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Abstract .  Bayesian multiperiod forecasts for AR models with random inde- 
pendent exogenous variables under normal-gamma and normal-inverted 
Wishart prior assmnptions are investigated. By suitably arranging the inte- 
gration order of the model's parameters, a t-density mixture approximation is 
analytically derived to provide an estimator of the posterior predictive density 
for any future observation. In particular, a suitable t-density is proposed by 
a convenient closed form. The precision of the discussed methods is examined 
by using some simulated data and one set of real data up to lead-six-ahead 
forecasts. It is found that the numerical results of the discussed methods are 
rather close. In particular, when sample sizes are sufficiently large, it is encour- 
aging to apply a convenient t-density in practical usage. In fact, this t-density 
estimator asymptotically converges to the true density. 

Key words and phrases: ARX model, Bayesian forecast, t-density mixture, 
posterior predictive density, random regression. 

1. Introduction 

The purpose of this work is to develop approximations of the multiperiod 
predictive density of AR(p) models with random exogenous variables from the 
Bayesian point of view. Bayesian analysis of autoregressive moving-average 
(ARMA) models has been investigated since late 1960 and extensively applied 
in many areas. Referring to forecasting, in order to obtain a k-step posterior 
predictive density, theoretically at least, a ( k -  1)-multiple integration should be 
computed. This numerical difficulty limits the applications of the Bayesian pro- 
cedure for multiperiod forecasting. In order to obtain the posterior predictive 
density, a suitable approximation is necessary. Chow (1974) presented formula- 
tions for estimating moments of predictive density for AR(1) models. Applying 
the usual numerical method, Monahan (1983) computed the percentiles of multi- 
period (up to lead-five-ahead forecasts) predictive densities for AR(1) models. A 
Gaussian sum approximation, obtained by combining Laguerre and Gauss-Hermite 
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integration was proposed by Schnatter (1988) to estimate the predictive density for 
AR(p) models. Recently, Tanner (1993) summarized a variety of computational al- 
gorithms which provide an approximation of the desired density by a Monte Carlo 
simulation, such as the Gibbs sampling technique (Gelfand and Smith (1990)). 
These tools help to numerically compute the predictive density. A substitution 
method proposed by Liu (1994) was suggested in order to analytically approximate 
the predictive density for any future step by a suitable t-density for any ARMA 
model with strongly non-random exogenous variables under a normal-gamma prior 
assumption. In that paper, numerical results indicate that this approach is pretty 
accurate if shorter period forecasts are considered. Moreover, the approximate 
t-density will asymptotically converge to the true one. 

Most Bayesian studies treated the so-called conditional case by considering 
the posterior predictive density for future values of the dependent variable, given 
future values of the independent variables. Zellner and Park (1987) investigated 
an unconditional case, Bayesian prediction for a random regression model. Theo- 
retically, it becomes a non-linear problem and it is impossible to obtain a closed 
form for the predictive density even only one step ahead. The multiple integra- 
tions are very time consuming, especially when a longer future step is considered. 
To overcome this limitation, a reasonable approximation is needed. Here, a more 
extensive model, an AR(p) model with random independent exogenous variables 
is considered. Assuming conjugate priors, the posterior predictive density can be 
approximately treated as a mixture of some t-density functions. In particular, a 
suitable t-density is provided to approach the posterior predictive density. 

The whole paper is organized as follows: in Section 2, a formal Bayesian 
analysis of the discussed model is presented. Most of the results are adapted from 
Zellner and Park (1987) and Broemeling and Shaarawy (1988). In Section 3, a 
detailed discussion of the proposed method is presented, including the development 
of a multivariate regression model adopted by Liu (1994). For examining the 
precision of the proposed methods, simulated data and one set real data of time 
series are analyzed numerically. The posterior predictive density is computed 
respectively by three methods, the t-density mixture method, the partial plug- 
in method and the path-sampling method. Results of some tail-percentiles and 
skewness of the estimated density are reported. All these evaluations are included 
in Section 4. Finally, Section 5 includes the conclusions. 

2. The posterior predictive density 

In this article, the Bayesian forecast for an AR(p) model with random inde- 
pendent exogenous variables is investigated. Let Yt denote the t-th observation of 
the dependent variable and let xt  be an r x i random vector consisting of exogenous 
variables. The model is expressed as 

(2.1) 
T Y t = a + x ~ + Y t , p ¢ + q ,  f o r t = p + l , p + 2 , . . . , n ,  

xt = ~l ÷ et, f o r t = l , 2 , . . . , n ,  

where /~ --- (/~l,~2,...,~r) T, ~ ---- ((~I,~2,-.-,~p)T and Yt,p ----- (Yt-l,Yt-2,..., 
yt_p) T. Here, {et} is a set of independent normally distributed random variables 
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with mean zero and variance T - 1 .  Similarily, {et} is a set of independent normally 
distributed random vectors with mean zero and eovariance matrix E~. Also, {et} 
and {et} are independent. 

