 
and if f ( ~ )  > 0 then ~ ,~  is asymptotically normal with mean ~ and variance 
crl2 = c~(1 - o~)/(nf2(~c~)) (see Serfling (1980), p. 77). Similar results hold for 
#~,~,. Standard results in M-estimation theory enable us to show that under mild 
conditions, #~,~, ~ #~, a.s. as n ~ oc, and #~,~, is asymptotically normal with 
mean #~, and variance ~2 

G2 = f[1 + (w- 1)l{(x_~.,)_<o}]2(x - #.,)2dE(x) 
nil + F(#~,)(w - 1)] 2 

When {~ and #~, coincide i.e. F is weighted-symmetric about {~ (or #~,), then the 
comparison of {.,~ and #~,~, may be made by means of the asymptotic relative 

= cr2/cr 1. For the particular case a efficiency e(~,~,#~,~,)  2 2 = 1/2 and symmetry, 
Lehmann ((1983), p. 359) showed that the asymptotic relative efficiency of the 
sample median to the sample mean is bounded below by 1/3. A similar result 
holds for e(~n,~, #n,~,) and unimodal weighted-symmetric densities. Without loss 
of generality, we will assume that the center of weighted-symmetry is zero. 

THEOREM 5.1. If the underlying density f is unimodal and weighted-sym- 
metric about zero or more generally f is weighted-symmetric about zero and sat- 
isfies 

f(x) <_ f(o) w ,  
then, the asymptotic relative efficiency of ~ ,~  to #~,~, is such that 

1 
>_ g. 

The lower bound being attained for uniform distributions and no others. 

PROOF. A mimic of the proof given by Lehmann ((1983), p. 359) enables 
to prove that the distribution function minimizing e(~,~,#~,~,) is the uniform 
distribution on ( - (1  + v ~ )  -1, v~ (1  + x/~)- l ) .  This concludes the proof. 

Open questions. Many results on median, mean and symmetry are to be 
extended to quantiles, expectiles and weighted-symmetry. Some of them are 

• #~,~, should be more appropriate for estimating the center of weighted- 
symmetric short-tailed distributions, and ~n,a should be better for weighted-sym- 
metric long-tailed distributions. 



QUANTILES, EXPECTILES AND WEIGHTED-SYMMETRY 383 

• When  we est imate  the center of a weighted-symmetr ic  distr ibution,  esti- 
mators  based on criteria similar to tha t  of Breckling and Chambers  (1988) are 
more robust  than  ~ , ~  and #n,~'. 

• W hen  cJ the  parameter  of weighted-symmetry  is unknown, how it would 
be es t imated? etc. 
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