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A b s t r a c t .  This paper discusses some properties of stochastic regression 
model with continuous form of heteroscedastic disturbance. The strong consis- . 
tency and asymptotic normality of a generalized weighted least squares estimate 
will be investigated under certain conditions on the stochastic regressors and 
errors. More, the linear hypothesis testing problem also be discussed and an 
example to be demonstrated to reestablish the results of Cheng and Chang 
(1990, Tech. Report, National Tsing Hua University). 
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1. Introduction 

Consider the multiple regression model 

(1.1) Yn =/31Xnl ÷ fl2Xn2 + " "  +/3pXnp + Cn, n = 1 , 2 , . . .  

where e~'s are unobservable random errors, /~1,-.. ,/~p are unknown parameters ,  
and Yn is the observed response corresponding to the design levels xnl ,  x ~ 2 , . . . ,  
Xnp. Let  x n = ( X n l , . . . , X n p )  T, X n = (Xij)l<i<_n,l<_j<p , E n = (61 , . . . , 5n )  T and 
Y~ = ( Y l , . . . ,  y , ) T .  The  regression model  (1.1) can be wri t ten  as Y~ = X~/3 + En 
where ¢~ = (¢~l"' '/~p)T and the ordinary least squares es t imate  of fl based on 
the x l ,  Y l , . . . ,  Xn, y~ is bn = (b~l" ' "  b~p) T = ( X [ X n ) - - I x [ y ~ ,  assuming X ~ X n  
nonsingular.  Suppose tha t  {e~} is a mart ingale  difference sequence with respect 
to an increasing sequence of or-fields {.7-} i.e. en is iOn-measurable and E(en I 
JC,_l) = 0 for every n, more, assume tha t  the design vector Xn at stage n depends 
on the previous observations Xl, Y l , . . . ,  xn-1 ,  y~ - l ;  i.e. xn is 5~  1-measurable. In 
the case of homoscedast ic  disturbance,  i.e. E(e  2 ] 5 ~ - 1 )  = cr 2 for every n, the 
strong consistency and asymptot ic  normal i ty  of the least squares es t imate  b~ has 
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been established by Lai and Wei (1982), similar properties were also studied by 
Cheng and Chang (1990) under some regular conditions for the special case of 
linear heteroscedasticity. 

In this paper we shall study the properties of a more general form, the continu- 
ous heterosedastic disturbance, which will generalize those of the above two cases. 
In Section 3 we try to establish the strong consistency and asymptotic normality 
of a generalized weighted least squares estimate under certain conditions on the 
stochastic regressors and errors. In Section 4 we will discuss the linear hypothesis 
testing problem in this model. In Section 5 we reestablish the results of Cheng 
and Chang (1990) from Corollary 5.1, Theorems 3.2, 3.4 and 4.1. 

2. Some reviews 

In this sections we review some important results in Lai and Wei (1982). In 
model (1.1), they assume: 

(2.1)  sup ]~{ [e n [  e~ [ .-~"n--1} < OO 
n 

and 

(2.2) l i ra  E{6~ I 5r~_1} = ~ 2 

a.s. for some (~ > 2 

a.s. for some positive constant a2. 

A special case of (2.2) is E(e~ ] 5~n-1) = (7 2 for every n. Let Ama×(A), Amin(A), 
Am~x(n) and Amin(n), respectly, denotes the maximum and minimum eigenvalue 
of matrix A and x T x n .  They established the strong consistency of bn = 

T --1 T (X~ XN)  X~ Y~ under the assumption that /~min(n) tend to infinity faster than 
log/~max(n) in the following result. 

Suppose that in the regression model (1.1), {en} satisfies 

/~min(n) ----+ OO a.8., 

log -~max(n) = O(/~min(n)) a.8. 

TH EO REM 2.1. 

(2.1) and 

then 
bn -+/3 a.s. 

This result follows from the key 

LEMMA 2.1. Let {en} be a martingale difference sequence with respect to an 
increasing sequence of a-fields {5cn} such that supn E(le~l ~ I 9Cn-1} < ec a.s. for 
some a > 2. Let Xnl , . . . ,  Xnp be .~_l-measurable random variable for every n. 
Define N = inf{n : x T x n  is nonsingular} and Qn ~--- E T n X ~ ( X T X ~ ) - I x T E n ,  
assume N < ec a.s. Then for n > N and on {l im~_~ Ama×(n) = ee} we have 

Q n  = O ( l o g  ~ m a ~ ( n ) )  a.8. 
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3. Estimation problem 

In this section we will discuss the same estimation problem under that E(e~ I 
9v~-1) = g(Zn, 0), where Zn is observable and 5On_l-measurable, Zn and 0 belong 
to the k-dimensional Euclidean space, g is a real-valued known function of z~ and 
0 (0 unknown parameter vector). Let s~ . . . .  
(X~l/S~. . .  x~p/sn) T and e~ = e~/sn for every n, then we can rewrite model (1.1) 
a s  

(3.1) T r l~=wn/3+e~ ,  n =  1 ,2 , . . . .  

Note that E * (e~ I 9c~ 1) = 1 for  every n and the weighted least squares estimate 
of/3, denoted by l)~, in model (1.1) is just the ordinary least squares estimate of 

in model (3.1). Since 0 is unknown, we substitute the 0n described below into 
¢)n, and get a generalized weighted squares estimates 2)* of/3. In order to prove 
our main results, we need following Lemmas. 