Zellner and Park (1987) considered Bayesian analysis for a regression model 
without autoregressive components, that is ¢ = 0. However, the posterior predic- 
tive density function even only one-step ahead can not be obtained in a closed form. 
As usual, a common problem in Bayesian analysis is met with, where the poste- 
rior predictive density involves multiple integrations. Therefore, how to obtain an 
explicit approximation of the predictive density is of interest. Before proposing a 
suitable approach, the expression of the exact posterior predictive density is first 
straightforwardly derived. 

n {Xt}t= 1 are observed, then for convenience a matrix Suppose that { Y t } t = l  and 
form of formula (2.1) is written as 

{ Yn = Wn# + e~, 

Xn = dn @ ~T + Vn, 

where Yn = (Yp+i, Yp+2,..., y~)r,  W~ = ( W p + l ,  Wp+2, . . . ,  Wn) T, X n  z ( X l ,  x 2 , . .  • , 
'i x r ,T f i r  cT)T,  Xn) T, Wj = [ , j , y j , v )  ' # = = , . . . , ¢ n )  T, Vn = ( e l ,  

e2, • • • ,  en) T and Jn is an n x 1 vector with all entries equal to 1. Moreover, the 
symbol ® denotes the Kronecker product. 

The likelihood function for (#, ~-) and (7, E~) is 

P(Yn I X~, #, T)p(Xn [ 7, Ex) with 

T 
p(Yn l X n , ~ ,  T) Oc. Trnl/2 exp { - - ~ ( Y n  - Wnl t )T  (yn - Wnlt)  } a n d  

p(X~ I , ,<x) oc Ir xl- /2exp - tr[(Xn - Jn ® r / r ) T ( x n  -- Jn ®7 ) x ] , 

where ml = n - - p .  Suppose the prior information between (#, r) and (7, Ex) is 
independent and the following prior pdf's for the parameters are set up, say 

(2.2) 

Here, each Pi is defined respectively as follows: Pl is the pdf for a normal dis- 
tribution, say N(#0, (~-Q0)-l), where Q0 is a positive definite.symmetric matrix; 
p2 follows a gamma distribution with parameters a and b (Gamma(a, b)), say 
p2(~-) e( ~_a-1 exp(-br) ,  where a > 0 and b > 0; p3 is the pdf for a normal distribu- 
tion, say N(rlo, Ex); finally, p4 follows an inverted Wishart distribution denoted by 
IW(Go, uo, r), where Go is an r x r positive definite symmetric matrix and uo > r. 

Adopting results from Broemeling and Shaarawy (1988), the posterior mean 
of p, denoted by p~, is expressed as 

(2.3) ~* = E(# I Xn, Yn) = An-a (Qom + W~Y,d, where 



214 SHU-ING LIU 

(2.4) A ~ =  w T W ~  +Qo. 

Moreover, the posterior distribution of r and It I r are respectively expressed as 
follows: 

(2.5) 

(2.~) 

1 1R ) 

It [ X~, Y,~, r ~ Normal (It*, (rAn)-1),  

and 

where R,~ y T y ~  + #TQoit ° ,T~  • = -- Itn ~lnitn q- 2b. Thus the posterior density of It is 
a multivariate t-density written as: 

(2.7) p(# [ X~, Y=) oc 1 ~- (It -- ' * ~ T a * - l l  , -(ml+2a+p+r+l)/2 

where A* = R n A n l / ( m l  + 2a). Hereafter, for convenience, the density (2.7) 
will be denoted by "t(#~, A~, ml + 2a)", and the conditional posterior predictive 
density of Yn+l given Xn+ 1 is a univariate T • t(W~+l#~, S~, ml  + 2a) distribution, 

T - 1  where sn = (1 ÷ Wn+lA n Wn+l)Rn/(ml + 2a). 
On the other hand, the posterior predictive density for any future x f  is also a 

multivariate t-density with n + u0 + 1 - r degrees of freedom expressed as 

(2.s) p ( x f  I X n )  (X { 1 +  (x f  - f l n ) T C n l ( x f  - fln) } ~ ?  ~ 

where C,~ = (n + 2)B,~/{(n + 1)(n + Uo + 1 - r)}, Bn = S~ + Go + n(x~ - 

no)(~ .  - no )~ / (n  + 1), & = E , \ l ( X ~  - ~n)(x~ - ~ ) r  and ~ .  = E , \ I  x~/n, 
rl,~ = (rio + n2~)/(n + 1). Thus the unconditional posterior predictive density of 
Yn+l is 

p(y~+l I X~, y~) = f p(yn+~ I ~--~, x~, Yn)P(~+l I Xn)dx~+l. 

As mentioned before, there is no closed form for this integration, even if ¢ = 0 is 
set. Actually, the integration will be more complicated if a further-step prediction 
is of interest, instead of only a one-step ahead prediction. In the following section, 
approximate methods are proposed to provide estimators for any k-step posterior 
predictive density, where k is any fixed positive integer. 

