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A b s t r a c t .  Consider the problem of estimating a normal variance based on a 
random sample when the mean is unknown. Scale equivariant estimators which 
improve upon the best scale and translation equivariant one have been proposed 
by several authors for various loss functions including quadratic loss. However, 
at least for quadratic loss function, improvement is not much. Herein, some 
methods are proposed to construct improving estimators which are not scale 
equivariant and are expected to be considerably better when the true variance 
value is close to the specified one. The idea behind the methods is to modify 
improving equivariant shrinkage estimators, so that  the resulting ones shrink 
little when the usual estimate is less than the specified value and shrink much 
more otherwise. Sufficient conditions are given for the estimators to dominate 
the best scale and translation equivariant rule under the quadratic loss and the 
entropy loss. Further, some results of a Monte Carlo experiment are reported 
which show the significant improvements by the proposed estimators. 

Key words and phrases: Entropy loss, quadratic loss, shrinkage estimator, 
Stein estimator, uniform risk improvement. 

1. Introduction 

Suppose  t ha t  we want  to es t imate  the  variance,  (72, based on a r a n d o m  sample  
X1, X 2 , . . . ,  Xn f rom a normal  d is t r ibut ion wi th  unknown mean  #. For quadra t ic  
loss funct ion 

(1.1) 
6. )2 

LI (o  -2, (7 2) : ~ -  -- 1 , 

the  es t imator  

(1.2) 1 
n + 1 E ( X i -  )~)2 

i=1 
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n with J~ = }-~-i=x Xi/n is best among all scale and translation equivariant proce- 
dures and is minimax with constant risk. However, Stein (1964) showed that it is 
inadmissible and is dominated by the shrinkage estimator 

(1.3) min ~ ( X i - • ) 2 ,  1 n 
n~-2  ~ ' 

"= i=i 

Extending Brown's technique (1968), Brewster and Zidek (1974) constructed a 
minimax and generalized Bayes estimator which has been shown to be admissible 
(Proskin (1985)). Using a different technique, Strawderman (1974) obtained a 
class of minimax estimators some of which are generalized Bayes. Rukhin (1987) 
has investigated the relative risk improvement of the Brewster-Zidek estimator and 
locally optimal minimax shrinkage ones given by himself. He has observed that 
the maximum relative risk improvement is at most 3 or 4 % for both estimators. 
A good account of these results can be found in Maatta  and Casella (1990), where 
confidence estimation is also considered. 

Brown (1968) derived estimators which improve upon the best equivariant es- 
timator for more general loss functions. In particular, for the entropy loss function 

(1.4) L2(a 2,~r 2 ) =  (r ~ - l o g  ~-~ - 1 ,  

the best equivariant estimator 

(1.5) 1 n -  1 E ( X i -  j~)2 
i=1 

is improved. Brewster and Zidek (1974) showed that a Stein-type shrinkage es- 
timator dominates (1.5) for the entropy loss (1.4). They also derived improving 
generalized Bayes estimator for a variety of loss functions. Madi (1993) has derived 
a class of improving estimators based on several independent samples for a large 
class of loss functions. They are similar to those of Brewster and Zidek (1974). 

Recently, Kubokawa (1994) has given a unified approach to improving equiv- 
ariant estimators by using a definite integral, and has provided a class of improving 
procedures in both point and interval estimation for a wide class of distributions 
and loss functions. 

The improving estimators proposed so far are all scale equivariant. However, in 
here we introduce better estimators which are not scale equivariant. We construct 
them by modifying scale equivariant improving estimators so that they are much 
better in some specified region at the expense of smaller improvement outside it. 

As a matter of fact, we propose three methods to modify improving estimators 
when cr 2 is thought to be near ~ .  Without loss of generality we set ~ = 1. The 
idea which is common to the three methods is that, we should shrink a little if the 
usual estimate is less than 1 and much more if the estimate is much larger than 
1. This will make the improvement larger for cr 2 in the neighborhood of 1 at the 
expense of smaller improvement outside it. 
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In Section 2, we describe these methods for the quadratic loss and give mini- 
maxity results for the resulting estimators. We show that  a similar argument holds 
for the entropy loss in Section 3. In Section 4, we give some results of a Monte 
Carlo experiment which demonstrate the risk behavior of the proposed estimators. 