LEMMA 3.1. (Jennrich (1969)) Let f be a real valued function on @ x Y 
where (9 be a compact subset of a Euclidean space and Y is a measurable space. 
For each 0 in O, let f(O, y) be a measurable function of y and a continuous function 
of 0 for each y in Y .  Then there exists a measurable function 0 from Y into 0 
such that for all y in Y 

f(O(y), y) = inf f(O, y). 
O c O  

LEMMA 3.2. (Lai and Wei (1982), (4.15)) Suppose that {en} is a martingale 
difference sequence with respect to an increasing sequence of a-fields {Sen} such 
that (2.1) holds, then 

n n 

Z 4 = E E(41fi-1)+ o(n) 
i : 1  i : 1  

a . s .  

LEMMA 3.3. Let A, 0 be subsets of k-dimensional Euclidean space, more, 
assume that A is a compact set. I f  f ( z ,  p) is real valued function which is contin- 
uous on A x 6), then SUpz~z x f ( z ,  p) and inf~e/, f ( z ,  p) are continuous functions 
ofp. 

PROOF. See Appendix. 

Now since En Yn Xnbn (In T -1 T . . . .  Xn(Xn  X~) X~)En  where we denote 
/)~ = [el, e2 , . . . ,  en]T. Define the least squares estimate 0~ of 0 to be the value of 
p that minimizing Qn (p) = }-~.tn 1 [~2 _ g(zt, p)]2/n, that is Q~ (0~) = infpce Qn (p). 

THEOREM 3.1. Suppose that in the regression model (1.1), {~n) is a mar- 
tingale difference sequence with respect to an increasing sequence of a-fields {)cn} 
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s u c h  t h a t  ( 2 . 1 )  h o l d s  a n d  E(e~ I " ) r ' n -1 )  = ~ ( Z n ,  O) f o r  e v e r y  ~ ,  w h e r e  g i s  a peal 

valued known function of z~ and unknown parameter vector O. We assume 
(i) the parameter vector 0 is contained in a bounded open sphere S where the 

closure of S is denoted by O, 
(ii) sup~ [[z~[lk < oe a.s., where [[. [[k denotes the k-dimensional Euclidean 

n o r m ,  

(iii) g is continuous function on R k × 0 and g(z~, p) > 0Vp ¢ {0, 01, . . . ,  0~ , . . .}  
a .s . ,  

(iv) the quantity 
n 

lim -1 E ( g ( z t ,  O) _ g(zt ,p))  2 
n---~ oo n 

t = l  

has a unique minimum at p = 0 a.s., 
(v) lOg am~x (n) /n  -~ 0 a.s. 

Then we have the least squares estimate On ~ 0 a.s. 

PROOF. (a) Note first tha t  the existence and measurabil i ty of the least 
squares est imate of 0 would be followed from Lemma 3.1. Next let ¢,~ = {w : 
SUpnllZn(W)llk <_ m}  and Am = {z E R k : Ilzllk _< m}, then we have 
P ( U ~ = I  ¢ ~ )  = 1 and ~ ~ ZX~ for an n on the set ¢~. 

Since g is a continuous function on A,~ x (9 and A,~ x O is compact,  there 
exists L2 such tha t  g(zn, p) < L2 < c~Vn, p c 0 on the set ¢,~ for any m, thus we 
can assume without loss of generality in subsequence that supn IIz~(w)Ilk < m a.s. 

For every Pn E (9, let An = d i a g ( ~ , . . . ,  v/g(zn, pn)). Then we have 

(3.2) _1 ~ 2 t g ( z t , p ~  ) = I (A~E~)T(A~E~ ) 
n 

t : l  
1 1 __ x ]JTT A 2  ]j " T 2 T 1 T - ~ , ~  - - E n  & X ~ ( X ~  x , o  x,~ E,~ 
n n 

T T --1 T 2 1 E ~ X n ( X ~ X ~ )  X~AnE,~ 
n 

1 T T - -1  T 2 T - 1  T +-E~X~(XnX~) XnA~X~(X~X~) X~En. 
n 

Since the 4th t e rm of (3.2) equals to 

(3.3) 
1 2 T - 1  T 2 

I I & X ~ ( X ~ X n ) - X X f  Enll 2 <_ -Amax(An)l lX~(X~X~ ) X~E~[[ 
n 

1 
_< - L 2 '  O(logAmax(n)) (by Lemma 2.1) 

n 

= o(1) a.s. 

Then  by Cauchy-Schwarz inequality, Lemma 3.2 and (3.3), we have the square of 
the 2nd t e rm of (3.2) 

1 T 2 T --1 T 2 
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1 T T - 1  T 2 T - 1  T T 2 <_~i(E~Xn(XnX,~) XnAnXn(X,~X~ ) X~E~).(E,~A~E,) 

< (L2.1ETEn).  1 T - - I T  ~HA~X~(XnXn) X,~Enll 2 

_< Zg(~ ,0 )  + o(1) .o(1) 
L t = l  ' 

_< [L 2 + o(1)],  o(1) = o(1) a.s. 