3. Approximations for the posterior predictive density 

In this section, some suitable approximations of the k-step posterior predictive 
density are considered. Instead of using the procedure demonstrated in Section 2, 
the k-step posterior predictive density can be represented as 

P(Y +k I Yn) = f I o)p(O l Y )dO, 
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where 0 contains ¢, /~, a, ~, ~- and Ex. Since the integration can not be carried 
out completely for 0 perhaps a partial integration is obtainable. Separating 0 into 
two components, say 01 and 02, the posterior predictive density is then rewritten 
as  

(3.1) p(yn+k I Xn, Yn) : / [/p(yn+k l Xn,Yn,O1,02)p(O2 ' Xn, Yn, O1)d02] 

"p(01 I X~,Y~)d01. 

If the inner integration, denoted by P(Y~+k I X~,Y~, 01), can be carried out ex- 
plicitly, the predictive density can be estimated by 

L A 1 
P(Yn-ak I Zn, ~n) = ~ E P(Yn~-k I Xn, Yn, 0~1)), 

/ -1  

where 0~ z) is sampled from p(01 I Xn, Yn). Therefore, our main goal is to find a 
suitable 01 set and an explicit expression of P(Yn+k I X~, Y~, 01) so that the above 
estimate can be obtained. The defining 01 set depends upon the nature of the 
conditional (given 0) predictive density function p(y~+~ I X~, Yn, 0). Formally, it 
is expressed as 

p(yn+k I xn, 0) 

dx~+kdy~+k-ldxn+k-1 ... dyn+ldxn+l, 

where P(g~+k, x~+k, Yn+k-1, xn+k-1,. • •, gn+l, X~+l I X~, Yn, O) = I-[j=l 
X~+j, Y~+j-1, O)p(xn+j I 0), the products of univariate normal density. To avoid 
the tedious multiple integrations, a recursive algorithm adopted from the develop- 
ments of Chow (1974) and Liu (1994), by substituting Y~+I, Y~+2,..., Y~+k-1 by 
past values Yn, Yn-1,. . .  of the Y~ process is presented. The advantage of this is 
that  conditional to 0 the predictive density P(Y~+k I X~, Y~, O) is a normal density 
function that can be written down explicitly and will help to conveniently select 
a suitable 01 set. The recursive representation of formula (2.1) is summarized as 
follows. 

Define 
k-1  

Yt+k - xt+k = aka + diet+k-j, 
j=0  

• P C * ~ ~ T  k--1 where Yt+k = Yt+k - ~ j = l  k-l,jYt+l-j, xt+ k t+k/~, xt+k = ~j=o djxt+k-j 
k--1 and ak = ~j=o dj. Here, Ci,y'S and dj's satisfy the following recursive formula: 

dj = cj-l,1, ci,y = ci-1,1¢y + ci-l,j+l, for i > 0, j > 1 and Cj = 0, for j > p + 1, 
with the initial condition 

1, i f j  = 1, 

C-l,j = 0, otherwise. 
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Moreover, let 

• Yt+k-  x~+k ¢ = and u~+k = k-1 , 
zt+k = \ xt+k / '  \ ~ j = 0  diet+k-j~ 

then the coupled model expressed by formula (2.1) can be represented as 

(3.2) z;+ k = ak( + ut+k. 

Combining all the data together, the overall representation is 

(3.3) Z* = ak(J,~2 ® ~) + Un, 

* (Z* T Z* T . z .  T I T  Un T T ?.tTn) T and rn2 : . . : (Up+k, U p + k - I - l ,  • . . where Z~ ~ p+k , p + k + l  , , n / , , : 

m l - k + l .  In detail, Un can be written as U,~ = FF, where F = D ® [ ~ + I ,  
F = (TpT+I,TT+>... ,7T) T, 7t = (et, e~) T and D is an m2 x ml  matrix defined as 
follows: 

"dk-1 dk-e ""  dl do 0 0 . . .  0 ]  
0 d k - 1  "'" d2 d l  do 0 " "  0 ] 
0 0 . . .  0 0 0 dk-1 "." do 

Since %'s are independent and identical normally distributed, say N(0, E), 
then F is also normally distributed with mean 0 and covariance matrix Ira1 ® 
E. Therefore, Un is normally distributed with mean 0 and covariance matrix 
cov(U,~, Un) = D D T ®  E. Then the likelihood function of Z~ = a~-1Z* is expressed 
3 £  

(3.4) p(z  I IE -1 ® 

. 

where E is an m2 x m2 matrix defined by E = a~(DDT) -1. Based on formula 
(3.3), Z~ is not only a function of {Yt} and {xt}, it is also a function of ¢ and ,~. 
Moreover, the eovariance matrix of U~ involves both E and ¢. To construct formula 
(3.1), 0~ and 02 are defined respectively as 0~ = (¢T,/?T)T and 02 contains ~ and 
E. Furthermore, the conjugate prior density functions for ~ and E are assumed to 
be as follows: 

(1) p(~ I E) is normally distributed, say N(@, E), where @ = (c~0, tiT) T. 
(2) p(E) has an inverted Wishart distribution denoted by IW(G,  L,, r + 1), 

where G is an (r + 1) x (r + 1) positive definite symmetric matrix and L, > r + 1. 
Then the posterior predictive density for Yn+k, given 01, can be obtained 

explicitly via the following assertion (the proof is given in the Appendix). 

