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Abstract. This paper discusses some properties of stochastic regression
model with continuous form of heteroscedastic disturbance. The strong consis- .
tency and asymptotic normality of a generalized weighted least squares estimate
will be investigated under certain conditions on the stochastic regressors and
errors. More, the linear hypothesis testing problem also be discussed and an
example to be demonstrated to reestablish the results of Cheng and Chang
(1990, Tech. Report, National Tsing Hua University).
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1. Introduction
Consider the multiple regression model

(1.1) Yn = PrZn1 + Bonz + -+ Bpnp + €0, n=1,2,...

where €,’s are unobservable random errors, fq,..., 3, are unknown parameters,
and y, is the observed response corresponding to the design levels z,1, Zna, ...,
Tnp- Let Ty = (l’nl,. .. ,.’Knp)T, Xn = (xij)lfifn,lﬁjﬂpﬂ En = (61,.. .,Gn)T and
Y, = (y1,---,yn)T. The regression model (1.1) can be written as Y, = X,,8+ E,
where 8 = (81 3,)7 and the ordinary least squares estimate of § based on
the Z1,y1,.. ., &n, Yn 18 by = (bp1 -+ bnp)? = (XTI X,,) 1 XLY,, assuming X1 X,
nonsingular. Suppose that {€,} is a martingale difference sequence with respect
to an increasing sequence of o-fields {F,} i.e. €, is Fp-measurable and F(e, |
Frn-1) = 0 for every n, more, assume that the design vector z., at stage n depends
on the previous observations 1, ¥1,...,Tn_1,Yn—1; i.€. Tn, is Fn,_1-measurable. In
the case of homoscedastic disturbance, i.e. E(e2 | F,_1) = o2 for every n, the
strong consistency and asymptotic normality of the least squares estimate b,, has
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been established by Lai and Wei (1982), similar properties were also studied by
Cheng and Chang (1990) under some regular conditions for the special case of
linear heteroscedasticity.

In this paper we shall study the properties of a more general form, the continu-
ous heterosedastic disturbance, which will generalize those of the above two cases.
In Section 3 we try to establish the strong consistency and asymptotic normality
of a generalized weighted least squares estimate under certain conditions on the
stochastic regressors and errors. In Section 4 we will discuss the linear hypothesis
testing problem in this model. In Section 5 we reestablish the results of Cheng
and Chang (1990) from Corollary 5.1, Theorems 3.2, 3.4 and 4.1.

2. Some reviews

In this sections we review some important results in Lai and Wei (1982). In
model (1.1), they assume:

(2.1) sup F{|en|* | Fae1} < oo a.s. for some o > 2
n

and
(2.2) lim E{e’ | Fn_1} =02 as. for some positive constant o°.
n—0Q

A special case of (2.2) is E(e2 | Fn_1) = o2 for every n. Let Amax(A), Amin(4),
Amax(n) and Apin(n), respectly, denotes the maximum and minimum eigenvalue
of matrix A and XTX,. They established the strong consistency of b, =
(XTXn)"1XTY, under the assumption that Amin(n) tend to infinity faster than
log Amax(n) in the following result.

THEOREM 2.1. Suppose that in the regression model (1.1), {e,} satisfies
(2.1) and

Amin(n) = 00 a.s.,
log Amax (1) = 0(Amin(n))  a.s.

then
b, — 08 a.s

This result follows from the key

LEMMA 2.1. Let {e,} be a martingale difference sequence with respect to an
increasing sequence of o-fields {Fn} such that sup, E(len|® | Fao1} < 00 a.s. for
some o > 2. Let Tn1,...,Tny be Fn_1-measurable random variable for every n.
Define N = inf{n : XI X, is nonsingular} and Q, = EL X, (XZXn) ' X1 En,
assume N < o0 a.s. Then forn > N and on {lim,_,c Amax(n) = 00} we have

Qn = O(log Amax(n))  a.s.
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3. Estimation problem

Tn this section we will discuss the same estimation problem under that (6% |
Fn_1) = g(2n,8), where z, is observable and F,_i-measurable, z, and 6 belong
to the k-dimensional Euclidean space, g is a real-valued known function of z,, and
8 (6 unknown parameter vector). Let s2 = g(zn,0), T = Un/Sn, Wn = Tn/Sn =
(Zn1/Sn " Tnp/sn)T and e, = €,/s, for every n, then we can rewrite model (1.1)
as

(3.1) M=wefB+e,, n=12....

