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Abstract. Yang (1982, Bull. Inst. Math. Acad. Sinica, 10(2), 197-204)
proved that the variance of the sample median cannot exceed the population
variance. In this paper, the upper bound for the variance of order statistics is
derived, and it is shown that this is attained by Bernoulli variates only. The
proof is based on Hoeffding’s identity for the covariance.
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1. Introduction

Let Xy, < Xo.y < -+ < X, be the order statistics corresponding to n iid
rv's X1,..., X, with df F(z) and finite variance o2.

The purpose of this paper is to find the maximum variance of the k-th or-
der statistic Xj., given a fixed population variance ¢2. Several authors have
studied non-parametric bounds for the moments of order statistics. The earliest
results in that direction are by Plackett (1947) and Moriguti (1951), generalized
by Hartley and David (1954) and Gumbel (1954). More general results are ob-
tained by a method due to Moriguti (1953). Furthermore, moment inequalities for
order statistics are given by Sugiura (1962), David and Groeneveld (1982), Terrell
(1983), Székely and Méri (1985), Papathanasiou (1990), Balakrishnan (1990) and
Gajek and Gather (1991).

Yang (1982) proved that,

(i) for n =2k — 1, Var(Xy.,) < 02,

(ii) for n = 2k, Var[(Xe.n + Xpy1:n)/2] < 02,

(iii) for k # (n+41)/2, there exists a continuous df F'(z) such that Var(Xj.,,) >
a2

Recently Lin and Huang (1989) observed that equality is attained in (i) by
the symmetric Bernoulli variate.

Here it will be shown that

(1.1) Var(Xy.,) < 02(k)- 0%, 1<k<n,
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where 02 (k) in a constant depending only on k and n. Equality in (1.1) is attained
if and only if 1 <k < n and X is a two-valued (Bernoulli) distribution:

PX=z)=p=1-PX =xz], =1 <o,

where the parameter p = p, (k) depends on k and n only. Cases k = 1 and
= n lead to strict inequality, but for every ¢ > 0, there exists a df F(z) such
that Var(X1.,) > 02(1) - 0% — ¢ for k = 1 and similarly for £ = n. The key role
to the derivation of these upper bounds is played by Hoeffding’s identity for the
covariance (see (3.2)) in combination with the unimodal property of the special
function t(x) (see notations (2.1)), proved in Lemma 2.1(iv).
Unfortunately, the o2 (k)-values, given by:

(12) o2k = suw {

O<z<1

Iz(k,n+1—k)-(1—Im(k,n+1—k))}
z(1 — x)

do not have a simple form; I, (a, b) denotes, as usual, the incomplete beta function:

1 T
I, a—1 b—1 )
(a,b)—————(a,b)/0 T (l=-w)’"du, O<z<1

However, tables and figures for o2 (k) are obtained for various n and k.
2. An auxiliary lemma

Let Xj.,, be the k-th order statistic based on a sample of size n > 2, from an
arbitrary df F(z) with finite variance 2. Then (c.f., for example, David (1981),
p. 34) Var(Xy.,) exists. We are interested in finding the maximum variance of
Xi.n among all df’s F having variance ¢2. Let us use the notations:

G(z)=L(k,n+1—-k), g(z)=G (=),

e)  u@=2 -1

t(z,y) =ti(z) - t2(y) and t(z)=t(z,z), O<z<y<Ll

*

The following lemma is required for the main result.

LEMMA 2.1. Letl <k <n. Then, there exist unique numbers p1 = p1(k,n),
p2 = pa(k,n) satisfying
bcpm<ttopcn
41 m_1 P2

such that, for 0 < x <y < 1:

(1) t1(z) = G(z)/=z strictly increases in (0, p2) and strictly decreases in (p2, 1)
and similarly t2(y) = (1 — G(y))/(1 — y) strictly increases in (0, p1) and strictly
decreases in (p1,1).



MAXIMUM VARIANCE OF ORDER STATISTICS 187
(i) Ifx > p1 ory < pa, then

G(z) - (1-G(y)
z(1—y)

= t(z,y) < max{t(z),t(y)}.
(iii) If x < p1 and y > pa, then

(z,y) < tpy, pa) < max{t(pr), t(p2)}-

(iv) There exists a unique zo = xo(k,n) € (p1,p2) such that the function
g@%%@l = t(z) strictly increases in (0,20) and strictly decreases in (zg,1).