THEOREM 3.1. Under the prior assumptions stated as above, the posterior 
predictive density for Yn+k given 01 is a multivariate t-density expressed as: 

(3.5) P(Yn+k  I X n ,  Yn ,  {)l ) (2( f {1 + S(yn+k  - m n + k ) 2  ~ - ( m 2 + ~ ' - r ÷ l ) / 2  ~ 
m 2 q - P - - r  ) 
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w h e r e  01 = ( ¢ T , ~ T ) T ,  m n + k  = E ~ ' = I  C k - l , J Y n + l - J  ~- hTZo,  h = (1,/~r) T, 20 = 
T~2 ~2 ak(e2 + @)/(e + 1), 2 ~-~ Ei=I Ej=I eijZi+p+k-1, eij = (E)ij, e = JT EJm2, 

N -'k-1 d 2 s = {hTHh[b2 k + a~/(e + 1 ) ] / ( m 2  + y - r ) }  - 1 ,  5 2 = z ~ j = o  j ,  H = S z  -~- a -~- e ( z  - 

¢o)(~ - ¢ o ) ~ / ( e  + 1) and Sz = E~=I~ ~ e~j Ej= l  (z~+~+~-i - 2)(zj+~+k-1 - ~)~. 

The remaining problem is to explicitly express the density function p(01 I 
X~, Yn). By formula (2.7) the posterior density of 01 is 

( 3 . 6 )  p(01 I Xn, Y~)e< I'{1 + ( 0 1 -  0~)T-4n1(01--0~) )--(ml+2a+p÷r)/2 
ml + 2a j [ 

0{ is the last (p+r) component of p* and -4n is the lower (p+r) x (p+r) right-hand 
matrix of A*. Therefore, the posterior predictive density of Y,+k can be estimated 
by 

1 L 
p(y~+~ I x~, Y~)= ~ ~ p ( y n + ~  I x~,y~,0~/)), 

/=1  

where ~A(l) ~[ L lvl JZ=I are independently sampled from density (3.6) and 

P(Y~+k I X~, Y~, 0~/)) is given by formula (3.5). 

In particular, for computational convenience we may set L = 1 and 0~ 1) = 0{, 
that is by plugging in the posterior mean of 01 and approximating the posterior 
predictive density using a multivariate t-density. Since the posterior mean 0{ is a 
consistent estimator of 01, the posterior predictive density provided by this plug- 
in method will converge to the true one when the sample size is sufficiently large. 
Adopting the aforementioned development, if ¢ is moved from 02 to 01 and this 
new set denoted by 0(1), then the posterior predictive density of Y~+k given 0(1) is 
still a multivariate t-density expressed as follows. 

LEMMA 3.1. Under the inverted Wishart prior assumption orE, the posterior 
predictive density for yn+k given 0(1) is 

* * 2 } - - ( rn2 - - . - r+ l ) /2  
p(yn+~ J Xn,Y~,e(1)) ~ 1 + s (yn__2+k_-- m_~+k) 

7Yt 2 -~- Y -- r 

~here 0(~) : (¢~ ,  Z ~,  ¢ ~ ) T  m<+k : ~ + k  + h ~ (ak¢~ - ~o), s* = { b ~ h ~ H  * h / ( . ~  + 
, - r)} -1, H* : H + e{(2 - (1)(2 - ~1) T - (2 - ¢0)(2 - (o)T/(e + 1)} and ¢1 is 
the given value of 4. Some notations such as ms+k, h, 2o, b~, e, H, 2 and ¢o are 
stated in Theorem 3.1. 

Especially, if one sets ~1 = ~0 = 2, the following reductions are obtained: 
m n + k  : m * + k ,  H -~- H *  a n d  8 - 1  - ( 8 " )  - 1  ~- a 2 h T H h / ( ( e  ~- 1 ) ( m  2 -t--// - r ) } ,  

which is a positive value. Therefore, the two densities p(yn+k t Xn, Yn, 01) and 
p(yn+k I X~, Y=, 0(1)) have the same mean and the same degrees of freedom, how- 
ever the variation of the latter is smaller. More specifically, this is true if the 
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01 set containing all the model's parameters, denoted by 0{1}, based on formula 
(3.2), z~+~ is a multivariate normal distribution with mean a~¢ and covariance 
matrix b~E. Therefore, the posterior predictive density for Yn+k is simplified by 
the following lemma. 

LEMMA 3.2. The posterior predictive density for  Yn+k given 0{1} is 

p(yn+k I Xn, Yn,O{1}) c< ~;l exp{ (Yn+k-- m*+k)2} 

where 0{1 } -= {¢,/~, ~, ~}  and ~ = b~hTEh. 