2. Three methods to modify estimators--quadratic loss case 

In the main part of this paper, we are concerned with a more general situation 
than the one discussed in Section 1. Let S and T be independent statistics and 
suppose that  the distribution of S/a 2 is a central X 2 distribution with u degrees of 
freedom and that  of T/a 2 is a non-central X 2 distribution with k degrees of freedom 
and non-centrality parameter A. The situation discussed in Section 1 corresponds 

n X ~ - to S =  Y ] i = l ( i - 2 )  2 , u n 1, T = n ) (  2, k = 1 a n d A = n p 2 / ( 2 a 2 ) .  Also, 
one can reduce the variance estimation problem in the usual linear model to the 
situation above. An alternative approach in linear regression model can be found 
in Gelfand and Dey (1988). The estimator of a 2 to be improved upon is 

5o=S/(u+2) .  

2.1 Method I 
The estimator given by Stein (1964) which improves upon 60 can be expressed 

as 

(2.1) 5 * : m i n (  S S + T  ) S -  k ( S T )  + 
u + 2 ' u + k ~ 2  u + 2  u + k + 2  u ~ 2  

where a + = max(0, a). Therefore, it shrinks 50 towards T/k when S/ (u+2)  > T/k. 
However, if the value of a 2 is thought to be not less than 1, there is no reason to 
shrink 5o when 50 < 1. So we may consider estimators which shrink 80 towards 
max(l ,  T/k) when 50 > max(l,  T/k). By introducing an absolutely continuous 
function r(.), we consider the following more general class of estimators: 

u + 2  u + k + 2  r 1 if < 1 < - -  u + 2  ' k u + 2 '  

2 u + k + 2  r i f l  < - ~  < - -  u + 2  ' u + 2 '  u +  

S 
u +  

Then, we can 

, 

prove the following domination result. 

otherwise. 

The proof is given in the Appendix. 

Remark. The condition 0 < r(S/(S + T)) for all S and T is unnecessary and 
we only need that  r(S/(S + T)) > 0 in some nonempty set in A t2 B, where A and 
B are the sets T/k < 1 < S/(u + 2) and 1 < T/k < S/(u + 2) respectively. 

THEOREM 2.1. Under quadratic loss function (1.1), 51 dominates 50 if r(.) 
is an absolutely continuous function which satisfies 0 < r(.) < 2. 
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2.2 Method II 
First, we give the modification of Stein's estimator 5* by this method. 

introducing a function h(.), we consider the following estimator 
By 

u + 2  u + k +  u + 2  

We will discuss the choice of h(.) after we give a sufficient condition on h(.) for 
the estimator 5 2 to dominate 50. 

THEOREM 2.2. If  h(.) is monotone non-decreasing, not identically 0 and sat- 
isfies 0 <_ h(.) <_ 2, then 52 dominates 50 under quadratic loss (1.1). 

We can prove this similarly to Theorem 2.1 if h(.) is differentiable. Even if 
h(.) is not differentiable, the proof goes through by using Riemann integration. 
We omit the details. 

Remark. If h(S) is replaced by h(S + T) in the definition of 52, one obtains 

5 -m 
S 

u + 2  u + k +  u + 2  " 

For this 5~ one can prove the same proposition as Theorem 2.2. 

Now, we discuss how to choose h(S) in order to get larger risk improvement 
for (#, a 2) in the neighborhood of (# = 0, a 2 = 1). Assuming that h(.) is dif- 
ferentiable and applying Lemma A.1, we can easily check that the risk difference 
E ( 5  0 - 0 "2 )2 /0  -2 - E ( 5 2  --  0-2)2/0-2 is the expected value of 

2 k 2h(S){ 2 h ( S ) } ~ +  
u + 2 u + k +  

2 k { S 
+ - -  Sh'(S) 

u + 2 u + k + 2  ~ u + 2  

u + k +  u + 2  

2 h(S 
u + k + 2  

where I+ is the indicator function of the set S/(u + 2) > T/k  and L is a Poisson 
variable as given in the proof of Theorem 2.1. The first term will be the main one. 
If h(S) is nearly equal to 0 for S << u + 2, this will mean lack of improvement 
for 0-2 << 1 . I f h ( S )  is nearly equal t o 2  for S>>  u + 2 ,  this will mean lack of 
improvement for a 2 >> 1. It seems natural that h(.) should increase from 0 to 2 
in the neighborhood of S -- u + 2. One drastic choice is 

h(S) __ { 0, S < u + 2 ,  
2, S > u + 2 .  