Note that E * (2 | F,_1) = 1 for every n and the weighted least squares estimate
of 3, denoted by 3,, in model (1.1) is just the ordinary least squares estimate of
8 in model (3.1). Since # is unknown, we substitute the 6, described below into

Bn, and get a generalized weighted squares estimates B;‘; of 8. In order to prove
our main results, we need following Lemmas.

LEMMA 3.1. (Jennrich (1969)) Lel f be a real valued function on © x Y
where © be a compact subset of a Euclidean space and Y is a measurable space.
For each 6 in ©, let f(0,y) be a measurable function of y and a continuous function

of 8 for each y in' Y. Then there exists a measurable function 6 from Y into ©
such that for ally inY

fO(y),v) = inf 1(6.1).

LEMMA 3.2. (Lai and Wei (1982), (4.15)) Suppose that {e,} is a martingale
difference sequence with respect to an increasing sequence of o-fields {Fy,} such
that (2.1) holds, then

n T

ZG? = ZE(Q? | Fic1) +o(n)  as.

i=1 =1

LEMMA 3.3. Let A, © be subsets of k-dimensional Euclidean space, more,
assume that A is a compact set. If f(z, p) is real valued function which is contin-
uous on A x ©, then sup,ca f(z,p) and inf.ca f(2,p) are continuous functions

of p.
PrOOF. See Appendix.

Now since E, = Y, — Xpb, = (I, — Xpo(XIT X)L XT)E, where we denote
E, =[é1,é2,...,6,)T. Define the least squares estimate 6, of 8 to be the value of
p that minimizing Qn(p) = 31—, (67 — g(21, p))* /n, that is Qn(6r) = inf,co Qn(p).

THEOREM 3.1. Suppose that in the regression model (1.1), {€,) is a mar-
tingale difference sequence with respect to an increasing sequence of o-fields {F,}
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such that (2.1) holds and E(€2 | Fn_1) = g(zn,0) for every n, where g is a real
valued known function of z, and unknown parameter vector 6. We assume

(i) the parameter vector 6 is contained in a bounded open sphere S where the
closure of S is denoted by O,

(i) sup, ||znlle < o0 a.s., where || - || denotes the k-dimensional Euclidean
norm,

(iii) g is continuous function on R¥x© and g(zy,,p) > O0Vp € {9, O1,....0,,.. 3
a.s.,

(iv) the quantity

n

L3000 gt

t=1

has a unique minimum at p =0 a.s.,
(v) log Amax(n)/n — 0 a.s.
Then we have the least squares estimate 8, — 0 a.s.

Proor. (a) Note first that the existence and measurability of the least
squares estimate of § would be followed from Lemma 3.1. Next let ¢, = {w :
sup,, |za(w)|x < m} and A, = {# € R* : |z]x < m}, then we have
P(Uy_; ¢m) =1 and 2z, € Ay, for all n on the set ¢,

Since ¢ is a continuous function on A,, x @ and A,, x © is compact, there
exists Lo such that g(z,, p) < La < coVn, p € O on the set ¢y, for any m, thus we
can assume without loss of generality in subsequence that sup,, ||zn(w)||x < m a.s.

For every p, € ©, let A, = diag(+/9(z1,pn)s-- -,V 9(%n, pn)). Then we have

A

1, -
(3.2) Eze?g(ztapn): (AnEn)" (AnEy)
t=1

Il 3=

ETA%E, - LETA2X,(XTX,) ' XTE,
n

_ 1

mn

1
+ EEEX,I(X,an)‘lX;{AfLXn(Xf;Xn)*XfEn.

ETX,(XTX,)'XTA2E,

Since the 4th term of (3.2) equals to

[owy

(3:3) ([ AnXn (X7 Xn) ™ X0 Bl <~ Amax (A7) | X (X33 X) T X7 En|)”

—3

< =Ly - O(log Apax(n))  (by Lemma 2.1)
1) as.

3

]
—~

Then by Cauchy-Schwarz inequality, Lemma 3.2 and (3.3), we have the square of
the 2nd term of (3.2)

1
‘-Q(ESA%Xn(XEXn)_lX«ZEn)Q
n
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\ -

(Er X (X X)X AL X (X X)X Ey) - (BT AZE,)

n

1 1 _
L - —E}’;En) -EHAan(Xan) 'XTE,|?