Comparing the two densities introduced in Lemmas 3.1 and 3.2, we find that 
they have the same mean, however the former has a t-density which is heavier 
tailed than the latter, a normal density. If the given E matrix satisfies h T E h  = 
h T H * h / ( m 2  + u - r), then the two densities are almost the same if the degrees 
of freedom for the t-distribution are large enough. For example, restrict E as 
a diagonal matrix with T -1 as the 1 × 1 upper left-hand matrix and Ex as the 
r x r lower right-hand matrix and define T -1 = (hll + 2h12/9)/(m2 + u - r) and 
Ex = h22/(rn2 + u - r), where hll,  h12 and h22 are respectively, the 1 x 1 upper 
left-hand entry, the 1 x (r - 1) upper right-hand row and the r x r lower right- 
hand matrix of H*. As expected, more elements are included in 01, the predictive 
density becomes less accurate. Though by substituting a consistent estimator of 
0(1) (or 0{1}), the conditional predictive density still converges to the true density, 
we would usually make the 01 set as small as possible. Thus in the following 
discussion 01 = (¢T,/gT)T and this procedure is designated as the "partial plug-in 
method". 

In the meantime, an extension of the so-called path-sampling method proposed 
by Thompson and Miller (1986) can also be used to estimate the desired predictive 
density. This is summarized by the following four steps: 

Step 1. Sample k future values for x, say X~+l, x,~+2, • . . ,  x,~+k, independently 
from the multivariate t-distribution described by formula (2.8). 

Step 2. Sample a value for ~- from the gamma distribution described by formula 
(2.5). 

Step 3. Sample a value for #, conditional on the ~- obtained from Step 2 from 
the normal distribution given by formula (2.6). 

{xn+i}i=l, ~- and # respectively, in Steps 1, Step 4. Using the selected values, k 
2 and 3, a path k periods long, say {Y~+I, Yn+2,.-., Y~+k} is simulated based on 
the first part of formula (2.1), 

T T Yn+i - - - -  ce + Xn+i~ + Y~+i,p¢ + en+i, i = 1, 2 , . . . ,  k, 

where e~+i is i.i.d. N(0, T -1) distributed, 7- is the one sampled in Step 2 and again 
= a T, 

After a sufficiently large number of paths are generated, a bundle of simulated 
observations in each future step is obtained. Therefore, the posterior predictive 
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density for any future step can be estimated on the basis of these simulated obser- 
vations. The main sampling scheme for the path-sampling method is that future 
observations should be simulated one by one sequentially. In the next section, 
numerical comparisons among the t-density mixture method, the partial plug-in 
method and the path-sampling method are performed with both simulated data 
and real data. 

4. N u m e r i c a l  i l lustrat ions  

In this section, numerical examinations are conducted to evaluate the perfor- 
mance of the three methods introduced in Section 3. The partial plug-in method 
is especially rather simple and interesting and can be used analytically. For sim- 
plicity, most of these hyper-parameters are substituted with ordinary least squares 
estimates stated as follows: 

(1) 1~o = ( W T W n ) - I W T y n ,  
(2) c~0 is the first component of #0, 
(3) 7o = 
(4) Qo = w T W n / q o ,  where qo is the 1 x 1 upper left-hand entry of W T W n ,  

(5) a = ( m l - p - r - 1 ) / 2 ,  
1 y T [ I -  W n ( W T W n ) - I w T ] y n ,  (6)  b = 7 ~ L 

(7) = 2a  + r,  

(8) u 0 = u - l a n d  
(9) G is a diagonal matrix with 2b as the 1 x 1 upper left-hand matrix and 

n 
Go as the r x r lower right-hand matrix such that Go = ~ t = l ( x t  - 2 ~ ) ( x t  - 2 ~ ) T .  

For the simulated data, two types of model are examined including station- 
ary and nonstationary components in the autoregressive part. For simplicity, the 
models are set up with p = r = 1, 

Yt = 0.3 + 0.5xt + CYt-1 + ~t, 

xt = 0.1 + et, 

{(et,et ) } are assumed to be independent and where ¢ = 0.5 and 1. And the T T  
identically normally distributed with mean 0 and a diagonal covariance matrix, 
with ~_-1 = 1 and 2x = .5. The influence of sample size for each method is 
investigated by designating n =50 and 100 for each model. In order to obtain a 
reliable impact on sample size, 350 observations are generated for each model, the 
last n observations are then used for analysis. Besides the simulated data, Lydia 
Pinkham's vegetable compound sales and advertising data, annual data from 1907 
to 1960 (Vandaele (1983)), is used for investigation. A transfer function model is 
suggested in this book (p. 328) and expressed as 

Yt = (Wo -- WlB)Zt + (1 -- CB)- le t ,  

where Yt = sa l e s t -  salest_l, zt = adver t is ingt-  advertisingt_l and Bz t  = zt-1. 
Also {et} is a sequence of i.i.d, normally distributed random variables. To satisfy 
the assumptions of our discussed model, the following models are suggested. 

