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Abstract .  This paper deals with statistical inference problems for a special 
type of marked point processes based on the realization in random time inter- 
vals [0, T~]. Sufficient conditions to establish the local asymptotic normality 
(LAN) of the model are presented, and then, certain class of stopping times 
~-~ satisfying them is proposed. Using these stopping rules, one can treat the 
processes within the framework of LAN, which yields asymptotic optimalities 
of various inference procedures. Applications for compound Poisson processes 
and continuous time Markov branching processes (CMBP) are discussed. Espe- 
cially, asymptotically uniformly most powerful tests for criticality of CMBP can 
be obtained. Such tests do not exist in the case of the non-sequential approach. 
Also, asymptotic normality of the sequential maximum likelihood estimators 
(MLE) of the Malthusian parameter of CMBP can be derived, although the 
non-sequential MLE is not asymptotically normal in the supercritical case. 

Key words and phrases: Local asymptotic normality, stopping rule, marked 
point process, branching process, maximum likelihood estimation, test for crit- 
icality. 

1. Introduction 

It is well known that  the asymptotic behavior of the continuous time Markov 
branching processes is drastically different for the subcritical, critical and super- 
critical cases. For this cause, there do not exist asymptotically uniformly most 
powerful tests for key parameters of the processes. Also, even if we restrict our 
attention to the supercritical case, the asymptotic distributions of the maximum 
likelihood estimators are non-normal. For such problems, several authors have 
developed the conditional inference procedures within the framework of locally 
asymptotically mixed normal (LAMN) families (see e.g. Basawa and Scott (1983)). 
On the other hand, the method discussed in this paper is based on a sequential 
approach. Our main goal is to propose certain stopping rules which allow us to 
treat such processes within the framework of locally asymptotically normal (LAN) 
families. The general theory for LAN families provides stronger optimality results 
than that  for LAMN families. 
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Including the continuous time Markov branching processes, this paper deals 
with a class of marked point processes. ARer the preliminaries in Section 2, a 
statistical model for marked point processes is introduced in Section 3. Our for- 
mulation also contains the compound Poisson processes and the birth-and-death 
processes. A series of conditions to establish the LAN property of the model is 
given in Section 4. In Section 5, we present a class of stopping rules which leads us 
to the main goal. Section 6 consists of some applications of the results. Especially, 
based on our stopping rules, we can obtain the asymptotically uniformly most 
powerful tests for criticality of the continuous time Markov branching processes. 
The asymptotic normality of the sequential maximum likelihood estimator of the 
Malthusian parameter can also be derived. 

Our work is motivated by Scrensen's (1986) one, who has considered exponen- 
tim families of stochastic processes. However, as far as one considers point pro- 
cesses, our formulation and stopping rules are more general than his. Mel'nikov 
and Novikov (1989) have considered sequential inference problems for semimartin- 
gales, on the other hand, Svensson (1990) has investigated the sequential maximum 
likelihood estimation for multivariate point processes. Exact (not asymptotic) 
optimal estimation problems for the compound Poisson processes are discussed 
by Stefanov (1982), and for the birth-and-death processes by Franz (1982) and 
Manjunath (1984). 

2. Preliminaries 

In this section, we summarize the theory of marked point processes (see 
Br6maud (1981) or Jacod and Shiryaev (1987) for details) and give a central limit 
theorem which is used in the following sections. 

Let E be a Polish space endowed with its Borel a-field g. Fix a filtered prob- 
ability space (ft, ~c, ($ct)' p) ,  where the filtration ($ct) is assumed to be increasing 
and right continuous. We do not ask the a-fields to be complete. An E-marked 
point process is a double sequence p = {(Ti, Z~); i = 1, 2, . . .}  of random variables 
defined on (ft,~c, p)  where 0 < T1 < T2 < . . . ,  P-a.s. and Zi E E, i = 1, 2 , . . . .  
The measurable space (E, g) is called the mark space. 