Similarly, we have the squares of the 3rd term of (3.2) 

1 T T - 1  T 2 2 ~(E~Xn(XnXn ) X~A.En) = o(1) a . s .  

Hence from (3.2) we obtain 

(3.4) - 1 ~  ~2tg(zt,p~ ) = -l ~-~tg(zt, p~ ) + o ( 1 )  a.s. 
n ~ 

t = l  t = l  

Take p~ = p, we have 

1~-~ l ~-~c2tg(zt, p)+ o(1) 
t = l  t = l  

a . s .  

Let an -- cn" ~ p )  for every n, then {a~} is a martingale difference with 
respect  to {Jrn} and supE([an[ ~ I $'~_1) < oe a.s. for some c~ > 2. Then by (3.4) 
and Lemma 3.2, we have 

1E~2tg(z~,p) 1 E(a2t lJZt_l)+o(n) + o ( 1 )  
Yt t = l  7t t = l  

1 =-Eg(zt,O)g(zt,p)+o(1) a.s. for all p E O. 
7~ 

t = l  

In particular,  

(3.5) 
1 / 

~ g ( z ~ ,  0) = 
t = l  t = l  

a . s .  

It implies that  

n 

! Z ( ~  _ g(z~, 0))(g(z.  o) - g (z .  p)) = o(1) 
n 

t - - 1  

a . s .  
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(b)  S i n c e  

(3.6) 
n 

e.(~.)  = inf 1__ ~(~_g(~, ,p))~ 
pEO 

t = l  
n 

= ~nf ! ~_ , (~ -g (~ ,O)+  9(z~,O)-g(~,p))~ 
pEO n 

t = l  

= inf Z(~-g(zt, O))2 
pEO t = l  

2 n 
+ - ~ ( ~ , ~  - ~ ( ~ ,  o))(~(z~,  o) - ~(~,,  p)) 

n 
t = l  

i n  ] 

rt  t = l  

=#,,(O)+o(~) as ,  

by (a) and condition (iv). 
(c) Since 0 is compact, let {0nk} be any convergent subsequence of {0n} and 

say 0~ --+ 0". By (3.4) and (3.5), we have 

~2k 

?~k t = l  

1 na  
= - -  ~ 4 g ( z , , 0 ~ )  + o ( 1 )  a.~. 

Tbk $=1 

- -  nk 1 nk 
1 ~e~[g(z~,O~)-g(z,,O*)]+--~g(zt, O)g(zt, O*)+o(1) a . s .  

nk t = l  nk t = l  

By Lemmas 3.2 and 3.3, and ~n~ ~ 0*, we have 

= sup 
z~EAm 

± ~ ~[~(z,, ~n~)- 
~2k t = l  

1 na  

T~k t = l  

nk 

n k  zt E/Xm t = l  

~g(z~, o) + o(1) 

--* s u p ,  , . ,  , . , ,  , T  _ , . ~ ,  , l , l g [ z , , v . ) _ g ( z t , v , ) l . ( ~ 2 . o ( l ) ) = o ( H  a.s.,  
zt~Am 

a . s .  
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it implies that 

Similarly, 

Thus 

1 n k  ~ k  

- -  E ~g(zt ,  Onk) = __I E g ( z t ,  O)g(zt, O, ) + o ( 1 )  
n k  n k  t = l  t--1 

n k  

± ~ g(z,, 0)[g(z,, 0~) - g(z~, e*)] = o(1) 
~ k  t = l  

n k  

1_ E[&2  _ g(zt, O)][g(zt,O) - g(zt,Onk)] = o(1) 
?~k t = l  

and by the same arguments of (3.6), we have 

a.s. 

nk 

1 F _ . ( g ( z . e  ) _ g(z~,~ - -  0~k)) = o(1) 
nk t=l 

Further, 

nk 

lim 1 E ( g ( z t ,  O, ) _ g ( z t , ~ n k ) ) 2  
nk--*oc Tt k t = l  

< lim sup (g(zt, O*) g(zt,  ~k)) 
nk'--~oo Z t E A m  

-- 0, by Lemma 3.3 and 0~k ~ 0". 

Hence 

nk 

i Z ( g ( z ~ , O .  ) _ g(z~,O))2 
/~k t=l 

a . s .  

n k  

= ! ~[(g(z~, e* ) -  g(z~, ~n~))+ (g(z~, ~ ) -  g(z~, e))] ~ 
n k  t = l  

nk ! _ ~ 2 = Z ( g ( z . O * )  g(z~, n~)) 
n k  t = l  

n k  

2 ~(g(z~, onk) - g(z~, e))(g(z~, e*) - g(z~, ~)) 
+ n--~ t=l  

1 nk 
g(zt, O) ) 2 + - -  > ( q ( z . u n ~ )  - 

nk t = l  
h . . . . - - 4 - - - -  - 

1 nk 
~ 2 . 2 L 2 .  - -  E Ig(zt'O*) - g(zt,Onk)l + o(1) 

?~k t = l  

_ < 4 L 2 - s u p  Ig(zt,O*)-g(z~,O~)[+o(1)-~O as 
z,C/X~ 

a . s .  

a.8.  

n k  ----+ (:x:) a . s .  



358 DER-SHIN CHANG AND GUAN-CHYUN LIN 

thus O* = 0 a.s. by condition (iv). Since the null set for the subsequenee {0~ k } to 
be convergent on its complement can be chosen to be independent of {nk}keN, we 

obtain O, = 0 + o(1) a.s. and then  ~}s --+ 0 a.s. [] 

LEMMA 3.4. Let xs  be the design vector at stage n. 
I f  SUPs Ilxsllp < ~ a.s., then/~max(n) = O(n) a.s. 