Proor. (i) Obviously t;(z) = (zg(x)—G(z))/z%. The function zg(z)—G(z)
has derivative zg¢/(z) which is positive if z < (k — 1)/(n — 1) and negative if
z > (k—1)/(n—1). Since lim,_,o+[zg(z)—G(z)] = 0, limg 1 - [zg(z)—G(z)] = -1
we conclude that the equation

zg(zx) - G(z) =0, O<z<l,

has a unique root pa = pa(k,n) € ((k—1)/(n —1),1).

Hence zg(z) — G(z) > 0 for z € (0, p2) and zg(z) — G(z) < 0 for z € (pg, 1)
and the proof is complete for ¢ (z).

Similarly for t5(y), there exists a unique p; = p1(k, n) satisfying

k-1
0<pp < ——
n—1
such that t2(y) strictly increases in (0, p1) and strictly decreases in (p1,1).
Note that p; is the unique point in (0,1) satisfying 1 — G(y) = (1 — y)g(y).
(ii) Let z < y. If p1 <z, we have

t(z,y) = ti(z) - ta(y) < ta(2) - ta(x) = t().

Similarly if y < pg, t(z,y) < t(y) and the proof is complete.
(iii) If z < py and y > po, we have

t(z,y) = t1(z) - t2(y) < t1(p1) - ta(p2) = t(p1, pa).

The second inequality follows from (ii).

(iv) Obviously lim, ¢+ t(z) = lim,_,1— t(z) = 0.

Furthermore, it is clear from (i) that the function ¢(z) strictly increases in
(0, p1] and strictly decreases in [pg,1). It suffices to study ¢(z) in (p1, p2).

It is easy to verify that for 0 < z < 1, 2%¢%(z) — zg(z)G(z) — 2%¢' ()G (z) > 0.
Indeed, the function nG(z) — zg(z) strictly increases (because (nG(z) —zg(x))’ =
(n—k)g(z)/(1 —x) > 0), so that nG(x) — zg(z) > limy_o4 [nG(z) — zg(z)] = 0.
Hence, the function z(1 — z)g(z) — (k — nz)G(z) increases also (because (z(1 —
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z)g(x) — (k —nz)G(z)) = nG(z) —xg(z) > 0 by the above argument). Therefore,
z(1-z)g(z) — (k —nz)G(z) > limg o4 [2(1 ~ 2)g(x) — (k — nz)G(z)] = 0, so that

2’ (x) - 29(2)G(z) — ¢ (2)G(z)

N %g——%[x(l —2)9(z) - (k~n2)G(z)] >0, O<z<1.

But, for 0 < 2 < py, G(z) < zg(x) (see (i)), so that
(2.2) 2°¢*(z) — G*(z) — 2’ (2)G(x) >0, O0<z< P2
We observe that
s 0] - e - 6 -y et

thus, from (2.2), (log g%)” <0,0 <z < pg, that is, t:(z) is strictly log-concave
in (07 p2)
By the same arguments it is proved that t3 is strictly log-concave in (p,, 1).
Hence ¢(z) = t1(x) - t2(x) is a strictly log-concave function in (p1,p2), and the
proof is complete.

Remark. The unique point g = z, (k,n) satisfies the equation

9(z)(1 - 2G(z)) 1-22

(2.3) G@)(1-G(x) ~ 2(1-2)

and obviously

(2.4)

3. Main result

DEFINITION 3.1. We define the maximum variance function o2(k) by the
relation

G(z)(1 - G(z))

1<k<n, n=23,...
2(1-2) ] =h=mon

k)= s |

(see (1.2)).
Clearly, o2 (k) is a function of k for n > 2 fixed. Moreover, from (2.4)

G(2o)(1 — G(z0))
.Z'o(l — .Z'())

o2(k) = =t(rg), l<k<mn,
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while 62 (1) = 02(n) = n.
‘We can now state the main result of

THEOREM 3.1. (Maximum variance of order statistics)
(3.1) Var(Xp.,) < 02(k)o?,
and equality is attained if and only if 1 < k < n and F(z) is a Bernoulli distribu-
tion with probability of success 1 —xo(k,n) (zo(k,n) is defined in Lemma 2.1(iv)).