For given E-marked point process p, we define the non-negative integer valued 
random measure p(dt x dz) on [0, oc) x E by p([0, t] x A) = ~{i;  Ti C [0, t], Zi C A}, 
t E [0, co), A E g. We also use the notations Nt(A) := p([0, t] x A) for A E g and 
especially Nt := p([0, t] × E).  Note that No = 0, P-a.s. by definition. Here, we 
assume that p admits the (P, (~ct))-intensity kernel At(dz); that is, ),t(a~, dz) is a 
transition measure from (f~ x [0, oc), ~c®B[0, ec)) into (E, g), and for every A ~ g, 
Nt(A) admits the (P, ($ct))-predictable intensity At(A). 

Next, let H(t, z) be an E-indexed ($ct)-predictable process such that  the pro- 
t eess t ~ fo f E IN( s, z )12 )~s( dz ) ds is locally integrable. Then the stochastic integral 

of H (t, z) with respect to q(dt x dz) = p(dt × dz) - )~t(dz)dt is well defined, and t 
f o f E  H(s, z)q(ds x dz) is a (P, (~ct))-locally square integrable martingale with the 

quadratic variational process (fo fN H(s ,z)q(ds  x dz)) = f o f E  IH(s,~)12~s(dz) dS" 
Finally, we give a central limit theorem for randomly stopped martingales 

derived from marked point processes. It is a slightly extended version of Kutoyants' 
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work ((1984), Theorem 4.5.4), so we omit the proof. Although a similar result 
is given by Svensson ((1990), Theorem 5.2), certain a.s. uniformly boundedness 
condition imposed there is not desirable for us. 

Let 5/ be the totality of the positive integers {1, 2 , . . .}  or the positive real 
numbers (0, e~). Assume that, for each u E///, a mark space (E (u), g(~)), a filtered 
probability space (ft (~), 3 c(~), (~ct(u)), P(~)) and an E(~)-marked point process p(~) 

as above are given. Further, let ~-~ be an (3c}~))-stopping time such that P(~)(~-~ < 
oc) = 1. Finally, let d be a fixed positive integer. 

THEOREM 2.1. For each u E Lt, let /4/(  ~)(t, z),  i = 1 , . . . ,  d be E (~)-indexed 

(~(t~))-predictabIe processes sat is fying the fol lowing condi t ions  (i)-(iii): 
(i) For every i = 1, . . . , d, 

/o < for  every t E [0, oo), P(U)-a.s.  

(ii) For every i , j  = 1 , . . . , d ,  

~0 T~ /E(~ ) 
in P(U)-probability as u -~ oc, 

and the d × d matr i x  E = (a O) is positive definite. 
(iii) For any s > O, 

u----~ oo (u) 

d 

i = 1  

= 0 .  

Then  

(/? L 
--~ N(0, E) in P(~)- law as u --* oc. 

3. Introduction of the model 

Let us introduce a statistical model for marked point processes. Fix a mark 

space (E, E) on which a or-finite measure # is defined. Fix a positive integer d 

and an open set O c R d. Let L/ -- {1,2,...} or (0, oc). For each u E L/, let 

p(~) = {(T} u), Z}~))" = 1,2, . ..} be an E-marked point process defined on a 
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filtered probabili ty space (ft(u), $ c(u), ($c(u)), {P(~); 0 E O}),  where the probabili ty 

measures {P0(~);0 E O} are mutual ly  absolutely continuous on 5 (u) for every 

t E [0, oo). We also assume tha t  the filtration (St (u)) is of the form 

t , (3.1) 
~}u)=a{p(U)((O,s]xA);sE(O,t] ,AEr},  tc(O,  oc) 

and that  all the measures {P0(U);0 E O} coincide on $-~u). Further,  we suppose 

that  p(~) admits the (P0 (u), (~ct(u)))-intensity kernel 

(3.2) A~)(dz;O) = g(O)y} u) . f(z;O)p(dz), 

o (u) is a non-negative where g(O) is a positive real valued function on O, t ~ Jt 