2 5™ 6(20,0) + o(1) | - o(1)

< [L3+o(1)] - o(1) = o(1)  as.

A
l—"AS
S

Similarly, we have the squares of the 3rd term of (3.2)
1
E(EEXH(XZ’XH)*XEA%E”V =o(1) as.

Hence from (3.2) we obtain

(3.4) = Z é;9(z¢, pn) = Z €;9(zt, pn) +0(1) as.

Take p, = p, we have

1 n 1 n
—_ 52 = —
n;etg(zt, n;egzt,p)+o 1) as.

Let a, = €, - v/g(2n,p) for every n, then {a,} is a martingale difference with
respect to {F,} and sup E(|a,|* | Frn_1) < 0o a.s. for some o > 2. Then by (3.4)
and Lemma 3.2, we have

1 n
—Zetg 200) = = | S B | For) + o) | +0(1)
=1

1 n

EZ 9(2z¢,0)g(ze,p) +0(1) as. forall pe®.
In particular,

1. I 5
(3.5) EZetg(zt,G) == Zg (2:,0) +0o(1) as.
t=1 t=1

It implies that

3

. Z —9(2,0))(9(2:,0) — g(z,p)) = 0(1)  aus.
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(b) Since

(36 Qulba) = inf 5" ~ gl )’

PEO N

= inf - Z(et ~ g(2,0) + g(2,0) — (ztap))z

pEO N

R R
= inf | =Y "(&7 - g(z,0))?

€0
p nia

[N

—Z — 9(2,9))(g(2t,6) — g(z1, p))

3

3

:I—-‘

+= ) (9(2,8) — g(z1,p))?
=1

=Qn(0) + o(l) a.s.,

by (a) and condition (iv).
(c) Since © is compact, let {9, } be any convergent subsequence of {6, } and
say O, — 0*. By (3.4) and (3.5), we have

1, o,
— 5 .
Nk getg(zi nk)
1 & -
== ngg(zt; Op.)+0(1) as.
"k t=1
1 ng . . 1 ng )
= -n—k Zef[g(zt) 0mc) - g(Zt,0 )] + ;7,7; Zg(Zt, G)g(zt, @ ) + 0(1) a.s.
t=1 t=1

By Lemmas 3.2 and 3.3, and 9% — §*, we have

1 & N .
. Zeg[g(ztvenk) —g(zt,a )]
Nk t=1
1 & R
= 26599(%,%0 — 9(2,07)]

é'—l“ sup }Q(Zt, 'Ilk) g(zt,B )} Zet

k Zte m t=1
= sup lg(zt,énk) g(2,6%)] ( Zg (2:,0) + o(1 ) a.s.
ZtEAm

= sup 9(2¢, Bn, ) — g(2:,6™)] - ( L2+0(1))
ZtEDy,

— sup [g(z,0%) — g(2¢,0")| - (L2 +0(1)) = 0(1) as.,

2 €A,
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it implies that
1 & A 1 &
- > €2g(z,05,) = - > 9(z,0)9(24,6%) +0(1)  as.
t=1 t=1

Similarly,
1 & X .
n—kzg(zt’e)[g(ztvenk) _g(zhe )] :0(1) a.s.
t=1

Thus
—Z[et g(2t,0)l{g(2,0) — Q(Zt,énk)] =0(1) as.

and by the same arguments of (3.6), we have

n—k Z(g 2,0 zt, )2 =o0(1)  as.

Further,
tim 3 (g0 0%) — gz, m,))?
Nk —00 T, e g\zt, gl2¢, Un,
< lim sup (g(zt,G*)—g(z,g,én,c))2
Np—00 2 €Ay,
=0, by Lemma 3.3 and énk — 0*.
Hence
n_k; Z zta ztvo))z
1 & . R
= n—k [(g(ztae*) - g(zt"gnk)) + (g(zt70nk) - g(zt’e))P
t=1
1 &
= (g(ztae*) g(ztaa ))
[ Rt

o Z(Q(Zt, On) = 9(2,0))(g(2, %) — 9(t, 6ns)
+ Y (gl ) 91,0
<220z 3190 6) = glet, b + o)

<4Ly- sup |g(z:,0%) — g(2,0n,)| +0(1) =0 as ny — o0
2t EAm

357
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thus #* = 0 a.s. by condition (iv). Since the null set for the subsequence {4, } to
be convergent on its complement can be chosen to be independent of {ny}ren, we
obtain 8, = 6 + o(1) a.s. and then 6,, — 6 a.s. O

LEMMA 3.4. Let z,, be the design vector at stage n.
If sup,, ||z, |l < 00 a.s., then Amax(n) = O(n) a.s.