PROOF. See Appendix. 

COROLLARY 3.1. The result of Theorem 3.1 still holds when the condition 
(v) is replaced by supn IIx~llp < oo a.s. 

After getting the strong consistent estimate O~ of 0, we can define the gener- 
alized weighted least squares estimate of/~ for (i.i) as 

(3.7) /•n 
T * -- 1 T * -- (xs G~x~) x~ G~Y~ 

• 1 .. 1 ] Note tha t  the weighted least squares esti- where G s = diag[9(~ ~ ) , .  , g (~ ,~ )  . 

mate  of/3 for (1.1) is 
) s  T -- 1 T = (xn asxs)  x~ asYs 

with Gn = diag[~(zl,0), i ] "" ,  g(z,~,e) " 
In order to investigate the strong consistency of/3~* under some regular condi- 

tions on the regression matr ix  Xs,  we need the following Lemmas. 

LEMMA 3.5. Let B is n x p matrix. I f  C is n x n symmetric matrix, then 
~((~minC)" BTB) < ~(B~CB) < ~((~m~C)" BTB), ~here ~I(M) > - -  > 
tp(M),  M is a n y p x p  matrix and I~(M) is the i-th eigenvalue of M.  In particular, 
if C is nonnegative definite, then for i = 1, 2 , . . .  ,p we have 

( , ~ m i n C ) ' ) k i ( B  T B )  ~ )h ( BT C B) <_ ( AmaxC)Ai( BT B). 

PROOF. See Appendix. 

LEMMA 3.6. Let As,  Bs  be invertible symmetric p x p matrices and An = 
Bs + o(1). I f  liminfs/~min(An) > 0, then A~ 1 = B~ 1 + o(1). 

PROOF. See Appendix. 

LEMMA 3.7. IfO < L1 <<_g(zs, p) < L2 < ooVn, V p c  {0 ,01 ,02 , . . . ,0n , . . . }  
and sup s HXnllp < 00 a.s., then we have 

(1) lxr<E~ = ! x r G ~ E n  + o(1) a.s. and 
n n 
1 T • 1 (2) ~xs Gnxs ~x$anx~ + o(1) a.s. 
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Furthermore, l iminfn Amin(n)/n > O, then 

( 1 X T  GnXn : X GnXn +o(1 )  a.s. 
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PROOF. See Appendix. 

THEOREM 3.2. Suppose that in the regresswn model (1.1), {en} is a mar- 
tingale difference sequence with respect to an increasing sequence of or-fields {3on} 
such that (2.1) holds and E(e~ I ~n-1) = g(zm 0), with g a known function and 0 
unknown parameter vector. I f  the regression matrix Xn and g(Zn, O) satisfy condi- 
tions (i), (ii), (iii), (iv) of Theorem 3.1 and the more extra conditions 

(v) sup  Ilxnll  < a.s. and 
(vi) l iminfn)~min(n)/n > 0 a.s. 

then fl~ ~ fl a.s. 

PROOF. Let ¢,~, L2 as in the proof of Theorem 3.1. By Lemma 3.3 and 
0n -~ 0, we have inft g(zt, On) ~ inft g(zt, O) a.s. Since inft g(zt, p) > 0Vp e 
{0, 01 , . . . ,  0 m . . . }  a.s. we take 0 < e < inft g(zt, 0). For this e, there exists N such 
that  

inft g(zt, 0n) > inf g(zt, O) - e Vn > N, 

take L1 = min{inft g(zt, 01), inft g(zt, 02) , . . . ,  inft g(zt, ON), inft 9(zt, 0) -- e}, then 
0 < L1 ~ g(Zn, p) ~ L2 < (:X)V?~ and Vp c {0, 01 ,02 , . . . ,  0n , . . . }  a.s. By Lemma 
3.4, condition (vi) and Lemma 3.5, we have 

)~min(n) ~ (X:) a.s., 

log/~max (n) n 
lim sup - n  ~min (n) X--n 

1 log ~max (n) < 
- liminf~(/~min(n)/n) n 

Ll  (Z:VnXn) < 

and 

- o ( 1 )  a.s., 

<_ L2)~i(Xf GnXn)Vi -- 1, 2 , . . .  ,p 

/~min(XTn G n X n )  --+ oo, 

a.s., 

log Am~x(X~ GnX~) = o ( . ~ m i n ( X T  a n X n )  ) a.s. 

Let en as in (3.1), since supn E(lenl ~ I 5on_l) < oo a.s. and by Theorem 2.1 we 
have 

/~n T --1 T = ( X  n G n x n )  X n G n Y n = f l + o ( 1 )  a.s. 

Now we rewrite 

~*  fl  T * --1 T * T * --1 T * 
-- : ( X  n G n X n  ) X n G n Y n  - f l  = ( X  n G n X n )  X n G n E n .  
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Since the elements of Gn are bounded a.s., by condition (V), Lemma 3.7 and (2.9) 
of Lai and Wei (1982), we have 

^* ¼X U.tn [ l 
and 

+ o ( 1 ) =  (~n - /3 )+o(1 )  =o(1) 

/~ =/3 ÷ o(1) a.s. 

Thus we conclude the result 
~ --+ /3 a.s.  