(Svt(u))-predictable process and {f(z;O)p(dz);O E O} are probability measures 

r (U)+ ,~  0 0 )  : =  on (E, g). Then, a version of the likelihood ratio process t ~ ~"t wl ,  

dP(o~)lU(t u) /dP(Oo)lU (~) is given by 

) L~U)(01,0o) = exp log °~(Z;Ox),(U)(ds dz) (9(01) g(Oo))gt (u> 
~ ( z ; 0 0 )  ~ ' × - - ' 

where 

/0' a(z;0)  := g(O)f(z;O) and Yt (u) := y~)ds. 

When an E-marked  point process p(U) = {(T}u), Z}u)); i = 1, 2 , . . . }  as above is 

given, the sequence {T/(U); i = 1, 2 , . . . }  forms the (univariate) point process which 

admits the (P0 (~) , (~ct(u)))-predictable intensity g(0)y} u) , and the random variables 

Z~ ~), Z ~ ) , . . .  are I.I.D. with the common distribution f(z;O)p(dz) on E. We call 
f (z; O)#( dz) the mark distribution. 

For each u E//4, let ~-u be an (jct(u))-stopping t ime such tha t  P0(~)(Tu < oc) = 

1 for all 0 E O. Then,  the probability measures {P0(U);0 E O} are mutual ly  

~-(u) and L (~) m a ~ dR(U) zz(u) ~dR(U) ~c(u) holds absolutely continuous o n .  ,~ , -~ k~'l,UO) = 0i " J  ~-xt / 00 " Tu 
(see Jacod and Shiryaev (1987), p. 1 5 3 ) .  We are interested in the  statistical 
inference problems for this model based on the realization of p(~) in the random 
time interval [0, 7-u]. Also, we will consider certain class of stopping times ~-u in 
Section 5. Before proceeding with them, we mention a typical example which is 
included in the present model. 

Example 3.1. Birth-and-death process (large initial population case). Let 
O -- (0, c~) 2, E ---- { + 1 , - 1 }  and #(dz) be the counting measure on E.  We assume 
tha t  the mark  distribution in (3.2) is given by 

Ol 

f (z;8)  = 01 + 02' 
02 

01 + 02' 

z = +1, 

z ---- - 1 ,  
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and tha t  g(O) = 01 + 02, for 0 = (01,02) T e O.  Further,  we s e t / d  = {1, 2 , . . . } ,  

and for each u C N 

t = u +  ({+1}) - N}_~)({-1}). 

Then, the process p(~) forms the linear b i r th-and-death  process with the bir th 

rate 01, the death  rate 02 and the initial populat ion size u. Here N(~) ({+I} )  

and N ( ~ ) ( { - 1 } )  denote the numbers  of births and deaths in the t ime interval 
(0, t], respectively. Keiding (1975) has considered this process in his Section 3. He 
has supposed that  the process is observed in the fixed t ime interval [0, to], and 
investigated the asymptot ic  propert ies of maximum likelihood est imators as the 
initial populat ion size u --* oc. We consider the more general si tuation that  the 
observation of p(~) is given in the random time interval [0, ~-~], and let u --* oc. 

Next,  we mention that  our formulation includes the one realization case, in 
which we drop the super-index (~) in all notations; tha t  is, we denote the (P0, (Set)) - 
intensity kernel of p = {(Ti, Zi);i = 1, 2 , . . . }  by 

(3.3) At(dz; 0) = g(O)yt" f(z; O)#(dz) 

instead of (3.2). Note  that  s topping times ~-~ and constants c~ (which will appear  
in the following sections) are indexed by u E U. A typical example is as follows. 