Cases k = 1 and k = n yield strict inequality, though (3.1) yields the best upper
bound for Var(X.,) and Var(X,.,).

PrROOF. Suppose 1 < k < n. Hoeffding’s identity for the covariance of X, Y
is given by the relation (for a proof see Lehmann (1966), Lemma 2)

4o +o0

(32)  Cov(X,Y)= / / [H(z,y) — H(z, 00)H(oo, y)]dydz,
where H(z,y) is the bivariate df of (X,Y’)’. Hence
(3.3) Var(X) = 2// F(z)(1 - F(y))dydz = o*

z<y
and similarly

Var(Xin) =2 [ [ G(F(@)(1 - GE Q) dyds

z<y

(the last relation follows from (3.3) and the fact that G(F(z)) is just the df of

Xk:n)
From Lemma 2.1 we conclude that for all z < y,

(3-4)  zo(1—0)G(F(x))(1 - G(F(y))) < G(zo)(1 — G(xo))F(z)(1 - F(y))
and equality is attained if and only if either F'(z)(1—F(y)) =0or F(z) = F(y) =
Q-

Integrating (3.4) over S = {—o00 < z < y < 400} we have the desired result.
In order to hold (3.1) as an equality, it is necessary and sufficient that

zo(1 — 20)G(F(2))(1 — G(F(y))) = G(z0)(1 — G(z0)) F(z)(1 — F(y))
a.e in S

or, equivalently

F(z)(1—-F(y))=0 or F(z)=F(y)=1z9 ae. insS.
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Thus, the only nondegenerate (with variance %) df which attains equality is
of the form:

0 ifx<x
Flz;z1,m0) =< 2o ifz1 <2<z
1 ifze <z

where 2o = 21 +0/4/zo(1 — zg), 1 € R, and the proof is complete for 1 < k < n.
For k = n we have

Var(X,.n) < iVar(Xm) +2 ZZ Cov(Xiin, Xjm) = no?,

i=1 1<i<j<n

and obviously equality is attained iff o2 = 0.
Therefore, for nondegenerate F,

Var(Xp.p) < no? = o2(n)o?

and this bound is the best possible (for example take F to be a two-valued distri-
bution with probability of success close to zero).
Case k = 1 is similar to k = n and is omitted.

Note that o2 (k) is symmetric about (n + 1)/2:
UTQL(k) = UTZL(n—l_ 1- k)v

decreases for k < (n + 1)/2 and increases for k > (n + 1)/2 taking the values
02(1) = 02(n) =n, 02((n+1)/2) = 1 (see Fig. 1).

Remark. Figure 1 identifies the upper bound for each order statistic sepa-
rately. Note that these upper bounds can never be achieved simultaneously. For a,
given (fixed) distribution from a lot of distribution families, the variances of order
statistics have a bell-shaped curve, in contrast to the possible misunderstanding
that the U-shaped curve, presented by Fig. 1, may creates.

Note that for k& > (n + 1)/2, the values o2 (k) and zo(k,n) can be calculated
from Table 1 using the relations:

o2(k)=0i(n+1-k), zo(k,n)=1—z0(n+1-k,n)

n

and that p = 1 — zo(k,n) is the parameter of the Bernoulli rv which maximizes
Var(Xy.,,)/ Var(X). For example, if n = 10, k = 2 we find from Table 1:

035(2) = 2.1608, 1 —z0(2,10) = 0.8958 = p
hence for any df we have

Var(Xz.10) < 2.1608 - 02
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Fig. 1. The function 2 (k) = sup{Var(Xy.,)/ Var(X)}.

with equality if and only if Xy, Xo,..., X3¢ are 10 independent copies of the rv X
with

(3.5) P X =x3]=p=1-PX =mz], z1<x.

The same inequality is true for Xg.19, but equality is attained if and only if X
is as in (3.5) with £ > z3.

Throughout this paper, k was assumed to be an integer in {1,2,...,n}. How-
ever, all the results continue to hold also for non-integer k. In this case, Xp.p
denotes the k-th intermediate order statistic as defined by Papadatos (1994). Val-
ues of 02(k) and zo(k,n) for integer and non-integer k are given in Table 1 and
Fig. 1.
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