Before proving the asymptotic normality of/~*, we would like first to give a 
weaker form of asymptotic normality of b~ than that of Lai and Wei (1982), and 
try to study the asymptotic normality of ¢)~ to a more general result. Denote 2+ 

d and -~, respectively, the convergence in probability and in distribution. 

THEOREM 3.3. (Chang and Chang (1990)) Suppose that in the regression 
model (1.1), {an} is a martingale difference sequence with respect to an increasing 
sequence of a-fields {~:n} such that (2.1) holds and lim~_~oo E(e~ ] 5c~_1} = cr 2 a.s. 
Moreover assume that there exists a sequence of non-random nonsingular matrix 
{ Bn } such that 

T T 

where F is a positive definite matrix and 

T T -i maxx~(B~B n) x~2*O 
l<_i<_n 

then 

(i) ( / ~ -  1 T T - 1  __ ( X  n X n ) ( B n  ) , B ;  1 ( Z T n X n ) ( b n  /3)) --+d ( r ,  F1/2N) 
(ii) (bn fl)T(XTnXn)(b~ /3) d~ 2 2 - -  - -  ( 7  ~ p  as ?~ -~  oo 

where N ~ N(0, ~r2Ip) and X2p, the chi-squared distribution with p degrees of free- 
dom. 

Now we establish the asymptotic normality o f /~  under certain conditions on 
the regression matrix Xn as following 

THEOREM 3.4. Suppose that in the regression model (1.1), {an} is a mar- 
tingale difference sequence with respect to an increasing sequence of a-fields {5c~} 
such that (2.1) holds and E(e2n [ "~n--1) = g(zn, 0), where g is a known function 
and 8 is unknown parameter vector. Moreover, assume that conditions (i), (ii), 
(iii), (iv) and (v) in Theorem 3.2 hold and there exists a sequence of nonrandom 
nonsingular matrix {B~} such that 

--1 T T -1  
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where P is a positive definite matrix  and 

max  xT~ (B~B~n)- lx i  P~o 
l<i<n 

then 

( i )  B g  1 T ^ (&a~x~)(~  - ~) AF 1/~. N, 
2 (an - ~ ) ~ ( x ~ a ~ X n ) ( a ~  - ~) A xe. 

(ii) B.-1 ( X  n T * G n X n ) ( ~ *  -- ~)  A P 1/2.  N 

2 (~ - Z ) ~ ( x ~ a ; x . ) O t  - ~) A x~ 

where N ~ N ( O , Ip ) . 

a8 
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n --+ oo 

w e  h a v e  

and then  

(3.8) 

Next since 

--1 T T --1 - 1  T * T - 1  
B n ( X n ~ n X n ) ( B n )  - B  n ( X n a n X n ) ( B n )  P-~O 

B - I { X T G * X  ~iB T~-I  P--~F, 
n k n n ~ ] \  n J  

T ' B  B T ' - l w  I max xT~ (B~BT~)- lx i  max w i k n n)  i ~ ~-1 l< i<n  
l < i < n  _ _ 

a.s.~ 

(3.9) max w~(BnBTn)- lw~ P-+O a.s. 
i<_i<_n 

where wi's are s tated in (3.1). And since ¢)n is the ordinary least squares est imate 
of the rewrit ten model (3.1) with wi's replacing xi 's  in Theorem 3.3, we have 

(a.~o) 
and 

B ~ l ( x ~ n ' a n X n ) ( ~ n  - ~) ~ P i/2 . N 

2 (~  - ~)~(X~G~X, , )O~ - ~) ~ x, .  

where T= = G~ - G~, we obtain 

IIB~I(xT~ a,~Xn)(BT~)-I  -1 T • T -1 - ~ (x~ a n x ~ ) ( B n )  II 
= IIB~I(XT~T~X~)(BT~)-lll  

o(1) IIB~-I T T - ~  = (x~ X~)(B~) II 
• B - ~ [ x T ~ * x  ~ B  T~-~ ~ 0  ~ o ( 1 )  L ~ .  ~ ~ ~ ~ n~ 

PROOF. (i) Let ¢,~, Li ,  L2 as in the proof of Theorem 3.2, then by Lemmas 

3.3 and 3.5 and ~ -~ 0, we have 
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(ii) By conditions (i), (ii), (iii), (iv), (v) in Theorem 3.2 and Corollary 3.1, we 
have 

: B - ~ ( X ~ a ; X ~ )  ~ , -~  ~ , [(X~ a ~ X ~ )  X ~  a~(x,?%9 + E~) - fl] 
--I T * =B~ X~G~E?% 

: BgIxTGnE n - B~IXTTnEn 

Bnl(XTn anXn)(~n fl) -i T = - - B n X?% T~En, 

where 
Tn = Gn - G~ = d i a g [ h , . . . , t ~ ] .  

Now consider the second term BglX~TnEn, we have, for any p-vector c, 
cTBglX~E~ = ~-~i~=1 cTB~lxiei is a martingale transform, then by Lemma  3.3, 
(2.9) of Lai and Wei (1982) and (3.8), we have 

[cT Bnl XnT?%En[ = i=< cT Bglx{eiti 

n 

: o(1) E c T B n l x i e i  a.s. 
i----1 

o(1) o ( 1 )  ~ - ~  2 o ( 1 )  = • (c B ~  x 0 + a.s .  
i = 1  

?% 

= O(1) V~(aTB-lx ~2 
" ~ \  ~ i]  a . s .  

i:1 

<__o(1).L2.~cTBnlxi [~]xT(BT)-Ic 
i----I 

o(1) T - 1  T T - 1  P = • L~c  B?% (X?% a ~ X n ) ( B ~ )  ~--* O. 

