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A b s t r a c t .  Yang (1982, Bull. Inst. Math. Acad. Sinica, 10(2), 197-204) 
proved that the variance of the sample median cannot exceed the population 
variance. In this paper, the upper bound for the variance of order statistics is 
derived, and it is shown that this is attained by Bernoulli variates only. The 
proof is based on Hoeffding's identity for the covariance. 
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I .  Introduction 

Let X I :  n ~ X2:  n ~_ . . .  <_ X n :  n be the order statistics corresponding to n iid 
rv's X1,..., Xn with df F(x)  and finite variance 0.2. 

The purpose of this paper is to find the maximum variance of the k- th  or- 
der statistic Xk:n given a fixed population variance 0.2. Several authors have 
studied non-parametric bounds for the moments of order statistics. The earliest 
results in that direction are by Plackett (1947) and Moriguti (1951), generalized 
by Hartley and David (1954) and Gumbel (1954). More general results are ob- 
tained by a method due to Moriguti (1953). Furthermore, moment inequalities for 
order statistics are given by Sugiura (1962), David and Groeneveld (1982), Terrell 
(1983), Sz@kely and Mdri (1985), Papathanasiou (1990), Balakrishnan (1990) and 
Gajek and Gather (1991). 

Yang (1982) proved that, 
(i) for n = 2k -- i, Var(Xk..n) _~ 0.2 

(ii) for n -~ 2k, Var[(Xk:n + Xk+l:n)/2] ~_ 0.2, 
(iii) for k # (n+ 1)/2, there exists a continuous df F(x) such that Var(Xk:n) 

0 .2" 

Recently Lin and Huang (1989) observed that equality is attained in (i) by 
the symmetric Bernoulli variate. 

Here it will be shown that 

(1.1) Var(Xk:n) < 0.~(k). 0.2 1 < k < n, 
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where <r2(k) in a constant  depending only on k and n. Equal i ty  in (1.1) is a t ta ined 
if and only if 1 < k < n and X is a two-valued (Bernoulli) distribution: 

P[X = x2] = p = l - P[X = xl], xl  < x2, 

where the parameter  p = p~(k) depends on k and n only. Cases k = 1 and 
k = n lead to strict inequality, but  for every e > 0, there exists a df  F(x) such 
that  Var(Xl:n) > a2n(1 ) • cr 2 - e for k = 1 and similarly for k = n. The key role 
to the derivation of these upper  bounds  is played by Hoeffding's identi ty for the 
covariance (see (3.2)) in combination with the unimodal  proper ty  of the special 
function t(x) (see notat ions (2.1)), proved in Lemma 2.1(iv). 

Unfortunately,  the a~ (k)-values, given by: 

(1.2) c ry (k )=  sup ¢ ~ { I x ( k ' n + l - k ) ' ( 1 - I x ( k ' n + l - k ) ) ~  
o<x<l x-(i--- L J 

do not have a simple form; Ix (a, b) denotes, as usual, the incomplete be ta  function: 

1 ua_ l (  1 _ u)b_ldu, Ix(a,  b) - B(a ,  b) 0 < x < l .  

However, tables and figures for a2(k)  are obta ined for various n and k. 

2. An auxiliary lemma 

Let Xk:n be the k-th order statistic based on a sample of size n > 2, from an 
arbi t rary df F(x) with finite variance a2. Then (c.f., for example, David (1981), 
p. 34) Var(Xk:n) exists. We are interested in finding the maximum variance of 
Xk:n among all df 's  F having variance a 2. Let us use the notations: 

(2.1) 

c ( x )  : Ix (k ,  n + 1 - k) ,  g ( x )  = a ' ( x ) ,  

t l ( x ) -  G(x) t 2 ( y ) -  1 -  a(y)  
x 1 - y  

t ( x , y ) = t l ( x ) ' t 2 ( y )  and t ( x ) = t ( x , x ) ,  O < x < y < l .  

The following lemma is required for the main result. 

LEMMA 2.1. Let 1 < k < n. Then, there exist unique numbers Pl = pl(k,  n), 
P2 -- p2( k, n) satisfying 

k - 1  
0 < p l <  < p 2 < 1  

n - - 1  

such that, for 0 < x < y < 1: 
(i) t l(x) = G(x) /x  strictly increases in (0, p2) and strictly decreases in (p2, 1) 

and similarly t2(y) = (1 - G(y) ) / (1  - y) strictly increases in (0, Pl) and strictly 
decreases in (pl, 1). 
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(ii) I f  x k Pl or y < P2, then 

G(x). (1 -G(y)) =t(x,y) <max{t(x),t(y)}. 
x(1 - y )  

(iii) I f  x < Pl and y > P2, then 

t ( z , y )  < t ( p l , p 2 )  <max{ t (p l ) , t ( p~ ) } .  