Example 3.2. Birth-and-death process (fixed initial population case). We as- 
sume that  the mark distr ibution and g(0) in (3.3) are given as in Example 3.1. 
Further,  we set 

= x 0  + - 

where x0 is a fixed positive integer. Then, the process p forms the linear birth-and- 
death  process with the bir th rate 01, the death  rate 02 and the initial populat ion 
size Xo. Keiding (1975) has supposed in his Section 4 that  the process is observed 
in the non-random time interval [0, u], and let u --+ oc. We consider the more 
general si tuation that  the observation is given in the random time interval [0, ~-~], 
and let u ~ co. 

In Section 6, we refer to our formulation (3.2) as the general case, contrasted 
with the te rm one realization case. 

4. LAN property of the model 

In this section, we give a series of conditions to establish the LAN proper ty  of 
the model  introduced in the previous section. Fix a point 00 E O. Hereafter,  we 

Oh(Oo) ah(O) use the notat ion ~ for ~ 10=0o. 

CONDITION 4.1. (A1) There exists a neighborhood Oo of Oo such that 
a(z;  0) = g(O) f ( z; O) is three times continuously differentiable on Oo for #-almost 
all z. 
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(A2) For every i , j  = 1 , . . . , d ,  

E Ol°ga(z;O°) 2a(z;Oo)p(dz) < oc and 
00~ 

E 021oga(z;00) 2 
0o~0o~ c~(z; Oo)~(dz) < ~ .  

Further, the d x d matrix N = (crij) where 

~ Ologa(z;Oo) Ologa(z;Oo) a(Z;Oo)#(dz), i , j  = 1 , . . .  d 
criJ : OOi (~Oj 

is positive definite. 
(13) There exists an g-measurable function H(z)  on E (possibly depending on 

0o) such that the relation 

< H(z)  
O0~OOjOOk - 

holds for every i, j, k = 1 , . . . ,  d, 0 E Oo and #-almost all z, and that 

~ IH(z)12a(z; Oo)~(dz) < 0(3. 

(B) There exist a family of constants {c~; u •//4} such that c~ Toe as u ~ ec 
and a positive constant ~] satisfying 

l i m E ( ~ ) [ 1 Y ~ : ) - r ] ]  : 0 .  
u-~o~ Oo LlCu 

Although the conditions (A1)-(A3) may seem to be classical and strong, they 
will serve a rich class of models covering most applications. On the other hand, the 

condition (B) is essential in our context. The process t ~  Nt(~)(.) is non-ergodic 

!Y~ (~) does not converge to a positive constant as t --+ oc. The condition as far as t t 
(B) requires the existence of appropriate random time change to make the model 
be LAN with respect to u • L/even if the process is non-ergodic. 

Set L~)(O) := L~)(O, Oo) for 0 • O. Under the conditions (A1) (A3), we have 

. _  OlogL  )(o) 
00~ 

°l°g<z;°)p(O)(ds × 
= 00i ~ t , i = l , . . . , d ,  

02 log L~ ~) (0) 
(t;o) : =  

0o~0o 5 
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f0 t JE 02 log a(z; O) 02g(O) Y~(~) i, j = 1 , . . . ,  d, 
= O0~OOj p(~)(ds x dz) O0~OOj t , 

(~) t" 0 a log L~ ~) (0) 
Rijk( ,0) := OOiOOjO0 k 

90iOOjOOk p 90iOOjOOk t 

i , j , k=l , . . . ,d  

for every u E H, 0 c Oo and t E [0, oc). The maximum likelihood estimator (MLE) 
~)~ based on the realization of p(~) in the random time interval [0, ~-~] is defined as 
the solution of the likelihood equations 

(4.1) u ~ ) ( ~ ; 0 )  = 0, i = 1 , . . . , d .  

THEOREM 4.1. Suppose that Condition 4.1 (A1)-(A3) and (B) are satisfied. 
Then we have: 

(i) Consistency of MLE: with P(~)-probability tending to 1, the likelihood 
equations (4.1) have exactly one consistent solution, and this solution provides 

(~) 
a local maximum of the likelihood ratio L ~  (0). 