A more moderate choice might be h(S) = 2 z F(S/(u  + 2)), where F(.) is a 
distribution function of a continuous random variable whose mean is 1. More 
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specifically, one can choose F(S/(u  + 2)) as if it were a prior distribution of a2. In 
the simulation study about which we will report in Section 4, we have chosen the 
distribution function of an inverse gamma variable with mean 1 as F(.). 

If we apply methods I and II simultaneously to 5* with r (S / (S  + T)) ~ 1, we 
get the estimator 

u + 2  u + k + 2  u + ~  - max 1, . 

Choosing the function h(S) so that it increases from 0 to 2 in the neighborhood 
of S/(u + 2) = a2(> 1) results in the estimator, we should use when we have prior 
information that cr 2 = cr~ > 1. We can prove that the estimator (2.2)improves 
upon 50 if h(.) is non-decreasing, not identically 0 and 0 < h(.) < 2. 

We can apply method II to other estimators. For example, for the modified 
Strawderman's estimator with h = h(S + T), we have the following result. 

THEOREM 2.3. Let h(.) be a non-decreasing function which satisfies 0 < 
h(.) < 1. Then the estimator 

. + 2  . +  ~ 

is at least as good as 50 under quadratic loss if 5 > 0 and 0 _< e(.) < D(5), where 

n + 1 1) D ( 5 ) : m i n [ 1 - ~ , 2 { / 3 ( n 2 - - - 3 3 + ~ , ~ ) / 3 \ 7 ,  

- / 3  ( n  2-----~1 + ~, ~ )  fl ( ~ ,  1) } 

"-- {fl ( n  +----~1,1)/3 ( n  +----~3 + 25, ~ )  }] .  

The proof is similar to that of Strawderman (1974). 
By modifying Brown's estimator one obtains 

S h ( S + T ) ( 1 )  (2.3) u +~ - u + 2 c Sir, 

where r > 0, Z = v/-T/S, Ir is the indicator function of the set Z < r and 

c = Eo[8 /~  2 I z < r ] /Eo[ (S /~2)  ~ I Z <_ r], 

where E0 denotes the expected value when ~ = 0. We can show that the estimator 
(2.3) dominates 50 if h(.) is non-decreasing, not identically 0 and satisfies 0 < 
h(.) < 2. 

If we denote 
Eo[Sl~ ~ l Z <_ z] 

¢(z) = Eo[(S/ff2)2 I Z _< z]' 



278 NOBUO SHINOZAKI 

we can verify that  a modification of the estimator given by Brewster and Zidek 
(1974) 

s h(S+T)( S ) (2.4) u + ~  - u + 2 ¢(Z)S  

is at least as good as 5o if h(.) is non-decreasing and 0 _< h(-) _< 1. 
Brewster-Zidek estimator is admissible and generalized Bayes and some of 

Strawderman's are also generalized Bayes. It is quite desirable but seems difficult 
to give similar results about some estimators derived here. 

2.3 Method III 
This method is the most drastic one and can be used to construct modi- 

fied dominating estimators by truncating shrinkage, when the original dominating 
shrinkage estimator is less than 1. Suppose that  the estimator 5(S, T) improves 
upon 5o under quadratic loss and that 5(S, T) <_ 5o for all (S, T). Then, we 
consider the following estimator: 

S S 
u + 2 '  i f - - ~ < l , u  

S 
53 = 1, if 5(S, T) < 1 < - - - -~,  

s 
5(S,T), i f l _ < 5 ( S , T ) <  u + ~ "  

We can verify that 63 dominates 5o under the quadratic loss as follows: first, we 
note that P{1 < S / (u+2 )  and 5(S, T) < S / (u+2)}  > 0 because the risk of 5(S, T) 
will be larger than that of 5o for ~2 _> 1 if 5(S, T) = S/(u + 2) for all S > u + 2. 
If a 2 _< 1, the risk of 53 is less than that of 5o because 53 is not farther from a 2 
than S/(u + 2) for all (S, T) and P{S/(u + 2) > 1 and 5(S, T) < S/(u + 2)} > 0. 
If ~r 2 > 1, the risk of 53 is not larger than that of 5(S, T) because 5a is not farther 
from ~2 than 5(S, T) for all (S, T). Since 5(S, T) dominates 5o, 53 dominates 5o. 