(iv) There exists a unique Xo = Xo(k,n) C (Pl, P2) such that the function 

a(~).O-a(~)) t(x) strictly increases in (0, Xo) and strictly decreases in (Xo, 1) 
x ( 1 - - x )  - -  

PROOF. (i) Obviously t i (x  ) = ( x g ( x ) - G ( x ) ) / x  2. The function x g ( x ) - G ( x )  
has derivative xg'(x)  which is positive if x < (k - 1) / (n  - 1) and negative if 
x > ( k - 1 ) / ( n - 1 ) .  Since l imx~o+[xg(x ) -G(x)]  = O, l i m x ~ l _ [ x g ( x ) - G ( x ) ]  = - 1  
we conclude that  the equat ion 

 g(x) - a ( x )  = o, o < x < 1, 

has a unique root  p2 = p2(k, n) C ((k - 1) / (n  - 1), 1). 
Hence xg(x)  - G(x) > 0 for x E (0, p2) and xg(x)  - G(x) < 0 for x E (f12, 1) 

and the proof  is complete for t l  (x). 
Similarly for t2 (y), there exists a unique pl = p~ (k, n) satisfying 

k - 1  
0 < p l < - -  

n - - 1  

such that  t2(y) strictly increases in (0, Pl) and strictly decreases in (D1, 1). 
Note tha t  Pl is the unique point  in (0, 1) satisfying 1 - G(y) = (1 - y)g(y). 
(ii) Let x < y. If Pl < x, we have 

t(x, y) = t l (x ) -  t (y) < t l(X),  t (x) = t (x) .  

Similarly if y <_ P2, t(x,  y) < t(y) and the proof is complete. 
(iii) If x < Pl and y > p~, we have 

t ( x ,y )  = t l ( x ) ,  t2(y) < t l (p l )"  t2(p2) = t (pl ,p2) .  

The second inequality follows from (ii). 
(iv) Obviously l imx~0+ t(x) = l imz~ l_  t (x)  = O. 
Furthermore,  it is clear from (i) tha t  the function t(x) strictly increases in 

(0, Pl] and strictly decreases in [P2, 1). It suffices to s tudy  t(x) in (Pl, P2). 
It is easy to verify that  for 0 < x < 1, x 2 g 2 ( x ) - x g ( x ) G ( x )  - x 2 g ' ( x ) G ( x )  > O. 

Indeed, the function nG(x)  - xg(x) strictly increases (because (nG(x) - xg(x)  )' = 
(n - k )g(x) / (1  - x) > 0), so that  riG(x) - xg(x)  > limx_.o+[nG(x) - xg(x)] = O. 
Hence, the function x(1 - x)g(x  ) - (k - nx )G(x)  increases also (because (x(1 - 
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x ) g ( x )  - (k  - n x ) G ( x ) ) '  = n G ( x )  - x g ( x )  > 0 by the above argument). Therefore, 
x(1 - x ) g ( x ) -  (k -  nx)G(x) > limx~o+[x(1- x)g(x) - ( k -  nx)G(x)] = 0, so that 

xb2(~) - xg(~)G(x) - ~%'(x)G(~) 
x g ( x )  r ~ 

--  1 7 7  [x[ * - x ) g ( x )  - (k  - n x ) G ( x ) ]  > 0, 0 < x < 1. 

But, for 0 < x < P2, G(x) < xg(x) (see (i)), so that  

(2.2)  ~ % ~ ( ~ )  - G ~ ( x )  - x U 9 ' ( x ) G ( ~ )  > o, o < x < p2. 

We observe that  

- 1  

~x) 

thus, from (2.2), (log c(a:--~--!)) '' < 0, 0 < x < p2, that  is, h(x) is strictly log-concave 
in (0, P2). 

By the same arguments it is proved that  t2 is strictly log-concave in (Pl, 1). 
Hence t(x) = h(x) .  t2(x) is a strictly log-concave function in (Pl, P2), and the 

proof is complete. 

Remark. 

(2.3) 

and obviously 

The unique point Xo = xo(k, n) satisfies the equation 

g(x)(1 - 2G(x)) 1 - 2x 
G(x)(1 - c(~)) ~(1 - x) 

(2.4) C(xo)(1-O(xo)) 
= sup 

x0(1 - Xo) O<x<l [ c(~)(1-G(x))] 
Z ~) J" 

3. Main result 

DEFINITION 3.1. 
relation 

We define the maximum variance function ~r~2(k) by the 

~#(k) = sup L ~(1 o<x<l ~) J' 1 < k < n ,  n - - 2 , 3 , . . .  

(see (1,2)). 

Clearly, a~(k) is a function of k for n _> 2 fixed. Moreover, from (2.4) 

~ ( k )  = e(Xo)(1 - G(xo)) 
x o 0 - x o )  =t(xo), l < k < ~ ,  



MAXIMUM VARIANCE OF ORDER STATISTICS 189 

2 while an ( l )  = a2n(n) = n. 
We can now state the main result of 

(3.1) 

THEOREM 3.1. (Maximum variance of order statistics) 

Var(Xk:n) < ~r~(k)~r 2, 

and equality is attained if and only if  1 < k < n and F(x)  is a Bernoulli distribu- 
tion with probability of success 1 - xo(k, n) (xo(k, n) is defined in nemma 2.1(iv)). 
Cases k = 1 and k = n yield strict inequality, though (3.1) yields the best upper 
bound for Var(Xl:n) and Var(Xn:n). 