Yt = O~ +/~Xt + CYt-1 -I- et, 

xt = r] 4- et, 
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(a) ¢ = 0 . 5 ,  n = 5 0  

Table 1. 

SHU-ING LIU 

Inferences for the posterior predictive densities. 

y t  = 0.3 + 0.5xt-1 + C Y t - 1  + et ,  

x t  = O. 1 -I- e t .  

Percentiles 

step 5% 95% 

1 -0.33 a --0.35 b (0.01) c --0.35 d (0.02) e 3.22 3.23 (0.01) 3.21 (0.02) 

2 --0.69 --0.71 (0.01) --0.69 (0.02) 3.37 3.41 (0.01) 3.38 (0.03) 
3 -0.83 -0.87 (0.01) -0.80 (0.03) 3.33 3.39 (0.02) 3.41 (0.03) 

4 -0.88 -0.90 (0.01) -0.90 (0.03) 3.36 3.39 (0.02) 3.41 (0.03) 

(b) ¢ = 0.5, n = 100 

step 5% 95% 

1 -0.42 a -0.43 b (0.01) c -0.42 d (0.02) e 3.17 3.18 (0.00) 3.17 (0.02) 

2 -0.76 -0.77 (0.00) -0.76 (0.02) 3.27 3.29 (0.01) 3.26 (0.03) 

3 -0.89 -0.90 (0.01) -0.88 (0.03) 3.26 3.28 (0.01) 3.27 (0.03) 

4 -0.95 -0.97 (0.01) -0.93 (0.03) 3.23 3.26 (0.02) 3.27 (0.03) 
5 -0.96 -0.97 (0.01) -0.95 (0.03) 3.24 3.28 (0.01) 3.24 (0.03) 
6 -0.99 -1.03 (0.02) -0.98 (0.03) 3.21 3.26 (0.02) 3.23 (0.03) 

(e) ¢ = 1 . 0 ,  n = 5 0  

step 5% 95% 
1 168.2 a 168.1 b (0.03) c 168.2 d (0.02) e 171.8 171.9 (0.04) 171.8 (0.02) 

2 168.0 167.9 (0.06) 167.8 (0.04) 173.1 173.3 (0.07) 173.2 (0.03) 

3 167.9 167.4 (0.12) 167.7 (0.04) 174.1 174.6 (0.12) 174.4 (0.04) 

4 168.0 167.1 (0.13) 167.6 (0.05) 175.2 175.6 (0.15) 175.5 (0.05) 

(d) ¢ = 1.0, n -- 100 

step 5% 95% 

1 168.3 a 168.35 (0.02) ~ 168.34 (0.02) e 171.9 171.9 (0.02) 171.9 (0.02) 

2 168.1 168.1 (0.04) 168.1 (0.03) 173.3 173.3 (0.04) 173.3 (0.03) 
3 168.2 168.0 (0.06) 168.1 (0.04) 174.4 174.6 (0.07) 174.6 (0.04) 

4 168.3 168.1 (0.07) 168.2 (0.05) 175.6 175.8 (0.08) 175.8 (0.05) 
5 168.4 168.3 (0.10) 168.2 (0.06) 176.7 177.1 (0.10) 176.9 (0.06) 
6 168.7 168.4 (0.11) 168.3 (0.07) 177.7 178.2 (0.14) 178.1 (0.07) 

where  x t  = z t  - 0.091Zt_l + 0.411zt_2.  Also, { e t }  are i.i.d, n o r m a l l y  d i s t r i bu ted  
and  i ndepende n t  of  {e~}. 

As usual ,  it is impossible  t o  expec t  precise longer  pe r iod  forecasts  as the  
sample  size is t oo  small.  Hence,  the  l eng th  of  the  forecast  pe r iod  is ad ju s t ed  
by  the  sample  size, four  per iods  (k = 4) as n = 50 and  six per iods  (k = 6) as 
n = 100 are discussed.  T h e  e s t ima ted  predic t ive  dens i ty  o b t a i n e d  by  the  t -dens i ty  
m ix tu r e  m e t h o d  is ob t a ined  by  se t t ing  L = 100 and  the  p a t h - s a m p l i n g  t echn ique  is 
e s t i m a t e d  by  10,000 bundles  of  pa ths .  For  each d a t a  set, some specified percent i les  
for each e s t i m a t e d  predic t ive  dens i ty  are c o m p u t e d  v ia  the  three  m e t h o d s .  Since 
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Table 1. (continued). 