(ii) Asymptotic normality of MLE: let O~ be the consistent solution of the 
likelihood equations (4.1), then 

~-~(o~-Oo) -~  x (o , (~r0-1 )  in P~o~)-law as ~ ~ .  

(iii) L A N  property of the model: with U(~)(T~;eo) := (U~)@~;0o), . . . ,  
Ud(~)(~-~;eo)) q-, we have for every h E R d 

--P(o~)-probability as u ~ ~ ,  in 

where Ou 1-----h and = 0 o +  

1 

(4.2) 

(4.3) 

and 

PROOF. Although our model is not a special case of the one in Borgan (1984) 
or van Pul (1992), the conclusions follows from the same arguments as there. As 
pointed out by them, it suffices to show that 

~ v(~)(~;Oo)-~ N ( o , , z )  in P(g)-law as u - ~ ,  

~-I~)(T~;0o)--~ -,~rij  in Pa(oU)-probability as u --+ oc, i , j  = 1 , . . . , d  C u - -  
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/ 1 n(u), \ 
( 4 . 4 )  p(U) { "0) < M) 1, O EOo, i,j,k 1, d, ~--.oolim ,,o \ cZl i i j  k~Tu~ / = . . . .  

where M is a positive constant  not depending on 0 E O0. 
First  we prove (4.2). Noting fE(O/OOi)f(z; Oo)#(dz) = 0, we can see that  for 

every i = 1 , . . . , d  

u~ (~) (t; Oo) = ffo't fE 01og00ia(z;0O)p(~)(ds x dz) 

- f o ' £  
fot ~ Ologa(z;Oo) = OOi q(~)(ds x dz). 

Thus the condition (ii) in Theorem 2.1 is satisfied by (A2) and (B). Next,  it is 
seen that  

E(u) [fOr~/E~ 10logc~(Z;O0) i=1 ~ cgOi 

21{ l Ol°gc~(z;O°) 2 } = fE~-~J Ol°ga(z;O°) ~[x/'~u 
i=1 ~ i=1 -- ~ /  > £ OL(Z;OO)#(dz) 

• 
Cu Oo 

which converges to 0 as u ~ ec by the dominated convergence theorem and (B), 
so the condition (iii) is satisfied. Hence Theorem 2.1 is applicable and we obtain 
(4.2). 

As to (4.3) and (4.4), we only give the key relations to prove them: 

I$y)(t;Oo) = fo~ /E 021°ga(z;O°) OOiOOj q(U)(ds × dz) -o-ijY~ (u), i,j = 1 , . . . ,  d, 

fo £ dz) r~(~) tt" H(z)q (u) (ds x ~o~jk~ ,e)J _< 

03g(O) 
+ ( f  O0 O09O  

i,j,k = l,...,d, 9 E Oo. D 

As consequences of the above results, we can see that a lot of statistical pro- 
cedures based on the likelihood ratio have good operating characteristics. See e.g. 
Andersen et al. ((1993), Chapter VIII) for details. 
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5. Stopping rules 

For the practical use of the results given in the previous section, it will be the 
most important problem to construct the stopping times {T~; u E /-4} satisfying 

Condition 4.1 (B). For this aim, we introduce the (Jc(~))-stopping time 

(5.1) ~-~ = inf t :  ~(z)p (~)(ds x dz) + > c~ 

=inf t:~5(Z} u))+vYt (~)>c~ , 
i=1 

where ~(z) is a real valued g-measurable  function and v is a prescribed constant.  
Various choice of ~(z) and v brings us a wide class of s topping rules. Here we give 

a sufficient condition for P0 (~) (~-~ < oc) = 1. 

LEMMA 5.1. For a fixed 8 E O, assume that ~ ( Z) has the finite first moment 
¢1 (9) = fE ~(z)f(z; 8)#(dz) and that 

(5.2) ¢(o)  := + > o. 

For eachuELl, if Yt(~) Too as t  ~oe, P(~')-a.s., thenP(U)(7,, < c ~ ) =  i. 