PROOF. Suppose 1 < k < n. Hoeffding's identity for the covariance of X,  Y 
is given by the relation (for a proof see Lehmann (1966), Lemma 2) 

(3.2) Cov(X, Y)= f+ EH(x,y)- 
where H(x ,  y) is the bivariate df of (X, Y)'. Hence 

(3.3) 

and similarly 

Var(X) = 2 f /  F(x ) (1  - F(y) )dydx  = ~2 

x<_y 

Var(Xk:~) = 2 f / G ( F ( x ) ) ( 1  - G(F(y ) ) )dydx  

x<_y 

(the last relation follows from (3.3) and the fact tha t  G(F(x) )  is just  the df of 

From Lemma 2.1 we conclude tha t  for all x < y, 

(3.4) Xo(1 - xo)G(F(x) ) (1  - G(F(y) ) )  <_ G(xo)(1 - G(Xo))F(x)(1 - F(y))  

and equality is a t ta ined if and only if either F(x)(1  - F ( y ) )  = 0 or F(x)  = F(y)  = 
X0. 

Integrating (3.4) over S = { - o o  < x _< y < +oc} we have the desired result. 
In order to hold (3.1) as an equality, it is necessary and sufficient tha t  

xo(1 - xo)G(F(x)  )(1 - G(F(y)  ) ) = G(xo)(1 - G(xo) )F(x)(1  - F(y)  ) 

or, equivalently 

F(x)(1  - F(y) )  = 0 

a.e. in S 

or F(x)  = F(y)  = Xo a.e. in S. 
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Thus, the only nondegenerate (with variance 0-2) df which at tains equality is 
of the form: 

0 i f x  < Xl 

F ( x ; x l , x 2 ) =  xo if xl  < x < x 2  

1 if x2 _< x 

where x2 = xl + 0./v/Xo(1 - Xo), xl  e N, and the proof is complete for 1 < k < n. 
For k = n we have 

n 

Var(X~:~) <_ E Var(Xi:n) + 2 E E Cov(Xi:~,Xj:,~) : no- 2, 
i=l l<i<j<_n 

and obviously equality is a t ta ined iff 0-2 = 0. 
Therefore, for nondegenerate F ,  

Var(Xm~) < no- 2 = 0-2(n)0-2 

and this bound is the best possible (for example take F to be a two-valued distri- 
bution with probabili ty of success close to zero). 

Case k = 1 is similar to k = n and is omitted.  

Note that 0-2(k) is symmetric about (n + 1)/2: 

= 0. (n + l - k ) ,  

decreases for k < (n + 1)/2 and increases for k > (n + 1)/2 taking the values 
0-2(1) = 0-2(n) = n, 0-2n((n + 1)/2) = 1 (see Fig. 1). 

Remark. Figure 1 identifies the upper bound for each order statistic sepa- 
rately. Note tha t  these upper bounds can never be achieved simultaneously. For a 
given (fixed) distribution from a lot of distribution families, the variances of order 
statistics have a bell-shaped curve, in contrast to the possible misunderstanding 
tha t  the U-shaped curve, presented by Fig. 1, may creates. 

Note tha t  for k > (n + 1)/2, the values 0-2n(k ) and Xo(k, n) can be calculated 
from Table 1 using the relations: 

0.~(k)=a2(n+ l - k ) ,  xo(k,n) = l -  xo(n + l - k , n )  

and tha t  p = 1 - xo(k, n) is the parameter  of the Bernoulli rv which maximizes 
Var(X~:n)/Var(X). For example, if n = 10, k = 2 we find from Table 1: 

0-20(2) = 2.1608, 1 - xo(2, 10) = 0.8958 = p 

hence for any df we have 

Var(X2:10) <_ 2.1608.0.2 
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Fig. 1. 

n=5  

- -  n = 7 

- -  n= lO  

n 

The function ~2 (k) • sup{Var(Xk:n)/Var(X)}. 

with equality if and only if X1,  X 2 , . . . ,  X l o  are 10 independent copies of the rv X 
with 

(3.5) P [ X  = x2] = p = 1 - P [ X  = xl],  Xl < x2. 

The same inequality is true for X9:10, but equality is attained if and only if X 
is as in (3.5) with Xl > x2. 

Throughout this paper, k was assumed to be an integer in {1, 2 , . . . ,  n}. How- 
ever, all the results continue to hold also for non-integer k. In this case, Xk:n 
denotes the k-th intermediate order statistic as defined by Papadatos (1994). Val- 
ues of a~(k) and xo(k ,  n) for integer and non-integer k are given in Table 1 and 
Fig. 1. 
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