Thus 
~rB-I~xT~*X~ , ~ . ~  ~,~*,~ - 9) - c T B ~ ( X ~ a ~ X ~ ) ( 3 ~  - 9) ~--' O. 

By Cram6r-Wold Theorem and (3.10), we have 

- 1  T • % _  F ~ / 2  B~ (X?% G~X~)(9~ 9) £ . N. 

Finally, since 

( ~ ;  ~ x ~ * x ~* - fl) ( n c ~  ~)(97% - 9 )  
--I T * ^ *  T T T * --i --I T * ^ *  9 B X G Xn BnB X G X~ fl- : - )] n (  ~ n ) [ ~ ( ~ n )(7% 9 ) ]  [s~ (x~ a~x~)(9; 

d 2 --~ Xp. [] 



STOCHASTIC REGRESSION MODEL 363 

4. Hypothesis testing problem 

Suppose tha t  in model (1.1), E(e2n I -~"n--1) = g(zn,O) where g is a known 
function of z~ and unknown parameter  0. For the null hypothesis H0 : HT/3 = h 
against the alternative hypothesis H1 : HT/3 ¢ h where H T is a k x p (k < p) 
matr ix  with rank k and h is a k x 1 known vector, we will discuss this hypothesis 
as follows. 

t E(e2n I hen_l) 1 for Consider the rewrit ten model (3.1), rl~ = w~/3 + en and = 
every n. Let 

]:~g = (@n -- W n ~ n ) T ( ~ ) n  -- W h e n ) ,  

W ,  ^ ,  T = - - w /37 ) 

where W~ = ( W l , . . . ,  Wn) T, ~)n = ( 7 7 1 , . . . ,  ?In) T, )n is the weighted least squares 

est imate of/3, and/)*  is the constrained weighted least squares est imate of/3 under 
H0. It can be shown tha t  ~ ~- ~,"n{I/VTW'n]~-lW'T~/'n ~ n  and ~* = ~ n  - ( W ~ T W n ) - I  . 

H [ H T ( W T W ~ ) - I H ] - I ( H T ~ -  h). Let P,~ = W ~ ( W T W n ) - I w  T and P* = 
Wn(wTw~)- IH[HT(WTn W~)-IH]-IHT(WTn W n ) - I w T  , then  Pn and Pn - P* 
are the projection operators of M (W~), the space generated by Wn, and the space 
{W~/3 [ HT/3 = h} respectively. Furthermore,  (Pn - P*) is orthogonal to P* (see 
Chang and Chang (1990)), denote P~o = P~ - P*, then  we have 

- W ,  A ,  T 
R 1  = ( ¢ n  ^* - - 

= 11(¢),~ - e w ¢ ~ ) [ I  2 - l i e n  - -  P , ~ ¢ ~ [ I  2 

= I I f , ~ f n  - P w C n l l  2 

-- ( H T ~  -- h)T[H T (WTWn) -1H] -1 (HT~n -- h) 

= (HT~n - HT/3 + HT/3 -- h )T[HT(WTW~)- IH] - I  

• (gT~n -- HT/3 + H T z  -- h). 

Thus under Ho, R~ - R~ = (~n - /3)TH[ HT (WTn W ~ ) - I H ] - I H T  (/3n ^ - /3) .  
Let 

(4.1) An = P~W~ 

then 

and 

AnT An = H[HT (WTn Wn)- I  H]-I  H T, 

(4.2) R~ R~ ( ~  TAT ^ _ - = - / 3 )  ~A~(/3n /3) 

Now we give a test  statistic of linear hypothesis H0 : HT/3 = h and construct 
an asymptot ic  distr ibution as follows. 

THEOREM 4.1. Suppose that in the regression model (1.1), {%} is a mar- 
tingale difference sequence with respect to an increasing sequence of or-fields {5~} 
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such that (2.1) holds and E(e~ I ~ - 1 )  = g(zm 0) where g is a known function of 
zn and unknown parameter vector 0. Moreover, assume that conditions in Theo- 
rem 3.2 hold and there exists a sequence of nonrandom nonsingular matrix { Bn} 
such that 

--1 T T --1 Bn (XnGnXn) (Bn)  P [ ' ,  

where F is a positive definite matrix with 

and 

T T - 1  P max x i (B~B~) x i ~ O  
l < i < n  

00] (A~A~)(B~)  P F  1/2 k F1/2 

where Ukxk is an idempotent matrix with rank k. Then under Ho : HT/3 = h, not 
only R~ 2 - R~ 2 = (~* - / 3 ) T H [ H T ( X T G * X ~ ) - I H ] - I H T ( ~ *  --/3) but also R~ - R~ 

converges in distribution to X 2 as n --+ oo, where ~ and G* as in (3.7), R .2 as 

in (4.2) except replacing ~n, 0 by ~* and On, respectively for i = O, 1. 