PrOOF. See Appendix.

COROLLARY 3.1. The result of Theorem 3.1 still holds when the condilion
(v) is replaced by sup,, ||zs|l, < 0o a.s.

After getting the strong consistent estimate ,, of 8, we can define the gener-
alized weighted least squares estimate of 5 for (1.1) as

(3.7) b= (X7 G Xa) T XL GRY,,

1 =
’ g(zn»en)

where G}, = diag[g (Zl L ]. Note that the weighted least squares esti-
1,Vn
mate of 3 for (1.1) is

with G, = diag[g(zi,o) AR g(zi,e)]'

In order to investigate the strong consistency of ﬁ; under some regular condi-
tions on the regression matrix X,,, we need the following Lemmas.

LEMMA 3.5. Let B is n x p matriz. If C is n X n symmetric matriz, then
Ai((AminC) - BTB) < XM(BTCB) < A\i((AmaxC) - BT B), where \y(M) > --- >
Ap(M), M is any pxp matriz and X\;(M) is the i-th eigenvalue of M. In particular,
if C is nonnegative definite, then for i =1,2,...,p we have

AminC) - M(BTB) < X(BTCB) < (MmaxC)Ai(BT B).

PROOF. See Appendix.

LEMMA 3.6. Let A,, B, be invertible symmetric p X p matrices and A, =
B, +o(1). Ifliminf, Apin(A4y) > 0, then AL = B+ o(1).

ProOF. See Appendix.

~

LEMMA 3.7. If0 < Ly < g(zn,p) < Ly < co¥n, Vp € {6,01,05,...,0,,...}
and sup,, ||Zn|lp < 00 a.s., then we have

W -

1 1
(2) EXEG;Xn = EX}[G”X” +o(1) as.

1
XIGrE, = EXE GnEn,+0(1) as and
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Furthermore, liminf,, Ay, (n)/n > 0, then

n n

1 A -
(XSG;Xn) =< XffGan> +0o(1) as.

PrOOF. See Appendix.

THEOREM 3.2. Suppose that in the regression model (1.1), {en} is a mar-
tingale difference sequence with respect to an increasing sequence of o-fields {F,}
such that (2.1) holds and E(€2 | F_1) = g(2n,8), with g a known function and 0
unknown parameter vector. If the regression matriz X, and g(zn,0) satisfy condi-
tions (i), (ii), (iil), (iv) of Theorem 3.1 and the more extra conditions

(v) sup, [|znllp < o0 a.s. and

(vi) liminf, Apin(n)/n > 0 a.s.
then B:.‘L — 3 a.s.

_ Proor. Let ¢, L as in the proof of Theorem 3.1. By Lemma 3.3 and
6, — 0, we have inf; g(zt,0,) — inf;g(z,0) a.s. Since inf; g(z¢,p) > OVp €
{0,61,...,0,,...} as. we take 0 < € < inf; g(2;,0). For this ¢, there exists N such
that

~

il;lfg(zt, 6r) > iI%fg(zt,O) —€¢ Vn> N,

take Ly = min{inf; g(zt,él),inft g(zt,ég), ... ,inftg(zt,éN),inft 9(z¢,0) — €}, then

0 < L1 < g(zn,p) < Ly < ooVn and Vp € {9,91,92,...,9n,...} a.s. By Lemma
3.4, condition (vi) and Lemma 3.5, we have

Amin(n) = 00 as.,
log Amax(n) n

li —ormaxvy o« =
TP () n
1 log Amax(n)
< . _
= liminf, i (n)/n) " o(1) as,

LiM(XFGaX,) < M(XEX,)
< LoN(XTG X )Vi=1,2,...,p as.,
and
Amin(XTG,X,) — 00, log )\max(XZjGan) = O(Amin(XanXn)) a.s.

Let ey, as in (3.1), since sup,, E(|e,|* | Fno1) < 00 a.s. and by Theorem 2.1 we
have
B = (XTGnXn) ' X G Y, =B+0(1) as.