If we want to make the improvement of 53 large for cr 2 = 1, we may choose 
5(S, T), the estimator which shrinks a lot. 

3. Entropy loss case 

It is shown here that one can apply three methods described in Section 2 
to modify dominating estimators under entropy loss function (1.4). The best 
equivariant estimator is 

¢o = S/~, 
and is the one to he improved upon. Although Brewster and Zidek (1974) have 
given a generalized Bayes improving estimator, in here, we only discuss modifica- 
tions of the following improving one 

(3.1) ¢* = min , - ~  -- 

which is of the same type as (2.1). 

u u + k  
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3.1 Method I 
Modifying ¢* we consider estimators which shrink ¢o towards max(l ,  T/k )  

when ¢o > max(1,T/k):  

= . . . .  max 1, 
u u +  u 

Then, we have the following result. 

THEOREM 3.1. Under entropy loss function (1.4) ¢1 dominates ¢0 if  r(.) is 
an absolutely continuous function which satisfies 0 < r(.) ~ a~,k, where 

(3.2) a~,k = 2/ 1 + 7 - ~  + -3-u + ~--2 - "2 " 

The proof is given in the Appendix. The remark given at the end of Subsec- 
tion 2.1 also applies to this case. 

3.2 Method H 
By introducing a function h(-) we modify ¢* as 

0 + ¢ 2 -  s k h (S )  - 
u u + k  

Then, we have the following. 

THEOREM 3.2. If  h(.) is monotone non-decreasing, not identically 0 and 0 < 
h(.) ~ a,,k, then 02 dominates ¢0 under entropy loss (1.4), where au,k is given by 
(3.2). 

We can prove this in the same way as Theorem 3.1. The remark similar to 
the one given after Theorem 2.2 also applies to this case. 

If methods I and II are applied simultaneously to ¢*, we get the: improving 
estimator 

h ( s )  , 

where h(.) is non-increasing, not identically 0 and 0 ~ h(.) < a,,k. 

3.3 Method III 
Let ¢(S, T) be an estimator which improves upon ¢0 under the entropy loss 

and ¢(S, T) < ¢0 for all (S, T). We construct a modified dominating estimator by 
truncating the shrinkage when ¢(S, T) < 1: 

S/u,  if S / u  < 1, 

¢3 = 1, if ¢(S, T) < 1 < S/u,  

¢(S,T),  i f l ~ ¢ ( S , T ) < S / u .  

Then, we can show that 03 dominates ¢0 under the entropy loss as in the quadratic 
loss case. 



280 NOBUO SHINOZAKI 

Table 1. The relative risk improvements of 5i and ¢i when ~ = 1 (in percent). (In the left parts 
of Tables 1-3 three figures in each cell give the relative risk improvements of 51, 62 and 53 from 
the top, and in the right parts those of ¢1, ¢2 and ¢3. The relative risk improvements of 5* and 
¢* when (r 2 = 1 is given at the bottom.) 

5i ¢~ 

a2 0.0 0.5 1.0 0.0 0.5 1.0 

2.25 1.86 0.91 9.85 8.57 5.06 

0.5 4.84 3.75 1.57 14.57 11.94 6.30 

3.49 2.81 1.25 12.17 10.28 5.72 

4.29 4.10 2.30 13.08 12.10 8.19 

0.8 5.82 5.39 2.91 14.50 13.27 8.79 

5.60 5.21 2.82 14.83 13.51 8.88 

5.18 4.65 3.05 14.25 13.05 9.71 

1.0 5.77 5.12 3.33 14.09 12.95 9.69 

6.14 5.42 3.48 15.43 14.01 10.24 

5.55 4.94 3.91 14.75 13.62 11.34 

1.5 4.34 3.89 3.23 12.21 11.50 9.97 

5.34 4.74 3.78 14.64 13.51 11.27 

5.51 4.78 4.07 14.48 13.41 11.78 

2.0 3.61 3.05 2.82 10.95 10.26 9.58 

4.63 3.96 3.48 13.57 12.57 11.19 

5" or ¢* 1.44 1.42 1.18 6.50 6.44 5.55 

4. A Monte Carlo experiment 

In  here ,  we give s o m e  M o n t e  C a r l o  s i m u l a t i o n  r e su l t s  to  d e m o n s t r a t e  t h e  