PaOOF. First from (3.9) 

~(B B~)-%~ " max w n -+ a.s. 
l < i < n  

then from (4.2) by subst i tut ing/~* for/3~ and A* for An, where A* -- P ' W *  as 

in (4.1) except subst i tut ing 0~ for 0 in the entries of W~, we have 

< 2  _ R;2 ( ~  ,T • ^ ,  = - / 3 ) ( A ~  A~)(/3 n - / 3 )  

~]T[BT{xTG*x ~-1{ B ~] = [~<~(x:atx~)(j~-.,~ ~ ~, ~ n. n, , ~,~ 

--1 * T  * T --1 T T * --1 • (B~ (X~ G~X~) Bn) [Bn (A~ A~)(B~) ] 

• [ B n l ( X ~ < X n ) 0 ~  -/3)]. 

Using Theorem 3.4 and (4.3) we have 

a s  7% ---+ (X3. 

Secondly, from Lemmas 3.4, 3.6 and 3.7, we have 

 xTc.x, l=<cnx   
Tb n 7%} 
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and 

(4.4) *T  * (An An)  = H [ H T ( X T G * X ~ ) - I H ] - I H  T 

( 1 ) 1 - 1  : H [ H T ( X T G n X ~ ) - I H + o  H T 

= n .  g [ n .  H T ( x T G n X ~ ) - I H  + o ( 1 ) ] - l H  T 

= n .  H { [ n .  H T ( X T G n X n ) - I H ]  -1 + o (1 ) }H  T 

= H [ H T ( X T G n X n ) - I H ] - I H  r + o ( n )  

= (ATnA~) + o(n) a.s. 

Then from Lemma 3.5, condition (vi), (3.8) and (4.4), we obtain 

--1 *T * T T --1 II -<o(n) IIBgl(B~)-III IIB~ [(An A n ) -  
1 

_< o(n) .  A ~ ( n )  

i.e. 

Bn (An A n ) ( B n )  

Using Theorem 3.4 we obtain 

- -  B-IxTx {B T]-I P O n n n\ n] 

0] F1/2' 

R 2  R 2  d 2 
- ---~ Xk. []  

By this result, we can conclude that ,  in practical, the null hypothesis H0 would 
2 for significance level a and in large n. be rejected if R~ 2 - R8 2 > Xk,l-~ 

5. Example 

In this section, we apply our method to the following linear heteroscedastic 
model. We demonstrate the linear heteroscedastic model of the regression model 

T 0, where zn (Znl Z~2, ., Z~k) T is an observable (1.1) with E(e2n I ~c~_1) = z n • = , .. 
random vector, JCn_l-measurable and 0 = (01, . . . ,  Ok) T is a parameter vector. In 
this model, 0n is equal to T -1 T ^2 (Z~ Zn) Z~ e n with Zn = (zij)l<_i<_n,l<_y<_k. 

COROLLARY 5.1. Suppose that in linear heteroscedastic model, {c~} is a 
martingale difference sequence with respect to an increasing sequence of a-fields 
{ ~ }  such that (2.1) holds. We assume the conditions (i), (ii) and (v) of Theo- 

rein 3.1 are satisfied and liminf~ ~m~n(Z~Z~) > 0 a.s., then On ~ 0 a.s. n 

PROOF. 
check the condition (iv) of Theorem 3.1 whether or not holds. 

1 1 lim~__,~ ~ E t = l ( z T ( O  - f l ) ) 2  = 0 ,  from 

0 =  lim 1 ~ (  T( 1 TZ T _ p )  --  z 0 - - p ) ) 2 =  l i m  --(O--p) Z~(O 
n---+oo n n---~o~ n 

t = l  

_> l iminf •min(ZTZn)II0 - pll  -> 0 (by Lemma 3.5) 
n n 

Since the condition (ii) of Theorem 3.1 clearly holds, we only need to 
Assume 
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we have 0 = p a.s. 
Thus, by Theorem 3.1, we have 0n ~ 0 a.s. [] 

Now we consider a special case of linear heteroscedast ici ty model. Let z~ = 
(1, u~) T and 0 = (d, or2) T, then g(zn, O) = (72un + d and 

(1 Z Zn/n= 

n n 
where ~ = E 1  u~/n, ft 2 = E i  u~/n.  

Let A = ~ m i n ( Z T Z n / n )  = {i -~- ~2 __ [(1 --  ~2)2 @ ( 2 ~ 2 ) ] 1 / 2 } / 2 ,  we  have 

( 1 - g 2 ) 2 + ( 2 g ) 2 = 4 A 2 - 4 ( 1 + g 2 ) A + ( l + ~ 2 ) 2  

> - 4 ( 1 + g 2 ) A + ( l + g 2 )  2. 

It implies 

A _> [if2 _ (~)2]/[4(1 + g2)] 

I 
> ( n - 1 )  E u / 2  n2 + n  u~ . 

1 

If inf~ u~ = c > 0 then E i = l n  ui2 _> nc and 

i=1 ?'ti > lim inf - -  l iminf  ( n -  1)}-~n 2 
f t  E i = I  Ui 

nC -- C 

n(l + c) 
> 0  

i .e. 
l i m i n f / ~ m i n ( Z T Z n ) / n  > O. 

n 

Therefore, we reestablish the results of Cheng and Chang (1990) from Corollary 
5.1, Theorems 3.2, 3.4 and 4.1. 