Now we rewrite

G —B=(XTG X)) 1 XTGY, — 8= (X2G:X,) ' X G E,,.
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Since the elements of G, are bounded a.s., by condition (V), Lemma 3.7 and (2.9)
of Lai and Wei (1982), we have

-1
bi~p= EXT Gan] [%XZ GnEn} +0(1) = (B2 — B) + o(1) = o(1)

and

~

Br=p+0(1) as.

Thus we conclude the result

B —pF as

Before proving the asymptotic normality of B;, we would like first to give a
weaker form of asymptotic normality of b, than that of Lai and Wei (1982), and

try to study the asymptotic normality of [3; to a more general result. Denote =
and —d», respectively, the convergence in probability and in distribution.

THEOREM 3.3. (Chang and Chang (1990)) Suppose that in the regression
model (1.1), {€,} is a martingale difference sequence with respect to an increasing
sequence of o-fields {F,,} such that (2.1) holds and lim,, o, E(€2 | F,,_1} = 02 a.s.
Moreover assume that there exists a sequence of non-random nonsingular matriz
{Br} such that

BN(XTX,)(BD) BT

where ' is a positive definite matriz and

max z7 (Bp,BX)1z; 50
1<ikn

then

() (BiUXIXa)(BI) ™Y, By (XTI X,)(bn — B)) (I, T/2N)
(i) (bn— AT (XIXn)(bn — B) D02 as n— oo

where N ~ N(0,0%1,) and x3, the chi-squared distribution with p degrees of free-
dom.

Now we establish the asymptotic normality of B;‘L under certain conditions on
the regression matrix X, as following

THEOREM 3.4. Suppose that in the regression model (1.1), {e,} is a mar-
tingale difference sequence with respect to an increasing sequence of o-fields {F,}
such that (2.1) holds and E(€2 | Fno1) = g(2n,0), where g is a known function
and 6 is unknown parameter vector. Moreover, assume that conditions (i), (ii),
(iit), (iv) and (v) in Theorem 3.2 hold and there exists a sequence of nonrandom
nonsingular matriz {B,} such that

B, (X3 GnXa)(Br) ™t 5T
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where T' 1s a positive definite matriz and

max z7 (BpBY ) 1z; 50
1<i<n

then
() ByY(XTGnXn)(Bn— ) STH2.N,
(Bn = B)T (X2 GnXn) (B — B) 5 X2
() ByNXTGLX.)(B:-B)STYV2.- N
B =BT (XTGCEX) (B~ B) S X2 as n— oo
where N ~ N(O, I).

PROOF. (i) Let ¢, L1, Lo as in the proof of Theorem 3.2, then by Lemmas
3.3 and 3.5 and 8, — 0, we have

1B (Xa GaXn)(By) ™! = B U (X, GrXn) (B7) 7
= HB;l(XZTan)(BS)_lH
= o(1)[|B; (X7 Xa)(BR) |
<o(l)- Ly - | B M (XA Gr Xn)(BY) M 20

where T,, = G, — (7}, we obtain

B M (X GnXn)(BY) ™t = By (X GrXa)(BY) 50

and then
(3.8) B M (XIGrX,)(BI) AT
Next since
lrélfg(nwf(Ban)_lwi < Lil lrél?écnx?(Bnt)‘lxi a.s.,
we have
(3.9) max w? (BpBY)'w; 50 as.

1<i<n

where w;’s are stated in (3.1). And since B, is the ordinary least squares estimate
of the rewritten model (3.1) with w;’s replacing z;’s in Theorem 3.3, we have

(3.10) By Y XTGnX0) (B — B) STYV2. N
and
(Bn — BT (XTGnXn) (B — B) S X2
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(i) By conditions (i), (ii), (iii), (iv), (v) in Theorem 3.2 and Corollary 3.1, we
have

BN (XEGrX0) (B~ B)
= BN (X1 G X o) (X3 G Xn) T X G (X3 + En) ~ ]
=B 'XIGrE,
=B 'XIG.E, - B;'XIT,E,
= Brzl(XanXn)(Bn - /8) - BrjlngnEm
where
Tn = G, — G = diagt1, .. ., tn).

Now consider the second term B, 1X}; 1. E,, we have, for any p-vector c,
I'BAXTE, =Y "B 'z¢; is a martingale transform, then by Lemma 3.3,
(2.9) of Lai and Wei (1982) and (3.8), we have

n
Z cTB,jlxieiti
i=1

ICTB;L.anTnEn’ =

n
T p-1
E ¢’ B, "z a.s.

i=1

o(1) - i(cTBglxi)z +0(1)

i=1

= o(1)

=o(1) a.s.