PROOF. Fix u E /4. By  the random time change theorem (see Kallenberg 

(1990), Theorem 2.1), the random double sequence {(Y(i~)),Z}"));i = 1 ,2 , . . . }  

forms the compound  Poisson process which admits  the intensity kernel 
9(9)f(z;8)#(dz). Hence the random variables 

(5.3) Wi (u) := ~(Z} ~)) + v(~T(~ ) -- i = 1,2, ' "  

where T (~) = 0, are I.I.D. with the first moment  ¢1(8) + ~ > 0. Therefore, it 

follows from the strong law of large numbers  tha t  

n ?% 

Z ~')) + u ~  (~) = ~)-a.s. 
Ta 

i=l i = l  

which completes the proof. [] 

r,r(u). 
The next result, concerning the properties of the random variables ix÷~ , u E 

L/}, plays the key role in our context. Note that the limiting constant and distri- 
bution in the latter conclusions (5.5) and (5.6) respectively, do not depend on the 

behavior of the processes t ~-~ ~(u). 
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THEOREM 5.1. For  a fixed 0 E O, assume that P(~)('& < oc) = 1 for every 
u E bl. I f~(Z)  has the finite first moment ¢1(0) = fE ~(z)f(z;  O)#(dz) and if (5.2) 
is satisfied, then for every u E U, 

(5.4) E(u)[Yr(2) ] < c~. 

Further, if ~(Z) has the finite second moment 02(0)=  fE I~(z)12f(z;O)tL(dz), then 

(5.5) lira E (~) [ 1 y ( ~ ) _  1 ] 
~ - ~  c, c~ ¢ ( 0 )  : 0 

and 

(5.6) x/~u (1y(u) 1 ) (9(0)¢2(0)) 

in p(u)_law as U ----+ OO. 

Remark. We do not require here that  Yt (~) T oc as t --~ oo, P(~)-a.s. (see also 
Subsection 6.2), however, we may assume it without loss of generality. If not, it 
is enough for our purpose to introduce new E-marked point processes/~(~) having 

the intensity kernels g(O)(l} ~)f(z;O)p(dz) where 

( 1, t E (~-~, e~). 

The aim of this modification is to reduce/?(u) to the compound Poisson process as 
in the proof of Lemma 5.1. Hereafter, we use the original notations p(~) and ~t~ (~) 

instead of the modified/~(u) and 9}~) respectively. 

PROOF. As seen in the proof of Lemma 5.1, the random variables W} ~), 
i = 1 ,2 , . . .  in (5.3) are I.I.D. with the finite positive first moment.  For each 
u E/~, we define 

and 

(5.7) 

v(~) .h/~ : :  inf n :  E ( ( Z } ~ ) )  +''T~ ") > c~ = inf n 
i : 1  

vy(~) W (~) := E + = E - 
i : 1  i : 1  

D~ : =  ~ ( ~ ) ; ( ~ )  (ds × d~) + vV.(: ~) - c~  
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Then, we have E(~)[Af,,] < cc by Lemma 2.1 in Woodroofe (1982). So it follows 
from the Wald equation that 

E(U)[Ru] = ¢1(0)+ [A/'~] - c u  < oo. 

Since 0 < D~ < Ru, P(~)-a.s., we obtain E(~)[Du] < oo. Hence the inequality 

~(z)p(~)(ds × dz) + v Y ~  ) [c~ + D~] < oo 

holds, where {S(~); n = 1~ 2, . . .}  is an appropriate sequence of localizing (St (~))- 
stopping times. Thus it follows from the optional sampling theorem that 

(5.8) ¢(O)E(o~)FY (~) ~ ] < c~ + Ee(~)[D~] < o~. 
L ~_uAS(n ) - -  

Noting tha t0  _< Y(~s(~ ) T Y'(~)~ as n --~ ~ ,  P0(~)-a.s., we obtain the first conclusion 

(5.4). 
Next we prove (5.5). Since 

holds for every t e [0, oo), we have from (5.7) that 

- ~(0) c .  + D .  - ~(z)qC')(ds × dz)  . 