p e r f o r m a n c e  of  t h e  p r o p o s e d  e s t i m a t o r s .  W e  on ly  c o n s i d e r  a r a n d o m  s a m p l e  of  

size n f rom a n o r m a l  d i s t r i b u t i o n  w i t h  m e a n  #.  The re fo re ,  k = 1, / / =  n - 1 a n d  

A = n#2/(2a2).  T h e  fo l lowing t h r e e  e s t i m a t o r s  a re  c o n s i d e r e d  for q u a d r a t i c  a n d  

e n t r o p y  losses r e spec t ive ly .  

Q u a d r a t i c  loss: 

51 = S/(~, + 2) - 2 / ( / / +  3 ) { S / ( u  + 2) - m a x ( l ,  T ) }  +.  

52 = S / ( / / +  2) - 2 F ( S / ( / / +  2 ) ) / ( / / +  3 ) { S / ( / / +  2) - T} +, w h e r e  F ( - )  is t h e  
d i s t r i b u t i o n  f u n c t i o n  of  t h e  Inve r se  G a m m a  d i s t r i b u t i o n  I G ( 1 0 1 ,  1 /100)  (see 

B e r g e r  (1985)) whose  m e a n  a n d  v a r i a n c e  a r e  1 a n d  1 /99  r e spec t ive ly .  

53 : 8 / ( / / -} -  2) - { 8 / ( / / +  2) - m a x ( i ,  5**)} +,  w h e r e  5** = 8 / ( / / +  2) - 2 / ( / / +  

3 ) ( 8 / ( / / +  2) - T)+.  
E n t r o p y  loss: 

¢1 = S / / / -  a , , , / ( / / +  1 ) { S / ~ , -  m a x ( l ,  T )}  +,  w h e r e  a, ,1 is de f ined  b y  (3.1).  

¢2 = SIll  - a , , , F ( S / / / ) / ( / / +  1 ) ( S / / / -  T )  +,  w h e r e  F ( - )  is t h e  s a m e  as  in t h e  case  
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Table 2. The relative risk improvements of 5i and ¢i when ~ ---- 3 (in percent). 

a2 0.0 0.5 1.0 0.0 0.5 1.0 

2.09 1.41 0.26 5.87 4.03 0.89 
0.5 6.29 3.67 0.50 1 4 . 2 3  8 .31  1.41 

4.36 2.74 0.40 1 0 . 4 4  6.50 1.22 

5.93 4.17 1 . 4 4  1 2 . 1 4  9.05 3.18 
0.8 10.17 6.85 2.04 18 .33  12.98 4.05 

9.50 6.44 1 . 9 6  17 .54  12.48 3.94 

7.24 5.54 2.33 14 .22  11.03 4.77 
1.0 9.55 7.07 2.80 17.37 13.14 5.40 

9.93 7.32 2.86 18 .24  13.71 5.55 

8.46 7.25 4.10 16 .03  13.46 7.76 
1.5 6.80 6.03 3.62 13.50 11.60 7.02 

8.14 7.04 4.03 16 .06  13.48 7.78 

7.85 6.89 4.53 15 .44  13.37 8.97 
2.0 4.35 4.12 3.13 1 0 . 2 0  9 .11  6.84 

5.65 5.15 3.65 12 .83  11.23 7.90 

6* or q~* 1.71 1.60 0.83 4.23 3.98 2.27 
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of 62. 
¢3 = S / p  - { S / v  - m a x ( l ,  ¢**)}+, where ¢** = S / ~  - a,~,l/(~ + 1 ) (S /y  - T)  +. 
All the es t imators  are designed so t h a t  they  give mos t  improvement  when the  
value of 0-2 is close to 1. We also note  t h a t  in all the  es t imators ,  we have t aken  

cons tants  so t ha t  they  shrink as much  as possible. 
We take  u = 1, 3, 5, # = 0.0, 0.5, 1.0 and (r 2 = 0.5, 0.8, 1.0, 1.5, 2.0. Based on 