=o(1) - Z(CTB;IQS,;)?‘ a.8.
i=1

= 1
<o(l)-La- cTBT:la:l{ }mf BTY=1¢
(1) - Ly ; e (Bn)
=0(1) - Lo B;H(XTG o X)(BE) e B0,

Thus R )
I BUXTGEX) (B ~ B) — T BIY XY GrX0)(Bn — B) 20

By Cramér-Wold Theorem and (3.10), we have
B (X[ GrXn) By~ ) STV2 - N.
Finally, since

(B~ BT (XTGEXn) (B~ B)
= By N XIG X)) (B — OB (X G X)) ' Ba B XT G X)) (B — B)]
)

— Xp. |
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4. Hypothesis testing problem

Suppose that in model (1.1), E(e2 | Fn_1) = g(2n,0) where g is a known
function of z, and unknown parameter §. For the null hypothesis Hy : HT3 = h
against the alternative hypothesis Hy : H'3 # h where HT is a k x p (k < p)
matrix with rank & and A is a k x 1 known vector, we will discuss this hypothesis
as follows.

Consider the rewritten model (3.1), 1, = w8 + e, and E(e2 | F,_1) =1 for
every n. Let

~

R(z) = (d’n - Wan)T(wn - Wnﬂn)7
R? = (wn - Wnﬁ:>T(¢n - Wn:@:)

where W, = (w1,...,wn)T, ¥n = (01,...,7m)7, (3, is the weighted least squares
estimate of 3, and 57*1 is the constrained weighted least squares estimate of 3 under
Hy. Tt can be shown that 3, = (WIW,) 'WT4, and 5% = G, — (WIW,)*-
H[HT(WEWn)“lH]_l(HTﬁAn —h). Let P, = Wo,(WIW,)"'WT and P} =
W,(WIW, ) HHT(WIW,)*H*HT(WIW,)"'WT, then P, and P, — P*
are the projection operators of M(W,,), the space generated by W,,, and the space
{W,B | HT 3 = h} respectively. Furthermore, (P, — P}) is orthogonal to P (see
Chang and Chang (1990)), denote P, = P,, — P}, then we have

R} — R = ($n = WaB33)" (0 — WaB5) = (¥ — WafBn)" (¥ — W)
= ”W’n - w¢n)’|2 - ”@Z’n - n¢n“2
= Hpnwn - w7/’n||2
= (H" B, — W) [H" (W, W,.) " H| " (HT B, — h)
=(H B, —H"8+ H"B - )T [HT (WIW,) " H| ™!
(HTB, — HTB+ HT3 - h).
Thus under Hy, R? — R2 = (8, — )T H[HT (WIW,)*H|"*HT (8, - B).
Let

(4.1) A, =P W,
then

AT A, = HIHY(WIW,)*H|*HT,
and

Now we give a test statistic of linear hypothesis Hy : H' 3 = h and construct
an asymptotic distribution as follows.

THEOREM 4.1. Suppose that in the regression model (1.1), {e,} is a mar-
tingale difference sequence with respect to an increasing sequence of o-fields {F,}
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such that (2.1) holds and E(€2 | Fr—1) = g(2n,0) where g is a known function of
zn and unknown parameter vector 8. Moreover, assume that conditions in Theo-
rem 3.2 hold and there exists a sequence of nonrandom nonsingular matriz {B,}
such that

B, (X GnXn)(By) Tt 5T,

where I is a positive definite matriz with

-1, P
max z7 (B,BI) lz; %0
1<i<n

and
(43) B (AT AL (BT) ™ T2 [Ukoxk g] 2

where Ugx i is an idempotent matriz with rank k. Then under Hy : HT 3 = h, not
only R?2—Rz2 = (B — B)TH[HT (XTG% X,,)"YH|"'*HT (3 — B) but also R} — R3
converges in distribution to XZ as n — 0o, where B;‘L and G% as in (3.7), R}? as
in (4.2) except replacing Bn, 0 by B: and O, respectively for i =0,1.

Proor. First from (3.9)

1, P
max wl (BBl tw; 5 a.s.
1<ikn

then from (4.2) by substituting 3* for 3, and A% for A,, where A% = PXWy as
in (4.1) except substituting 8, for 6 in the entries of W,, we have

R - R = (B - B)(AT AL B - B)
= [ByHXIGE X)) (B — B [BL(XIGrX0) M (Ba)]
B MATANBHTN(BI (XL G Xn) " Br)
(BIUXTGEX,) (B~ B)).