When the finite second moment ¢2(~) exists, it follows from Theorem 2.4 in 
Woodroofe (1982) that the family {R~; u E U} of random variables is uniformly 
integrable. Thus the family {D~; u E/.4} is so too. In particular, we have 

(5.10) lim 1E(~)[D~] = 0. 
U----+~O CU 

Therefore, combining (5.10) with (5.9), it suffices for (5.5) to show that 

(5.11) l i r a  ~Eo(U)[/o~-"/E ~(z)q(')(ds×dz)]----0. 
Since (/~/~ ¢ ( z ) q ( ~ ) ( d s  × dz)} = g(e)¢~(e)Y~ (~), we have 

((z)q(~)(ds x dz) : g(O)¢2(t?)E(~)LYJ~)s(:) ] 

1 E(.)[D.]} _< g(e )¢~(e) .  , ~ { c ~  + 
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by the optional sampling theorem and (5.8). 
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(5.12) 
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Thus it follows from the Fatou's 

n ~  - ~(z)q (u)(ds x dz) 

1 E;~) _< g(O)¢2(O) • ~ { e , ,  + [D~]}. 

x dz) 2] 

Hence we obtain from (5.10) and (5.12) that 

<CX),  

where/2 '  := {u c U : c~ > 1}. Therefore, the family {_A_I - v ~  f o  x fE ~(z)q(~)(ds x 
dz); u C lA'} of random variables is uniformly integrable (see e.g. B%maud (1981), 
p. 286). This yields (5.11), hence the conclusion (5.5) is established. 

Finally, we prove (5.6). From (5.9), we have 

v / ~ ( 1 y ( ~ )  1 ) 1 ( _ 1  D~ 1 L r ~ / E  ) 
kC~ ¢(8) - ~(0) x/~u ~ u  ~(z)q(~)(ds x dz) . 

Here, it easily follows from the uniform integrability of {D~; u E L/} that 

~ c D ~  -+ 0 in P(~)-probability as u --~ oo ,  

on the other hand, we can see 

1 1 ~(z)q(~)(ds x dz) -* N O, ~(0) 3 ) 
¢(o) 

in F;~)-law a s  u --~ (x3 

from Theorem 2.1 with (5.5). These facts yield (5.6). [] 

6. Applications 

6.1 Compound Poisson process 
Here, we consider the one realization case with///  = (0, ~ ) .  When we set 

yt -- 1 in (3.3), the process p forms the compound Poisson process with the 
intensity g(8) and the compounding distribution f(z;O)#(dz).  Since Y~ -- % in 
this case, Condition 4.1 (B) is satisfied if we take ~-~ - u and c~ = u for every 
u E b/. However, in many practical situations, one may want to use other stopping 
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rules for some reasons. For this purpose, the stopping time (5.1) which equals in 
the present case to 

(6.1) T~ = inf } t :   (zi) + vt > 
i = l  

may be useful. Typically, it has the following interpretation: 
(a) ~(Z) represents the damage by the event with its mark Z; 
(b) v represents the running cost per unit time; 
(c) we stop the experiment when the total sum of the damages and running 

cost exceeds the prescribed value cu. 
Stefanov (1982) has given a characterization of stopping rules which enable 

the efficient estimation of unknown parameters. Related with this problem, in 
view of Theorems 4.1 and 5.1, we assert that the asymptotically efficient inference 
is possible for the more general stopping rules (6.1). 