100,000 i terat ions,  the risks of the  es t imators  were es t imated  by  averaged losses. 
Using risk es t imators ,  we es t imated  the  relat ive risk improvements :  

and 

[E{L1 (6o, 0 -2) } - E { L 1  (6~, a 2) } ] / E { L 1  (60, 0-2)}, 

[E{L2(¢o, 0-2)} _ E{L2(¢~, 0-2)}] /E{L2(¢o,  0-2)}, 

i = 1, 2, 3, 

i - -  1,2,3.  

These  are given in Tables  1-3. (We verified some entries in Tables  1-3 by  using 
numerical  integrat ion.  The  differences are at  mos t  0.15% in all cases.) For com- 
parison, the relative risk improvements  of 6" or ¢* (given by (2.1) or (3.1)) are 
also given. 

We m a y  summar ize  the  results  as follows: 
(i) For b o t h  loss functions,  the  relat ive risk improvements  of the  p roposed  

es t imators  are much  larger t h a n  those of the  equivar iant  improving  es t ima to r  6" 
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Therelat iveriskimprovementsofSiand¢iwhen~=5(inpercent) .  

5~ ¢i 

a2 0.0 0.5 1.0 0.0 0.5 1.0 

1.23 0.68 0.08 3.00 1 .60 0.13 

0.5 5.07 2.10 0 . 1 4  1 0 . 2 3  4 .16  0.25 

3.26 1.52 0.12 7.07 3 .17  0.22 

5.41 3.09 0.58 9.21 5.50 1.01 
0.8 10.93 5.81 0.87 16.99 9 .29  1.41 

10.13 5.43 0 . 8 4  15 .91  8 .79  1.37 

7.36 4.85 1 . 1 4  1 2 . 0 0  7 .86  1.93 
1.0 10.92 6.82 1 . 4 4  16.91 10.53 2.34 

11.25 6.99 1 . 4 7  17 .46  10.81 2.38 

9.23 6.45 2.41 14.35 10.43 4.06 

1.5 7.51 5.32 2 . 1 1  1 2 . 2 4  9 .03  3.74 

8.84 6.15 2.32 14.31 10.37 4.07 

8.13 6.36 3 . 2 5  13 .46  10.61 5.46 

2.0 4.07 3.50 2.23 7.91 6 .59  4.10 
5.17 4.28 2.50 9.90 8.04 4.58 

5" or ¢* 1.66 1.45 0.48 3.01 2 .63  0.90 

or ¢* in the region of (#, o2), which is of interest. In many  cases, they are more 

than  three times larger than  those of 5* or 0". Even if we compare the relative 

risk improvements,  with those of Brewster-Zidek est imator  and locally optimal 

shrinkage estimator,  given by Rukhin  (1987) for quadrat ic  loss function, we can 
repeat the same s ta tement  (see also Rukhin and Ananda  (1992)). We should not 

neglect such significant improvements.  This especially applies to the entropy loss 
case. 

(ii) The estimators 51 and ¢i give larger improvements for some o 2 > 1 rather 

than cr 2 = i. On the contrary, 52 and ¢2 give larger improvements for some o 2 < 1 

rather than o 2 = i. There is no big difference between the maximum improvements 

of the three estimators. In any case, one should examine the behavior of the 

estimators more closely to design the estimators. 

(iii) If the value of ~ gets larger, the range of # gets smaller in which the 

proposed estimators give significant improvements. This is due to the fact that 
the non-centrality parameter A -- n#2/(2o 2) gets larger if ~ -- n - 1 increases. 
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Lemmas and proofs of theorems 
The following well-known lemma is useful to prove dominance (see Efron and 

Morris (1976)). 

LEMMA A.1. Let Via 2 be distributed as X 2 with f degrees of freedom and let 
h(.) be an absolutely continuous function. If both expectations exist, 

E { -~h (V)  } = E{ fh (V)  + 2Vh'(V)}. 