6 Discussion 

Note that  in many simulations the convergent rate of t)n converging to 0 in 
Lemma 3.1 (Jennrich (1969)) are sometime slow, so it is not efficient in application, 
thus to find a bet ter  me thod  to subs t i tu te  it is necessary in practice. If 0 is 
permi t ted  to contain elements of/3, i.e. 0 = [C~l,..., c~ r ,~ l , . . . ,  ~p]T, we can find 
all results still hold under those conditions mentioned before. 
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Appendix 

In this appendix, we prove Lemmas 3.3, 3.4, 3.5, 3.6 and 3.7. 

PROOF OF LEMMA 3.3. Since f is uniformly continuous on compact subsets 
of A x O, for any P0 E O and any e > 0, there exists 6 > 0 such that  f(zt ,  Po) - e < 
f(z~,p) < f ( ~ , p o ) + ~  for all ~ e A and l iP-  poll~ < 5. Thus, for l iP-  poll~ < 

sup f(zt ,  Po) - e < sup f(zt ,  p) <_ sup f(zt ,  Po) ÷ e .  
ztCA ztEA zt@A 

Since e is arbitrary SUpz~Zx f(zt ,  p) is continuous at p = P0, and P0 is arbitrary, so 
SUpz~E/x f(zt ,  p) is continuous for all p E O. Similarly, infztezx f(zt ,  p) is continuous 
for all p E (9. [] 

PROOF OF LEMMA 3.4. Since 

P 

Amax(n)-< E Ai(n) 
i=1 

= trX~Xn = ~ IIx~ll~ = o<~). 
i=1 

[] 

Thus 

B~CB = (UB)rA(UB) 

= ( U B ) T [ A  - An(C) × Inxn](UB) @ (uB)T[An(C) × Inxn](UB). 

Further since (UB) r [A-An (C) x Gxn] (UB) is nonnegative definite and by Weyl's 
inequalities, for i = 1, 2 , . . .  ,p, we have 

A{(B~CB) >_ Ad(UB)r[An(C) × I.×n](UB)} 
= A{(An(C). B~B) 

On the other hand, 

(UB)T[AI(C) × Inxn](UB) 
= (UB)TbI(C) × ±~×n - a](UB) + (UmTa(Um. 

Ai(BTCB) < Ai(AI(C)BT B). [] 

PROOF OF LEMMA 3.6. From, l[A~ 1-B<ll[ < ]IB~iillIAn-Bn]IIIA~1[l and 
l iminfn Amin(An) > 0, we have A< ~ = Bn I if- o(1) a.s. [] 

PROOF OF LEMMA 3.5. Since C is symmetric, there exists orthogonal matrix 
u such that C = UTAU where A = diag(Al(C), A2(C) , . . . ,  An(C)), we have 
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PaOOF OF LEMMA 3.7. Let  ~,~ = {w : sup~llxn(w)llp < m}, 
p (U,~=I ~m) = 1, and let 

1 1 g(zt ,  O) - 9(zt ,  p) 
h(z , ,  p) - g ( z , , , )  g ( ~ ,  O) - g(~,, O)g(~ - p) 

1 < 1 < 1 { 0 , 0 1 , . .  0n, .}. Thus we have by assumption ~ _ ~ _ z-[Vp E ., .. 

l ~ {g(zt'O)-g(zt'P)) 2 
1 h2(zt'P) • n \ -~t,O-)g(g --- fi) 
n t : l  t : l  

n 

1 1 t~l(9(zt, O) - 9(zt, p))2Vp E {0, 0 1 , . . }  
<- L ~ ~  

from the proof of Theorem 3.1, we have 

and 

n 

1 E(g(zt,O) g(zt,O~)) 2 o(1) 
?% 

t = l  

1 ~h2(zt,O~) o(1) 
n 

t = l  

a.s.  

a .s .  

Now 

l X f<E~  IxfG.E~ - 
n n 

!X~(Vn-- G~)E~ 
n 

1 ~ h(zt, On)et - -  X t l  • 

n 
t = l  

n 

1 F_, x~ h(z~,<)~ 
n 

t = l  

n 

1 E xtp h(zt, On)ct 
n 

t = l  p x l  

for k = 1 , 2 , . . . , p ,  and 

1 E x2tkh2(zt'On) <- ml-n h2(zt'On) = 0(1) 
t = l  t = l  

a . s .  

By Lai and Wei (1982) (2.9), we have 

l Zx~kh(z~,<)~ --o Gh2(z~,< + O(1) o(1) 
n t = l  n t = l  

a . s .  

then  
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and 

Hence 

Next 

1 T • -X~ G~E~ = IXTG~E~ + o(1) 
n n 

1 T • - X  n G,~E~ = 1XTGnEn + o(1) 
n n 

a.s .  

a . s .  

1 
± T • m anXn ZxfGnx  
n n 

n I Xtlh(Zt ,  On)Xtp _1 E xtlh(zt, On)xtl,. " " ' -n 
r~ t = l  = 

n 

1 E x t p h ( z t , O n ) X t l , .  1 E x t p h ( z t ,  On)Xt p )  
n t = l  ft t = l  

for 1 _< h, k _< p, and by Cauchy-Schwarz inequality 

t=l 

<-m21 -nl ~h2(z t ,  = o(1) a.s.~ 

we have 
1 T * -- 1 x f  + o(1) 
n n 

Hence 
1XTG*X~= !XTG~Xn +o(1) 
?~ n 

Finally, from Lemmas 3.5 and 3.6, we have 

a .s .  

a . s .  

1 - 1  - 1  

a.s .  [] 
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