Skewness 
(a) n = 50 

step ¢ = 0.5 ¢ = 1.0 

1 0.00 b (0.00) c -0 .01  d (0.03) ~ -0 .02  (0.02) 0.00 (0.03) 

2 0.01 (0.01) 0.01 (0.03) 0.02 (0.02) 0.01 (0.03) 

3 0.01 (0.01) 0.01 (0.03) 0.06 (0.04) 0.03 (0.03) 

4 0.01 (0.01) 0.01 (0.03) -0 .03  (0.05) 0.05 (0.03) 

(b) n = 100 

step ¢ = 0.5 ¢ = 1.0 

1 0.00 ~ (0.00) ~ 0.00 ~ (0.03) ~ 0 .00  (0.00) 0,00 (0.02) 
2 0.00 (0.01) 0.01 (0.03) 0.00 (0.01) 0.01 (0.02) 

3 0.01 (0.00) 0.01 (0.02) 0.01 (0.01) 0.01 (0.03) 

4 0.01 (0.01) 0.00 (0.02) 0.03 (0.01) 0.02 (0.02) 

5 0.00 (0.01) 0.00 (0.02) 0.01 (0.02) 0.02 (0.02) 

6 0.00 (0.01) 0.00 (0.02) 0.06 (0.03) 0.04 (0.03) 

a: partial plug-in method. 
b: t-density mixture method. 
c: s tandard error for t-density mixture method. 
d: path-sampling method. 
e: s tandard error for path-sampling method. 
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the standard errors for each estimate produced by the path-sampling method for 
simulated data of under 100 replications are rather small, presumbly 10,000 path 
bundles should be sufficient. On the other hand, for a stationary situation, the 
standard errors under 100 replications for the t-density mixture method indicate 
that L = 100 is sufficient. However, for models with nonstationary autoregressive 
components and small sample size, say n = 50, the standard errors for estimates 
are rather large. As values of L increase, up to 400, the magnitude of the standard 
error is almost the same as that for computing by the path-sampling method. Since 
the percentiles are rather close around to the center for all the three methods, only 
the tail-percentiles, the lower 5% and upper 95% are reported. Moreover, when 
sample sizes are large, say n = 300, the results of the three methods almost 
coincide, thus only n = 50 and n = 100 are reported in Table 1. 

Intuitively, the partial plug-in method ignores the variation of the parameter 
vector 01, the predictive density should tend to be less variant. Also, the sym- 
metric property of the t-density may limit the shape of the posterior predictive 
density. The impact of these two shortages could be investigated by comparing re- 
sults with those obtained by the t-density mixture method and the path-sampling 
method. By examining the skewness as exhibited in Table 1, the results indicate 
that the symmetric restriction is rather reasonable. The 5% and 95% percentiles 
will roughly provide information about the dispersion of a density, while the re- 
sults show that the lesser variation of the partial plug-in method is not too serious. 
Again, as sample sizes get larger, those limitations gradually disappear. For real 
data, most of the standard errors are rather large, especially those produced by 
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Table 2. 

SHU-ING LIU 

Inferences for the posterior predictive densities. 

Lydia pinkham vegetable data  
Percentiles 

step 5% 25% 50% 75% 95% 

1 -398  a -175  -20 .7  133 358 

-401  b (1.3) c -176  (1.1) -20 .3  (0.9) 136 (1.3) 363 (2.9) 

--407 d (5.1) e --181 (3.0) --25.5 (2.9) 129 (3.0) 352 (5.0) 

2 --392 -160  0.6 161 393 

-401  (2.0) -165  (1.1) -2 .0  (0.7) 160 (0.9) 396 (2.1) 

- 3 9 9  (5.1) - 1 6 7  (3.6) - 0 . 7  (3.2) 159 (3.6) 399 (5.2) 

3 -393  -158  3.5 165 399 

-402  (1.7) -162  (1.5) 1.9 (0.8) 166 (0.9) 405 (2.2) 

-396  (4.9) -163  (3.5) 1.2 (2.9) 163 (3.3) 402 (4.1) 

4 -397 -162 0.6 163 398 

--405 (2.0) --165 (1.6) --0.1 (0.7) 164 (1.0) 405 (2.7) 

--400 (4.8) --160 (2.9) -1 .5  (2.9) 162 (3.2) 405 (5.3) 

step Skewness 

I 0.01 b (0.00) c -0.04 d (o.o2) c 

2 0.00 (0.00) 0.04 (0.03) 
3 0.00 (0.00) 0.00 (0.03) 
4 0.00 (0.00) 0.04 (0.02) 

a: partial plug-in method. 
b: t-density mixture method. 
c: s tandard error for t-density mixture method. 
d: path-sampling method. 
e: s tandard error for path-sampling method. 

the path-sampling method. The reason for this phenomenon may be that the sam- 
ple size is too small (n -- 51) or the fitted model deviates slightly from the true 
model. Though the results reported in Table 2 for the three methods are slightly 
different, they are almost indifferent statistically. All the discussed results were 
done on a VAX9320 computer at the National Central University in Taiwan. The 
data were generated from the DRNNOR, DRNGAM and DRNMVN subroutines 
in the IMSL package. 