6.2 Pure death (birth) process 
Here, we consider the general case with 5 / =  {1, 2, . . .} .  Let E = {-1} ,  hence 

the mark distribution in (3.2) is degenerated. We suppose that the (univariate) 

point process p(U) admits the (Po, (yr}u)))_predictable intensity 

(6.2) A~)(0) ~ (u) = ~Yt , 0 > O, 

where y}~) = u -  AT(_ ~). Then the process p(U) forms the linear pure death process 

with the initial population size u. In this case, it does not hold that Yt (~) T co as 

t ~ ec, P0(~)-a.s., however, all the assumptions in Theorem 5.1 are satisfied if we 
take e.g. ~ _= 1, v _> 0 and c~ = u in (5.1). This fact illustrates that the essential 

requirement is not "Yt (~) 1" ec as t -~ oo" but "Y~(~) ~ oo as u --+ oc". 

When we set E = {+ 1} and y}~) = u + N t  (~) in (6.2), the process p(~) forms the 
linear pure birth process with the initial population size u. More general processes, 
including the birth-and-death processes, are discussed in the next subsection. 

6.3 Branching process with immigration 
Here, we consider the one realization case with b/ = (0, oc). Let E = {0, 1, 

2 , . . .}  and #(dz)  be the counting measure on E. We suppose that the process p 
admits the (Po, (St))-intensity kernel (3.3) with 

yt = X t -  + Z ( Z i -  1), 
i = 1  

where t ~-+ X t  is a right-continuous, positive integer valued non-decreasing process. 
The process t ~ X t  may be either random or non-random, however, note that 
it is assumed to be (~ct)-adapted where the filtration (S't) is of the form (3.1). 
Then, the process p forms the continuous time Markov branching process with 
the split intensity 9(0), t he  offspring distribution {f(z; 0), z = 0, 1, 2 , . . .}  and the 
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immigration process ~ ~ Xt. It is a common knowledge that we can interpret 
X0 as the initial population size of p, and that X t  - Xo represents the number 
of immigrations in the time interval (0, t]. We must require Yt $ c~ as t --+ 0% 
Po-a.s. for all 0 E O. It is sufficient for this aim that we assume Xt  T c~ as t ~ oo 
Po-a.s. for all 0 c O, but it is not necessary; for example, Xt  = Xo + ~ 1  I{yT~ = 
1, Zi = 0} also will do. 

When we adopt inference procedures based on the realization of p in the 
non-random time intervals [0, u], the results are drastically different for the sub- 
critical, critical and supercritical cases. Concerning this difficulty, several authors 
have assumed in advance either subcriticality or supercriticality. However, this 
assumption is not desirable in some situations. Indeed, testing of criticality it- 
self is an important problem. Basawa and Becker (1983) have discussed it by 
a sequential approach; they have used the stopping time T~ = inf{t : Art = u} 
where u is a positive integer, and obtained the uniformly most  powerful test for 
criticality. However, when we use more general stopping times (5.0,  the model 
has the LAN property and the usual procedure for constructing the asymptotically 
uniformly most  powerful tests works well. See e.g. Theorem VIII.1.4 of Andersen 
et al. (1993). 

When we restrict our attention to the supercritical case, the model forms a 
LAMN family if the process p is observed in the non-random time intervals [0, u]. 
Thus, the maximum likelihood estimators of 0 are asymptotically mixed normal, 
and the normalizing constants depend on the true value of 0 (see e.g. Athreya and 
Keiding (1977)). This phenomenon may be unpleasant in some practical situations. 
However, it does not appear in the sequential approach based on the stopping 
times (5.1). Further, we are able to consider the model for the subcritical, critical 
and supercritical cases in the unified context. This merit is important for the 

0 cc estimation problem of the Malthusian parameter 7(0) = g( ) (Ez=0 z f ( z ;  O) - 1) 
Finally, it should be noted that other specifications of Yt are possible; for 

Nt_ 
example, Yt = f / (Xt_ + E i = l  (Zi - 1)) where 

(6.3) ~(x) = z c~, xe -~z  or x A k etc. 

The last one in (6.3) with E = {0} makes p the G / M / k  queueing process. Also, we 
can treat these processes in the general case as in Example 3.1 and Subsection 6.2. 
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