Using Theorem 3.4 and (4.3) we have
RI? — R:2 4 NTTV/2p-1rY/2 [Ukoxk 8] TY20-IPV2 N = 32,

as n — 0o.
Secondly, from Lemmas 3.4, 3.6 and 3.7, we have

Xrerx,) ' = (XIGnXn) " +o <%>
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and

(4.4) (AT AX) = HIHY (XTGr X)) tH)*HT

n

-1
=H|H'(XIG.Xn) 'H+o (%)} HT
=n Hn -H(XYG,X,) " H +o(1)] *HT
=n-H{n -H (XYG,X,) "H™* +o(1)}H"
= H[HY(XTG,X,) *H]"*H" + o(n)
= (ATA,) +o(n) as.

Then from Lemma 3.5, condition (vi), (3.8) and (4.4), we obtain

1B (AT AL) = (An Au)(BR) M < o(n) - 1B (BR) 7|

1
B 'xTx, (B 50
)\min(n)u n n( 'n,) H

<o(n)-

1e.

n

B (AT A7)(BT) " BT [U'gk o[
Using Theorem 3.4 we obtain

2 2 d 2
RY — Rj = Xk- g

By this result, we can conclude that, in practical, the null hypothesis Hy would
be rejected if R — R§? > X%,l_ ,, for significance level o and in large n.

5. Example

In this section, we apply our method to the following linear heteroscedastic
model. We demonstrate the linear heteroscedastic model of the regression model
(1.1) with E(€2 | Fpn-1) = 2L - 0, where 2, = (2n1, 2n2, - - -, 2nk)” is an observable
random vector, Fy,_1-measurable and 6 = (6;,...,0;)T is a parameter vector. In
this model, 0, is equal to (Z1 Z,)"1ZLé2 with Z, = (2i;)1<i<n1<j<k-

COROLLARY 5.1. Suppose that in linear heteroscedastic model, {e,} is a

martingale difference sequence with respect to an increasing sequence of o-fields
{Fn} such that (2.1) holds. We assume the conditions (i), (ii) and (v) of Theo-

) .. Amin(ZX Z.) A
rem 3.1 are satisfied and liminf, =>*>2="> > ( a.s., then 6, — 0 a.s.

PROOF. Since the condition (ii) of Theorem 3.1 clearly holds, we only need to
check the condition (iv) of Theorem 3.1 whether or not holds. Assume

limy oo £ Zizl(z;":(G —p))? =0, from
0= lim > (:E@ -0 = m L0 )" 22206 1)

min ZTZn
> lim inf %”———)HO —p|2>0 (by Lemma 3.5)
n
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we have 6 = p a.s.
Thus, by Theorem 3.1, we have 8,, — € a.s. O

Now we consider a special case of linear heteroscedasticity model. Let z, =
(1,u,)T and 6 = (d, 0?)T, then g(2,,0) = 0%u, + d and

1 @
Zrz,/n= <a _2>

U

where @ = > 7 u;/n, u? =Y T u?/n.
Let A = Apin(ZE Z,/n) = {1 +@% — [(1 — @%)? + (2a?)]"/2} /2, we have

(1—2%)%+ (20)? = 402 — 4(1 + @)\ + (1 + @)?
> —4(1+ @)+ (1 +a2)2

It implies

v
£)
I
=
HM:
s:m
TN
:N
+
3
NE
e
~——

If inf, u,, = ¢ > 0 then Y"1 u? > nc and

-1 n 2 _
limint L= D2t 5 e M7C
noon24n)y g ul n n(l+c)

ie.
lim inf Apin(ZX Z,) /n > 0.
n

Therefore, we reestablish the results of Cheng and Chang (1990) from Corollary
5.1, Theorems 3.2, 3.4 and 4.1.

6. Discussion

Note that in many simulations the convergent rate of 8, converging to 6 in
Lemma 3.1 (Jennrich (1969)) are sometime slow, so it is not efficient in application,
thus to find a better method to substitute it is necessary in practice. If 8 is
permitted to contain elements of g, i.e. 0 = [a1,..., a4, B1,-- -, ﬂp]T, we can find
all results still hold under those conditions mentioned before.
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Appendix
In this appendix, we prove Lemmas 3.3, 3.4, 3.5, 3.6 and 3.7.