PROOF OF THEOREM 2.1. Let A and B be the sets T/k  < 1 < S/(~, + 2) 
and 1 < T/k  < S/(u + 2) respectively and let Iv  denote the indicator function of 
a set C. We show that 51 dominates 50 for the loss function (~2 _ 0-2)2/0-2. We 
calculate the risk difference between 50 and 51 as in Stein (1964), by introducing 
an auxiliary variable L distributed as a Poisson variable with parameter A such 
that L is independent of S and that T given S and L is central X 2 with k + 2L 
degrees of freedom. Putting f (S,  T) = {S / ( ,  + 2) - max(l ,  T/k)}  +, we have 

(6  0 --  0 - 2 ) 2 / 0  -2 - -  (61 - -  0-2)2 /0-2  

= , + k + 2 ,  + 2 0-er f (S ,T)  - 

k2 l r 2 (  S ) 
- ( u + k + 2 )  2 0-2 ~ f2(S ,T)  

-= D1 - D2 - D3, 

, + k +  ~ f (S ,T)  

say. To evaluate E(D1) we apply Lemma A.1 with V = S. Then 

E(Dx - D2) : E[  (~ + k + 2 ) ( , + 2 )  r ~ max 1, IAuB 

+ (S + T) 2 ~ f (S ,T)  . 

Since r(-) _< 2 and max(l ,  T/k) >_ T/k,  

(A.1) - E ( D 3 ) > E  ( , + k + 2 ) 2 , + 2 0 - 2 r  ~ f (S ,T)  

( .  + k + e)2 0-2 r f ( s , T )  . 

We apply Lemma A.1 to the first term of the right-hand side of (A.1) with V = S 
and also to the second term with V = T since T is central )/2 with k + 2L degrees 
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of freedom given S and L. Then 

-E(D3) > 

+ 

2) 2E r f(S,T) ( .+k+ 

+ ~ r  ~ - ~  max 1, IAoB 

+ . +--5 (s + T)2~ ~ f (s ,T)  

~k+ 2 2E (k ( ~ - - ~ )  f(S, (u + ) { + 2L)r S T) 

- 2(S + T) 2r 

> -E(D1-D2) 

with strict inequality for some parameter values. This completes the proof. 

The following lemma is similar to the one used in simultaneous estimation 
problem of gamma parameters (see Dey and Srinivasan (1985)). 

LEMMA A.2. If 0 _< v < 1, then 

log(1 - v )  > - v - v 2 / 6 - v 2 / { 3 ( 1  -v)} .  

PROOF OF THEOREM 3.1. We again calculate the risk difference by intro- 
ducing an auxiliary Poisson variable L such that T given L is central X 2 with 
k + 2L degrees of freedom. Since ¢1 can be expressed as 

[ ] 0 1 = s  1 r {1 I(S,T)} + 
// 

with 

we have 

f (S,T) = [ 1 - -  ( 0 } ]  + u + k  + ~ m a x  1, , 

{ ¢ o / e  2 - l o g ( ¢ o / a  z )  - 1 }  - { 6 ~ / ~  ~ - l o g ( ¢ ~ / ~  ~) - 1 }  

S + T 1  S r S f (S ,T)+log 1 r ~ f(S,T) 
o .2 u S +  

-- D1 + D2, 
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say. To evaluate the expected value of D1, we apply Lemma A.1 with V = S and 
also with V = T. Then 

v f ( S , T )  . 

It follows from Lemma A.2 that 

D2 >>_ - r ~ - ~  f ( S , T )  

f2(S,T) + 3 1 - r ( S / ( S  + T ) ) f ( S , T )  " 

Therefore, E(D1 + D2) is not smaller than the expected value of 

f2(S' T) v S + T  

( S ) { 1  i i }] 
+ 3 1 - r ( S / ( S  + T ) ) f ( S ,  T)  " 

Since r ( S / ( S  + T))  <_ a.,k and f (S ,  T)  <_ 1 - v / ( v  + k) . (S + T ) / S ,  one needs only 
to show that 

, + k  
1 1 a,,kz >0,  for l < z < - -  

z - ~ a . , k  3 z - a . , k ( z  - 1 )  - 

We can easily prove the above inequality and this completes the proof. 
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