To summarize, the simulated experimental results show that under the normal- 
gamma and normal-inverted Wishart prior assumptions, the posterior predictive 
density for future steps so far considered can be almost simply approached by 
a suitable t-density. Though the t-density approximation has some limitations, 
the discrepancy is not too serious and disappears as the sample size increases. 
Moreover, since the posterior means of both/3 and ¢ are consistent estimators, 
the density produced by the partial plug-in method will converge to the true one as 
the sample size gets larger. In practical usage, it is recommended that one treats 
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approximately the predictive density as a suitable t-density. Moreover, for a more 
accurate approximation, a t-density mixture method will be another suggested 
approach. 

5. Conclusions 

This article investigates the Bayesian multiperiod forecasting problem for 
AR(p) models with random independent exogenous regressors under normal- 
gamma and normal-inverted Wishart prior assumptions. Methods are proposed 
to produce estimators for the posterior predictive density of any future observa- 
tion. For any future step, the posterior predictive density can be estimated by 
a mixture of t-density functions or simply by a suitable t-density. The accuracy 
of the proposed methods has been compared with the path-sampling method by 
examining some simulated and some real data. For each series, some specified 
tail-percentiles and the skewness of the posterior predictive densities, up to six- 
step-ahead forecasts are computed respectively, by using the t-density mixture 
method,  the partial plug-in method and the path-sampling method. Though the 
partial plug-in method provides a symmetric and less variant density, it seems 
these limitations do not cause too serious a discrepancy. The numerical results 
show that  the three methods produce almost the same estimates. Furthermore, 
the partial plug-in method conveniently provides an explicitly estimated predic- 
tive density which asymptotically converges to the true one as the sample size gets 
larger. 
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Appendix 

PROOF OF THEOREM 3.1. Combining the likelihood function (formula (3.4)) 
with the normal-inverted Wishart prior distributions together, we have 

p(¢, r~ I Zn) ~ P(Zn I ¢, ~)P(¢ I <)P(r0 
1 

O( ly]t -(m2+~'+r+3)/2 exp{- -~  tr[Sz + a + ~(z - ¢)(2 - ¢)r 

+ (< - ¢0)(¢ - ¢0)T]~ 1~, 
] 

where Sz,  e and 2 are stated in Theorem 3.1. Furthermore, the likelihood function 
for Zn+ k is written as 

a 2 _ ¢) } 
icl exp . 
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After algebra, the posterior predictive density for Zn+k is 

- ~o) Q~ ( ~ + k  - eo) P ( z n +  k [ Zn )  o(. 1 q- (Zn÷k - T -1  -(m2+~+1)/2 

m 2 + ~ - - r  f 

where Q ,  2 2 1/(e = {bk/ak + + 1 ) } H / ( . ~ 2  + ~ - r ) ,  ~0 = Zo/a~ and b~, Zo and H are 
stated in Theorem 3.1. Then Zn+k has a t(Y0, Qn, m2 + ~ - r) distribution. Since 
z~+ k = akz~+k and hTz~+~ = Y~+k, thus Y~+k has a t(hr Ko, a2k(hTQnh), m2+~--r) 
distribution. Furthermore, after algebra a~(hTQnh) = s -1, therefore the result 
for Theorem 3.1 is established. 

REFERENCES 

Broemeling, L. D. and Shaarawy, S. (1988). Time series: A Bayesian analysis in time domain, 
Bayesian Analysis of Time Series and Dynamic Models (ed. J. S. Spall), 1-21, Marcel 
Dekker, New York. 

Chow, G. C. (1974). Multiperiod predictions from stochastic difference equations by Bayesian 
methods, Studies in Bayesian Econometrics and Statistics (eds. S. E. Fienberg and A. 
Zellner), 313-324, North-Holland, Amsterdam. 

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling based approaches to calculating marginal 
densities, J. Amer. Statist. Assoc., 85, 398-409. 

Liu, S. I. (1994). Multiperiod Bayesian forecasts for AR models, Ann. Inst. Statist. Math., 46, 
429-452. 

Monahan, J. F. (1983). Fully Bayesian analysis of ARMA time series models, J. Econometrics, 
21,307-331. 

Schnatter, S. (1988). Bayesian forecasting of time series by Gaussian sum approximation, 
Bayesian Statistics 3 (eds. J. M. Bernardo, M. H. Degroot, D. V. Lindley and A. F. M. 
Smith), 757-764, Clarendon Press, Oxford. 

Tanner, M. A. (1993). Tools for Statistical Inference: Methods for the Exploration of Posterior 
Distributions and the Likelihood Functions, Springer, New York. 

Thompson, P. A. and Miller, R. B. (1986). Sampling the future: A Bayesian approach to 
forecasting from univariate time series models, Journal of Business and Economic Statistics, 
4, 427-436. 

Vandaele, W. (1983). Applied Time Series and Box-Jenkins Models, Academic Press, New York. 
Zellner, A. and Park, S. (1987). Bayesian prediction with random regression, Specification Anal- 

ysis in the Linear Model (eds. M. L. King and D. E. A. Giles), 234-251, Routledge and 
Kegan Paul, London. 