PrOOF OF LEMMA 3.3. Since f is uniformly continuous on compact subsets
of A x O, for any pp € © and any € > 0, there exists § > 0 such that f(z, pg) —€ <
f(ze,p) < f(zt,p0) + € for all zz € A and ||p — pollx < 6. Thus, for {|p — pollx < 6

sup f(z¢, p0) — € < sup f(z,p) < sup f(z,po) + €
ZLEA ZtEA ZteA

Since € is arbitrary sup,,ca f(2¢, p) is continuous at p = pg, and py is arbitrary, so
sup,, ca f(2t, p) is continuous for all p € ©. Similarly, inf,ea f(t, p) is continuous
for all p € ©. 0

PROOF OF LEMMA 3.4. Since
p n
Amax(n) < D Xi(n) =t X7 X =Y ||za]|2 = O(n). O
=1 i=1

PrOOF OF LEMMA 3.5. Since C is symmetric, there exists orthogonal matrix
U such that C = UTAU where A = diag(A\1(C), A2(C), ..., A (C)), we have

BTCB = (UB)TA(UB)
= (UB)T[A = A (C) X Lnsn)(UB) + (UB) A (C) X Lysn | (UB).

Further since (UB)T[A— A, (C) X L,xy|(UB) is nonnegative definite and by Weyl’s
inequalities, for i = 1,2,...,p, we have

Mi(BTCOB) > M{(UB)T[Ma(C) X Iixn)(UB)}
=X\ (C) - BTB).

On the other hand,

(UB)TM(C) X Inxn](UB)
= (UB)"[M(C) X Inxn — AJ(UB) + (UB)TA(UB).
Thus
M(BTCB) < \i(M(C)BTB). O

PROOF OF LEMMA 3.6. From, |4, — B! < 1B I|An — Bal||| 41| and
lim inf,, Amin(An) > 0, we have A, = B! 4+ 0(1) a.s. O
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Proor oF LEMMA 3.7. Let ¢, = {w : sup, ||zp(w)|l, < m}, then
P(U>_, om) =1, and let
1 1 9(z,0) = g(z, p)
h zZ. 7,0 = — —_=
o) = )~ 9Gnd) 9Ol 1)

we have by assumption & < 1~ < 2 ;P € 9,0, . ,0n,...}. Thus
i 9(2¢, P)

1y 2y o) = L " (9(2,0) — g(z,0)
n;h(tap) nz<g<zt,0)g(%_p)>

t=1

11 S (9(z4,0) — 922, 0))¥p € {8,01,..}

L4
T

AN

from the proof of Theorem 3.1, we have

3

lz (2,0) — g(20,0,))2 = o) as.

and

% Z h(z,0,) = 0(1)  as.
t=1

Now
. R | -
X, G E, — EX" G.E, = ﬁXn (G, — Gn)E,

~

1 n
- E 93t1'h(2t79n)€t
n

t=1

~

13
=1 - Zﬂitk “h(zt,0n )€
n t=1

A

1.
E ;Itp : h(zm 9n)€t

px1

fork=1,2,...,p, and

—thkh 2t,0,) < m— Zh (2,0n) = 0(1) as.

By Lai and Wei (1982) (2.9), we have

= . 1 ~ . 1
%thkh(ztﬂn)et =—o0 <Z mfkhz(zt,ﬂn)> +-0(1) =o(1) as.
t=1 t=1
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and
%XgGZEn = %X};GnEn +0o(l) as.
Hence
le G*E, = lX,’{ GnEn+o0(1) as.
n n
Next

1 1
—XTGr Xp — —XLGn X,
n n

n

1

n E xtlh(zta $t17--- - E $t1h Zt, fL‘tp
t=1

n

1

ﬁg xtph(zh )Tt E Tiph (2,0 n)Ztp
=1

for 1 < h, k < p, and by Cauchy-Schwarz inequality

1< . 1 R
- ;l‘th (2, 0n)zen| <m? | = Z h(z,0r)

we have

1 1
;X,{ GiXpn=—-XI'G, X, +0(1) as.
n

Hence ! )
;X,:f G X, = EXE GnXn+o(l) as.

Finally, from Lemmas 3.5 and 3.6, we have

1 -1 —1
(EXEG;X,L) :(%XanXn) +0o(1) as. O
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